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Chapter 1
Smooth Functions

1.1 Open Subsets of R

Recall from MA2108 Mathematical Analysis I that an open interval in R means any set
of the form (a,b) or (a,∞) or (−∞,b) or R. A subset U ⊆ R is open if it can be written
as a (possibly infinite) union of open intervals. In practice, one can treat ‘U open’ as the
hypothesis that every point of U sits inside some small interval still contained in U . This
is the natural domain condition for differentiation.

Definition 1.1 (smoothness on an open set). Let U ⊆R be open and let f : U →R.
We say that f is smooth (or C∞) on U if for every n ∈ Z≥0 and every t ∈U , the nth

derivative
f (n) (t) =

dn

dtn f (t) exists.

Proposition 1.1. Let U ⊆ R be open and let f : U → R. If f is smooth on U , then
f is continuous on U .

Proof. If f is smooth, then in particular the first derivative exists for all t ∈U . Differen-
tiability implies continuity at each point of U , hence f is continuous on U .

Recall that a smooth function need not equal to its Taylor series. That is to say, even
if all derivatives exist, the Taylor series built from these derivatives may fail to represent
the original function near the expansion point. Equivalently, C∞ does not imply analytic.
Take for example

f (x) =

e−1/x2
if x ̸= 0;

0 if x = 0.

Then, f is smooth on R and f (n) (0) = 0 for all n ≥ 0. Hence, the Taylor series of f at 0
is identically 0, but f (x)> 0 for x ̸= 0. So f does not have a Taylor series expansion at 0
(in the sense of being equal to its Taylor series in a neighbourhood of 0). Well, to make it

1



2 CHAPTER 1. SMOOTH FUNCTIONS

more rigorous, for x ̸= 0, repeated differentiation yields

f (n) (x) = Pn

(
1
x

)
e−1/x2

,

where Pn is a polynomial (depending on n). As x → 0, the exponential decay of e−1/x2

dominates any polynomial growth in 1/x, so

lim
x→0

f (n) (x) = 0.

Thus, defining f (n) (0) = 0 makes each derivative continuous at 0, and inductively shows
f ∈C∞ (R) with all derivatives at 0 equal to 0.

In this course, as we would see eventually, charts and transition maps are required to
be smooth. It is crucial to distinguish smooth from analytic: many geometric construc-
tions live naturally in the C∞ category without being representable by convergent power
series.

1.2 Open Subsets of R2 and R3

When we differentiate f : U → R at a point p ∈ U , we take small perturbations of the
input and compare values of f . Thus, we want the inputs to be able to wander freely in
a small vicinity of p while staying inside U . This is precisely what ‘U is open’ formalises.

Recall from MA2108 Mathematical Analysis I or even MA3209 Metric and Topologi-
cal Spaces the notion of open balls and open subsets of Rn. We shall briefly state these
definitions. Let p ∈ Rn and ε > 0. The open ball of radius ε centred at p is

B(p,ε) = {q ∈ Rn : ∥q− p∥< ε} .

Next, a subset U ⊆Rn is open if for every p ∈U there exists ε > 0 such that B(p,ε)⊆U .
By definition, every open ball B(p,ε) is an open subset of Rn. This notion is the Eu-
clidean special case of the general definition of openness in metric/topological spaces.

Next, let p ∈ Rn. A subset N ⊆ Rn is an open neighbourhood of p if p ∈ N and N is
open in Rn. In particular, B(p,ε) is an open neighbourhood of p for every ε > 0.

Example 1.1. We state some basic examples and non-examples.

(i) A unit square in R2 without its boundary is open; with its boundary it is not open

(ii) A unit cube in R3 without its boundary is open; with its boundary it is not open

(iii) The plane R2 is an open subset of itself, but the xy-plane
{
(x,y,z) ∈ R3 : z = 0

}
is

not open in R3

(iv) Note that the upper half-space{
(x,y,z) ∈ R3 : z > 0

}
is open in R3, while

{
(x,y,z) ∈ R3 : z ≥ 0

}
is not open in R3
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Lastly, a subset C ⊆ Rn is closed if its complement Rn \C is open in Rn. Intuitively,
a closed set contains its boundary points. For instance, an open ball is not closed because
it excludes its boundary sphere.

1.3 Smooth Multivariable Functions

For f : (a,b) → R, the existence of derivatives of all orders forces those derivatives to
be continuous. In several variables, one uses partial derivatives, but existence of higher
partial derivatives alone does not guarantee continuity of those derivatives, so continuity
must be built into the definition.

Definition 1.2 (higher-order partial derivatives). Let V ⊆ Rn be open, and let f :
V → R. Write f (x1, . . . ,xn). Let α1, . . . ,αn ∈ Z≥0 and let

N = α1 +α2 + · · ·+αn.

If the partial derivative
∂ N f

∂xα1
1 · · ·∂xαn

n
(x1, . . . ,xn)

exists for all (x1, . . . ,xn) ∈V , then it is called a partial derivative of order N.

Definition 1.3 (CN (V ) and C∞ (V )). Let V ⊆ Rn be open. For N ∈ N, denote by
CN (V ) the set of continuous functions f : V → R such that all partial derivatives
of order not greater than N exist and are continuous on V . A function in CN (V ) is
called differentiable of order N on V .

Define

C∞ (V ) =
∞⋂

N=0

CN (V ) .

A function f ∈ C∞ (V ) is called a smooth function (in the sense of Calculus) on V .

Definition 1.4 (equivalent smoothness criterion). A function f : V → R is smooth
(in the sense of Calculus) if the following hold:

(i) f is continuous

(ii) all partial derivatives of any order exist

(iii) all higher derivatives are continuous functions on V

The continuity requirements in Definition 1.4 cannot be removed, otherwise one ad-
mits undesirable functions with many existing partial derivatives but poor regularity. For
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example, let V = R2 and define

f : R2 → R where f (x,y) =


xy

x2+y2 if (x,y) ̸= (0,0) ;

0 if (x,y) = (0,0) .

Then, f is not continuous1 at (0,0) even though certain partial derivatives at (0,0) exist.

Definition 1.5 (smoothness at a point). Let V ⊆ Rn be open and p ∈ V . We say
that f : V →R is smooth at p if there exists an open subset V ′ ⊆V with p ∈V ′ such
that the restriction

f |V ′: V ′ → R

is smooth. We call such a V ′ an open neighbourhood of p.

The pointwise notion ‘smooth at p’ is typically less useful than smoothness on an open
domain; in Differential Geometry we usually specify a domain and ask for smoothness
throughout it.

Lemma 1.1 (algebra of smooth functions). Let V ⊆Rn be open and let f ,g : V →R
be smooth. Then, the following functions are smooth on V :

f +g and f −g and f g and f n for n ∈ N.

Moreover, the following hold:

(i) If g(v) ̸= 0 for all v ∈V , then 1
g is smooth on V .

(ii) If g(v)> 0 for all v ∈V , then
√

g is smooth on V .

We give a rough sketch of the proof.

Proof. Use the product rule to show closure under f g, and the quotient rule to show
smoothness of 1/g when g is nowhere zero. The remaining statements follow by repeated
applications of the chain rule.

Example 1.2 (smoothness away from the singular point). Let V ′ = R2 \{(0,0)}. Then,
V ′ is open in R2. Define

g(x,y) = x2 + y2.

On V ′, we have g(x,y)> 0, hence 1
g is smooth on V ′ by Lemma 1.1. As such,

(x,y) 7→ xy
x2 + y2 = xy · 1

g(x,y)

is a smooth function on V ′. In particular, if p ∈ R2 and p ̸= (0,0), then the original f is
smooth at p.

1One can use the two path test taught in MA2104 Multivariable Calculus to show that f is not contin-
uous at (0,0) by approaching (0,0) along two different paths.
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Definition 1.6 (smooth maps into Rm). Let V ⊆Rn be open and let f : V →Rm be
given by

f (x1, . . . ,xn) = ( f1 (x1, . . . ,xn) , . . . , fm (x1, . . . ,xn)) .

We say that f is smooth (in the sense of Calculus) if each component function
fi : V → R is smooth for i = 1, . . . ,m.

Here is a course convention — unless otherwise stated, functions f (x), g(x,y), h(x,y,z),
etc. are assumed to be smooth. Also in this course, parametrisations, coordinate charts,
and transition maps are required to be smooth maps between open subsets of Euclidean
spaces. The definitions above are the Euclidean baseline that will be transplanted to
smooth functions on a surface via charts.





Chapter 2
Curves

2.1 Curves in R3

In this chapter, we begin the study of curvature of a curve; much of the basic material
overlaps with MA2104 Multivariable Calculus.

Definition 2.1 (parametrised smooth curve). A parametrised smooth curve in R3

is a map
α : (a,b)→ R3 where α (t) = (x(t) ,y(t) ,z(t)) ,

where x,y,z are smooth functions on (a,b). That is to say, they are differentiable as
many times as we want.

Definition 2.2 (tangent/velocity vector and speed). The tangent vector (also called
the velocity vector) of α at t is α ′ (t). The speed is |α ′ (t)|.

Definition 2.3 (tangent line and acceleration). If α ′ (t) ̸= (0,0,0), then the line
through α (t) and parallel to α ′ (t) is called the tangent line at t. The second deriva-
tive α ′′ (t) is called the acceleration.

Example 2.1 (helix). Let a,b > 0 and define

α : R→ R3 where α (t) = (acos t,asin t,bt) .

Then,
α
′ (t) = (−asin t,acos t,b) and α

′′ (t) = (−acos t,−asin t,0) ,

and the speed is constant because |α ′ (t)|=
√

a2 +b2.

Example 2.2 (a smooth curve with zero velocity at an instant). Consider

α : R→ R2 where α (t) =
(
t3, t2) .

Then, α ′ (t) =
(
3t2, 2t

)
, α ′′ (t) = (6t, 2), and α ′ (t) = |t|

√
9t2 +4. In particular, α ′ (0) =

(0,0), so the velocity vanishes at t = 0 even though α is smooth.

7
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Example 2.3 (MA3215 AY14/15 Sem 2 Tutorial 1). Find the velocity, speed and accel-
eration for the curve α (t) = (cosh t,sinh t, t).

Solution. We have α ′ (t) = (sinh t,cosh t,1) and α ′′ (t) = (cosh t,sinh t,0). Then, use
Definition 2.2 to compute the velocity and speed and Definition 2.3 to compute the accel-
eration.

Definition 2.4 (non-singular curve). A smooth curve α is non-singular if α ′ (t) ̸= 0.

Example 2.4 (MA3215 AY14/15 Sem 2 Tutorial 1). Let α (t) = (x(t) ,y(t) ,z(t)) be a
non-singular smooth curve, where x,y,z are smooth functions. Let

s(t) =
∫ t

0

∣∣α ′ (τ)
∣∣ dτ.

(i) Compute s′ (t).

(ii) Compute s′′ (t) in terms of x,y,z and its higher derivatives.

(iii) Show that s(t) is a smooth function of t. That is to say (by Definition 2.1), all its
higher derivatives s(n) (t) exist.

Solution.

(i) By the Fundamental Theorem of Calculus, we have s′ (t) = |α ′ (t)|. Equivalently,

s(t) =
√

x2 + y2 + z2.

(ii) By the chain rule,

s′′ (t) =
xx′+ yy′+ zz′√

x2 + y2 + z2
.

(iii) Since x,y,z are smooth functions, then so are their derivatives. Let g(t) denote the
sum of squares of the derivatives. Since α is non-singular, then by Definition 2.4,
g(t) > 0. From (i) and (ii), we have seen that the derivatives s′ and s′′ exist. It
follows that all higher derivatives s(n) (t) exist.

Example 2.5 (self-intersection). Let

α : R→ R2 where α (t) =
(
t3 −4t, t2 −4

)
.

Then, α (2) = α (−2) = (0,0) so the curve may intersect itself.

In this course, we are mainly concerned with the shape of the curve rather than
how fast the point moves along it; hence the same geometric curve may admit many
different parametrisations. Take for example the parametrisations α (t) = (cos t,sin t),
β (t) = (cos(2t) ,sin(2t)), and γ (t) = (cos(t −2) ,sin(t −2)). All three trace the unit
circle, but with different timings — β moves with twice the speed of α , while γ is a time-
shift of α .

Having said that, a natural choice is to reparametrise so that the point moves with constant
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unit speed, i.e. |α ′ (t)|= 1 for all t; in particular, such a parametrisation is automatically
non-singular. We will return to this in Chapter 2.2. The standing assumption from now
on is that we will only consider non-singular smooth curves.

2.2 Arc Length

Definition 2.5 (arc length). Let α : (a,b)→ R3 be a (non-singular) smooth curve.
The arc length of α from t = a to t = b is

L
(
α |[a,b]

)
=
∫ b

a

∣∣α ′ (t)
∣∣ dt =

∫ b

a

√
(x′ (t))2 +(y′ (t))2 +(z′ (t))2 dt.

Fix a reference time (often 0). Define

s(t0) =
∫ t0

0

∣∣α ′ (t)
∣∣ dt.

Then, the arc length from t = a to t = b is∫ b

a

∣∣α ′ (t)
∣∣ dt = s(b)− s(a) .

Example 2.6 (semicircle of radius r). Let r > 0 and

γ : (0,π)→ R2 where γ (t) = (r cos t, r sin t) .

Then, γ ′ (t) = (−r sin t, r cos t) so |γ ′|= r, so the arc length from t = 0 to t = π is∫
π

0

∣∣γ ′ (t)∣∣ dt =
∫

π

0
r dt = rπ.

Example 2.7 (MA3215 AY14/15 Sem 2 Tutorial 1). Parametrise the curve in Example
2.3 by arc length so that when s = 0, we have

α (0) =
(

e+ e−1

2
,
e− e−1

2
,1
)
.

Note that there is no typo in the question.

Solution. Note that the arc length is

s(t) =
∫ t

1

√
sinh2 u+ cosh2 u+1 du =

√
2(sinh t − sinh1) .

So,

t (s) = arsinh
(

s√
2
+ sinh1

)
and the result follows using this parametrisation. □

Example 2.8 (MA3215 AY14/15 Sem 2 Tutorial 1). Consider the helix

α : R→ R3 where α (t) = (3cos t,3sin t,4t) .

Parametrise α by arc length so that when s = 0, the curve α passes through the point
(3,0,0).
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Solution. The arc length is∫ t

0

√
9sin2

τ +9cos2 τ +16 dτ = 5t.

So, s(t)= 5t, which implies that t (s)= s
5 . We conclude that the parametrisation is α (s)=(

3cos s
5 ,3sin s

5 ,
4s
5

)
. □

Definition 2.6. Let α : (a,b)→ R3 (or R2) be a curve. If |α ′ (t)|= 1 for all t, then
we say that α is parametrised by arc length (i.e. unit speed). In this case, the arc
length from t = a to t = b is simply b−a. Moreover, we often switch notation and
write the parameter as s instead of t.

Example 2.9. For the semicircle in Example 2.6, we have

s(t) =
∫ t

0

∣∣γ ′ (u)∣∣ du =
∫ t

0
r du = rt,

so t = s
r . As such, define the new parametrisation

α (s) = γ

(s
r

)
=
(

r cos
(s

r

)
,r sin

(s
r

))
.

Then, |α ′ (s)|= 1, so α is unit speed and traces the same semicircle.

Say we are given a non-singular smooth curve. Can we change variable from t to s
so that the curve becomes parametrised by arc length? The answer is yes. Here is the
general strategy.

(i) Define the distance-travelled function

s(t) =
∫ t

t0

∣∣α ′ (u)
∣∣ du.

(ii) Find the inverse function t = t (s).

(iii) Define the reparametrised curve

β (s) = α (t (s))

which will be parametrised by arc length.

Recall by the Fundamental Theorem of Calculus from MA2002 Calculus that

ds
dt

=
∣∣α ′ (t)

∣∣ .
Since α is non-singular, then |α ′ (t)|> 0, hence s(t) is strictly increasing, and so it admits
an inverse t (s) (obtained by flipping the t- and s-axes).

Theorem 2.1 (inverse function theorem). Suppose s is continuous, smooth, and
s′ (t) > 0 for all t in an interval. Then, s is strictly increasing, the inverse t = t (s)
exists, and the inverse is smooth.



2.2. ARC LENGTH 11

Theorem 2.2 (existence of arc-length parametrisation). Let α : (a,b) → R3 be a
non-singular smooth curve. Define

s(t) =
∫ t

a

∣∣α ′ (u)
∣∣ du where c = s(a) and d = s(b) .

Then, s(t) is strictly increasing and has a smooth inverse t = t (s) on (c,d). If we
set β (s) = α (t (s)), then β is parametrised by arc length, i.e. |β ′ (s)| = 1 for all
s ∈ (c,d).

Proof. Using the chain rule, we have β ′ (s) = α ′ (t (s)) ·t ′ (s). Since ds
dt = |α ′ (t)|, we have

t ′ (s) =
1

|α ′ (t (s))|
.

As such, ∣∣β ′ (s)
∣∣= ∣∣α ′ (t (s))

∣∣ · ∣∣t ′ (s)∣∣= ∣∣α ′ (t (s))
∣∣ · 1
|α ′ (t (s))|

= 1.

Example 2.10 (MA3215 AY14/15 Sem 2 Tutorial 2). Let α (s) be a curve parametrised
by arc length. Suppose s = s(t) is a function of time t. Prove the chain rule for curves.
That is,

d
dt

α (s(t)) =
(

d
ds

α (s)
)

ds
dt

.

Proof. Let I and J be intervals. Suppose α : I → Rn be a curve parametrised by arc
length. Thus, α is differentiable as a map of the real variable s by Definition 2.5, and
α ′ (s) exists. Let s : J → I be a differentiable function of time t, and define the composed
curve β (t) = α (s(t)), where t ∈ J. It suffices to prove that

β
′ (t) = α

′ (s(t))s′ (t) .

Fix t ∈ J. For h ̸= 0 sufficiently small so that t +h ∈ J, we have

β (t +h)−β (t)
h

=
α (s(t +h))−α (s(t))

h
.

We then insert and remove the factor s(t +h)− s(t) so

α (s(t +h))−α (s(t))
h

=
α (s(t +h))−α (s(t))

s(t +h)− s(t)
· s(t +h)− s(t))

h
.

This holds whenever s(t +h) ̸= s(t). If equality holds for some h, then the left-hand dif-
ference quotient is 0 for that h, and the following argument still goes through by taking
limits along h → 0.

We take the limit h → 0. Since s is differentiable at t, then s(t +h) → s(t). Since α

is differentiable at s(t), then

lim
u→s(t)

α (u)−α (s(t))
u− s(t)

= α
′ (s(t)) .

Apply this with u = s(t +h) and the result follows.
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Example 2.11 (MA3215 AY14/15 Sem 2 Tutorial 2). Let α : (a,b) → R3 be a curve.
Show that ∫ b

a
α
′ (t) dt = α (b)−α (a) .

Solution. Apply the Fundamental Theorem of Calculus to each component and the result
follows. □

Example 2.12 (MA3215 AY14/15 Sem 2 Tutorial 2). The goal of this exercise is to show
that the curve of shortest length from one point to another is the straight line joining these
points Let p,q ∈ R3, and let α : [a,b]→ R3 be a smooth curve such that α (a) = p and
α (b) = q.

(i) Show that for any constant vector v such that |v|= 1 satisfies

(q−p) ·v =
∫ b

a
α
′ (t) ·v dt ≤

∫ b

a

∣∣α ′ (t)
∣∣ dt.

(ii) Set
v =

q−p
|q−p|

and show that

|α (b)−α (a)|=
∣∣∣∣∫ b

a
α
′ (t) dt

∣∣∣∣≤ ∫ b

a

∣∣α ′ (t)
∣∣ dt.

That is to say, the curve of shortest length from p to q is the straight line joining
these points.

Solution.

(i) Suppose v is a constant vector such that |v|= 1. Then,∫ b

a
α
′ (t) ·v dt =

∫ b

a
α
′ (t) dt ·v = (q−p) ·v,

thus proving the equality statement. To prove that the inequality holds, use the fact
that α ′ (t) ·v = |α ′ (t)|cosθ , where θ is the subtended angle between α ′ (t) and v.
Then, use the fact that cosθ ≤ 1 and |α ′ (t)| ≥ 0.

(ii) We have
(q−p) · q−p

|q−p|
= |q−p|= |α (b)−α (a)|

and the result follows by using (i).

2.3 Orientation
In R3, we write the vector product (cross product) as v∧w = v×w.

Theorem 2.3 (product rules in R3). Let w(t) ,w(t) be differentiable vector-valued
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functions in R3. Then, the following hold

d
dt

(v(t) ·w(t)) = v′ (t) ·w(t)+v(t) ·w′ (t)

and
d
dt

(v(t)∧w(t)) = v′ (t)∧w(t)+v(t)∧w′ (t) .

Definition 2.7 (positive and negative orientation). Let {e1,e2,e3} be an orthonor-
mal basis for R3.

(i) We say (e1,e2,e3) has positive orientation if e1 × e2 = e3 (right-hand rule)

(ii) We say (e1,e2,e3) has negative orientation if e1 × e2 =−e3 (left-hand rule)

Definition 2.8 (coordinate system in R3). A coordinate system in R3 is a choice
of mutually perpendicular x-axis, y-axis and z-axis. There are two types: positively
oriented and negatively oriented.

Theorem 2.4. We state the effects of rotations, translations, and reflections on ori-
entation.

(i) Rotations preserve orientation: if we rotate the axes, the axes change but
the orientation remains positive (respectively negative)

(ii) Translations preserve orientation: translating the axes by a vector does not
change orientation

(iii) Reflections reverse orientation: reflection sends a positively oriented coor-
dinate system to a negatively oriented one (right hand becomes left hand)

2.4 Curvature
How do we tell that one curve is more curvy than the other? Let us discuss curvature. Let
α (s) be a curve parametrised by arc length, and write the unit tangent vector as

t (s) = α
′ (s) .

To measure how much the curve bends, we compare t (s) and t (s+∆s) and consider the
rate of change

t (s+∆s)− t (s)
∆s

.

Taking ∆s → 0 gives
dt (s)

ds
=

d
ds

(
dα (s)

ds

)
= α

′′ (s) .

Hence, curvature is governed by the acceleration α ′′ (s). We give some physical intuition.
If you travel at constant speed and the train goes around a bend, you feel a centripetal
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force; a sharper bend gives larger acceleration, hence larger curvature. Note that if the
curve is not travelling at constant speed, i.e. not parametrised by arc length, then using
acceleration to gauge the bend can be misleading.

Definition 2.9 (curvature and radius of curvature). Let α : (a,b)→ R3 be a curve
parametrised by arc length. Define the curvature at s by

k (s) =
∣∣α ′′ (s)

∣∣
and define the radius of curvature by

ρ (s) =
1

k (s)
.

Example 2.13 (straight line has zero curvature). Let

α (s) = (a1,a2,a3)+ s(t1, t2, t3)

be a straight line parametrised by arc length. Then α ′ (s) = (t1, t2, t3) is a unit vector and
α ′′ (s) = (0,0,0) so k (s) = 0. Thus, a straight line has zero curvature.

Example 2.14 (circle of radius r has curvature 1/r). Let α (s) be a circle of radius
r parametrised by arc length (for instance α (s) = (r cos(s/r) ,r sin(s/r))). Then, one
computes

k (s) =
∣∣α ′′ (s)

∣∣= 1
r

so ρ (s) = r.

Hence, the radius of curvature of a circle of radius r is r.

Lemma 2.1 (orthogonality lemma). Let α (s) be parametrised by arc length. Then,

α
′′ (s) ·α ′ (s) = 0,

i.e. the acceleration is perpendicular to the unit tangent vector.

Proof. Since α (s) is parametrised by arc length, we have |α ′ (s)|= 1, so

1 =
∣∣α ′ (s)

∣∣2 = α
′ (s) ·α ′ (s) .

Differentiating both sides with respect to s, we have

0 =
d
ds

(
α
′ (s) ·α ′ (s)

)
= α

′′ (s) ·α ′ (s)+α
′ (s) ·α ′′ (s) = 2α

′ (s) ·α ′′ (s) .

Hence, α ′′ (s) ·α ′ (s) = 0.

More generally, if v(t) is a unit vector for all t, then v′ (t) is always perpendicular to
v(t).

Definition 2.10 (singular point of order 1). Suppose for some s0, we have α ′′ (s0) =

(0,0,0). Then, s0 is called a singular point of order 1.

We will only consider curves such that α ′′ (s) ̸= (0,0,0) for all s.
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2.5 The Frenet Trihedron
For the rest of this chapter, we only consider curves α (s) parametrised by arc length such
that α ′′ (s) ̸= (0,0,0) for all s.

Definition 2.11 (unit tangent vector). If α (s) is parametrised by arc length, we
define the unit tangent vector

t(s) = α
′ (s) .

Definition 2.12 (normal vector). Since α ′′ (s) ̸= 0, the unit vector in the direction
of α ′′ (s) is well-defined. We call it the normal vector. That is,

n(s) =
α ′′ (s)
|α ′′ (s)|

.

Equivalently, α ′′ (s) = k (s)n(s) and k (s) = |α ′′ (s)|.

Definition 2.13 (osculating plane). The plane spanned by t(s) and n(s) is called
the osculating plane at s.

Definition 2.14 (binormal vector). Define the binormal vector by

b(s) = t(s)∧n(s) .

Then b(s) is a unit vector, and t(s) ,n(s) ,b(s) are mutually perpendicular.

Definition 2.15 (Frenet trihedron). The three unit vectors t(s) ,n(s) ,b(s) are
called the Frenet trihedron. They form a moving frame along the curve.

Example 2.15 (planar curves have constant binormal). Suppose α (s) lies in the xy-plane.
Then, t(s) and n(s) lie in the xy-plane, so b(s) = t(s)∧n(s) is perpendicular to the xy-
plane, i.e. b(s) = (0,0,1) or b(s) = (0,0,−1).

Proposition 2.1. Let α (s) be parametrised by arc length in R3. Assume that for all
s ∈ R, we have

α (0) = (0,0,0) and b(s) = (0,0,1) .

Then, α (s) lies in the xy-plane.

Proof. Write α (s) = (x(s) ,y(s) ,z(s)) and consider z(s) = α (s) ·b(s). Differentiating
both sides yields

z′ (s) = α
′ (s) ·b(s)+α (s) ·b′ (s) .

Since b(s) ⊥ t(s), where t(s) = α ′ (s), and as we will see, b′ (s) is parallel to n(s), we
obtain z′ (s) = 0. As such, z(s) is constant. Since z(0) = 0, then z(s) = 0 for all s.
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Lemma 2.2. Suppose α ′′ (s) ̸= 0. Then, b′ (s) is parallel to n(s).

Proof. Since b(s) is a unit vector, we have b(s) ·b(s) = 1, hence

0 =
d
ds

(b(s) ·b(s)) = 2b′ (s) ·b(s) ,

so b′ (s)⊥ b(s). Also, b(s) = t(s)∧n(s), and differentiating shows that b′ (s)⊥ t(s) as
well. Since t(s) ,n(s) ,b(s) is an orthonormal basis, a vector perpendicular to both t and
b must be parallel to n.

Definition 2.16 (torsion). By Lemma 2.2, we may write

b′ (s) = τ (s)n(s) ,

where the scalar τ (s) is called the torsion of α at s.

Theorem 2.5 (Frenet-Serret formulae for arc length parametrisation). Let α (s) be
parametrised by arc length with α ′′ (s) ̸= 0. Then,

t′ (s)= k (s)n(s) and n′ (s)=−k (s) t(s)−τ (s)b(s) and b′ (s)= τ (s)n(s) .

Equivalently,  t
n
b


′

=

 0 k 0
−k 0 τ

0 −τ 0


 t

n
b

 ,

where the coefficient matrix is skew-symmetric.

We now discuss the Frenet-formulae for curves not parametrised by arc length. In
theory, a non-singular curve α (t) can be reparametrised by arc length s = s(t), but in
computations this can be tedious or impossible. Hence, we want formulae for t,n,b,k,τ
directly in terms of t-derivatives. In this section, let ′,′′ ,′′′ , . . . denote differentiation with
respect to t (not s).

Theorem 2.6 (Frenet data for a general time parametrisation). Let α (t) be a non-
singular curve in R3. Define

t(t) =
α ′ (t)
|α ′ (t)|

and b(t) =
α ′ (t)∧α ′′ (t)
|α ′ (t)∧α ′′ (t)|

and n(t) = b(t)∧ t(t) . (2.1)

Then,

k (t) =
|α ′ (t)∧α ′′ (t)|

|α ′ (t)|3
and τ (t) =−((α ′ (t)∧α ′′ (t)) ·α ′′′ (t))

|α ′ (t)∧α ′′ (t)|2
. (2.2)

Moreover,
α
′ (t) =

∣∣α ′ (t)
∣∣ t(t) ,
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and

α
′′ (t) =

d
dt

(∣∣α ′ (t)
∣∣) t(t)+ k (t)

∣∣α ′ (t)
∣∣2 n(t) . (2.3)

Finally, the Frenet-Serret equations become

t′ (t) = k (t)
∣∣α ′ (t)

∣∣n(t) (2.4)

n′ (t) =−k (t)
∣∣α ′ (t)

∣∣ t(t)− τ (t)
∣∣α ′ (t)

∣∣b(t) (2.5)

b′ (t) = τ (t)
∣∣α ′ (t)

∣∣n(t) (2.6)

One might ask what changed compared to the s-version? When differentiating with
respect to t, the extra factor |α ′ (t)| = ds

dt appears everywhere. In particular, the rates of
turning measured per unit time are the arc length rates multiplied by speed.

Given a non-singular curve α (t), in theory we can convert it into an arc length parametri-
sation α (s) via s = s(t). In practice, this conversion can be tedious (or impossible to do
explicitly), so we want formulas for t,n,b,k,τ directly in terms of t-derivatives. Now, we
let ′,′′ ,′′′ , . . . denote differentiation with respect to t.

We now prove Theorem 2.6.

Proof. Let α (t) = α (s(t)), where s denotes arc length. Then,

ds
dt

=
∣∣α ′ (t)

∣∣ .
Write t (t) = t (s(t)) etc. Using the chain rule, we have

t′ (t) =
dt
ds

∣∣∣
s=s(t)

· ds
dt

= t ′ (s)
∣∣∣
s=s(t)

·
∣∣α ′ (t)

∣∣= k (t)
∣∣α ′ (t)

∣∣n(t) ,
so (2.4) holds. We have similar results for n′ and b′, giving (2.5) and (2.6) respectively.

For the curvature formula, start from

α
′ (t) =

∣∣α ′ (t)
∣∣ t(t) .

Then, differentiate both sides to obtain

α
′′ (t) =

d
dt

(∣∣α ′ (t)
∣∣) t(t)+

∣∣α ′ (t)
∣∣ t′ (t) = d

dt

(∣∣α ′ (t)
∣∣) t(t)+ k (t)

∣∣α ′ (t)
∣∣2 n(t) ,

which is the displayed decomposition in (2.3). Now, wedge with α ′ (t) to obtain

α
′ (t)∧α

′′ (t) =
(∣∣α ′ (t)

∣∣ t(t))∧( d
dt

(∣∣α ′ (t)
∣∣) t (t)+ k (t)

∣∣α ′ (t)
∣∣2 n(t)

)
= k (t)

∣∣α ′ (t)
∣∣3 (t(t)∧n(t))

Since t∧n = b, taking norms, we have∣∣α ′ (t)∧α
′′ (t)

∣∣= k (t)
∣∣α ′ (t)

∣∣3 ,
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hence,

k (t) =
|α ′ (t)∧α ′′ (t)|

|α ′ (t)|3
.

We have proven that (2.2) holds. This also shows that

b(t) =
α ′ (t)∧α ′′ (t)
|α ′ (t)∧α ′′ (t)|

.

For (2.2) on torsion, one differentiates the decomposition of α ′′ (t) once more, dots with
b(t), and uses that among the resulting terms, the only component not perpendicular to b
arises from the n′-term, which contains τ (t) |α ′ (t)|b(t). This yields

τ (t) =−((α ′ (t)∧α ′′ (t)) ·α ′′′ (t))

|α ′ (t)∧α ′′ (t)|2
.

Example 2.16 (MA3215 AY14/15 Sem 2 Tutorial 1). Continuing from Example 2.8,
consider the helix

α : R→ R3 where α (t) = (3cos t,3sin t,4t) .

(i) Compute t(s), n(s), and b(s).

(ii) Compute k (s), b′ (s), and τ (s).

(iii) Compute n′ (s). Verify that n′ (s) =−k (s) t(s)− τ (s)b(s).

Solution.

(i) In Example 2.8, we saw that the arc length is s(t)= 5t, so α (s)=
(
3cos s

5 ,3sin s
5 ,

4s
5

)
.

By (2.1), we have

t(s) =
α ′ (s)
|α ′ (s)|

=

(
−3

5
sin

s
5
,
3
5

cos
s
5
,
4
5

)
.

By Definition 2.12, we have

n(s) =
α ′′ (s)
|α ′′ (s)|

=
(
−cos

s
5
,−sin

s
5
,0
)
.

By Definition 2.14, b(s) = t(s)∧n(s).

(ii) From Definition 2.9, k (s) = |α ′′ (s)|= 3
25 . It is easy to compute b′ (s) from (i). By

Definition 2.16, we have b′ (s) = τ (s)n(s), so τ (s) =− 4
25 .

(iii) This is merely verifying one of the Frenet-Serret formulae as in Theorem 2.5.

Continuing our discussion from Example 2.8 and 2.16, note that translating a curve does
not alter its curvature k (s) and torsion τ (s). For example, let β denote the curve obtained
by translating α by (7,8,9). That is, β (t) = α (t)+ (7,8,9) for all t ∈ R. Then, β (s) =
α (s)+ (7,8,9) trivially (one can verify this). Consequently, by Proposition 2.2 and the
proof of Theorem 2.8 as we would see in due course, α and β are the same curve because
they differ by rigid motion, which implies that they have the same curvature k and torsion
τ .
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Example 2.17. Let α (s) and β (s) denote two smooth curves in R3 parametrised by arc
length. Let t1 (s) ,n1 (s) ,b1 (s) ,k1 (s) ,τ1 (s) denote the Frenet trihedron, curvature, and
torsion of α (s). Similarly, let t2 (s) ,n2 (s) ,b2 (s) ,k2 (s) ,τ2 (s) denote those of β (s). Sup-
pose k1 (s) = k2 (s) and τ1 (s) = τ2 (s).

(i) Show that

d
ds

(
|t1 (s)− t2 (s)|2 + |n1 (s)−n2 (s)|2 + |b1 (s)−b2 (s)|2

)
= 0.

(ii) Suppose further that t1 (0) = t2 (0), n1 (0) = n2 (0), and b1 (0) = b2 (0). Show that

t1 (s) = t2 (s) and n1 (s) = n2 (s) and b1 (s) = b2 (s) .

Solution.

(i) Let ∆t = t1 − t2, and let ∆n and ∆b be defined similarly. Since we see the square
of the length of a vector, it is natural to consider dot products. Let F (s) denote the
expression on the left side of the equation. We wish to prove that its derivative is
equal to 0. We have

F (s) = ∥∆t∥2 +∥∆n∥2 +∥∆b∥2 = ∆t ·∆t+∆n ·∆n+∆b ·∆b.

As such,

F ′ (s) = 2∆t · (∆t)′+2∆n · (∆n)′+2∆b · (∆b)′ . (2.7)

Since α and β are parametrised by arc length, by Theorem 2.2, |α ′ (s)|= |β ′ (s)|=
1. By the Frenet-Serret equations in Theorem 2.6, we see that

t′ (t) = k (t)n(t) and n′ (t) =−k (t) t(t)− τ (t)b(t) and b′ (t) = τ (t)n(t) .

Substitute the Frenet-Serre equations into (2.7), and use the fact that the curves
have the same curvature and torsion to conclude that F ′ (s) = 0.

(ii) From (i), we infer that F (s) is constant in s. Now, we know that ∆t(0)= 0, ∆n(0)=
0, and ∆b(0) = 0, so F (0) = 0. Since F is a constant, then F (s) = 0 for all s. The
result follows.

Example 2.18 (MA3215 AY14/15 Sem 2 Tutorial 2). Let α (s) be a curve parametrised
by arc length. Suppose α (0) = (0,0,0) and that the curve has constant curvature k (s) =
C > 0 for all s, and τ (s) = 0 for all s.

(i) Suppose b(0) = (0,0,1). Show that b(s) = (0,0,1) for all s.

(ii) Show that α (s) lies on the xy-plane.

(iii) Show that α (s) is an arc on a circle of radius 1/C.

Solution.
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(i) Since the torsion τ is 0 for all s. by Definition 2.16, b′ (s) = 0, so b is a constant
vector. It follows that b(s) = (0,0,1) for all s.

(ii) Since α is parametrised by arc length, then α ′ (s) = t(s) by Definition 2.11. Also,
b(s) = t(s)∧n(s) is orthogonal to t(s), so t(s) ·b(s) = 0 for all s. Since b(s) =
(0,0,1), then t(s) · (0,0,1) = 0. As such, the z-component of α ′ (s) is 0. Since
α (0) = (0,0,0), it follows that α (s) lies in the xy-plane.

(iii) By the Frenet-Serre equations (Theorem 2.6, we have

t′ (t) =Cn(t) and n′ (t) =−Ct(t) and b′ (t) = 0.

Use the fact that n has norm 1, and the result follows.

2.6 The Fundamental Theorem of the Local Theory
of Curves

In this chapter, we emphasise that we only care about the shape of a curve. Hence, two
curves which differ by a rigid motion (translations and rotations) are regarded as the same
curve. On the other hand, reflections are not considered rigid motions here.

Definition 2.17 (rigid motion). A map R : R3 → R3 is called a rigid motion if the
following hold:

(i) it preserves distances, i.e. for all v,w ∈ R3, |R(v)−R(w)|= |v−w|

(ii) it preserves orientation (it sends a positively oriented (x,y,z)-axes to a posi-
tively oriented axes)

Lemma 2.3. A rigid motion satisfies the following properties:

(i) sends straight lines to straight lines

(ii) preserves angles

(iii) preserves inner products in the sense that for all u,v,w ∈ R3, we have

(R(v)−R(u)) · (R(w)−R(u)) = (v−u) · (w−u) .

Theorem 2.7 (structure of rigid motions). Every rigid motion can be written as a
rotation (about an axis through the origin) followed by a translation.Equivalently,
every rigid motion has the form

R(x) = Ax+v,

where A is an orthogonal matrix with det(A) = 1 and v ∈ R3.

Note that rigid motions need not be linear.
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Proposition 2.2 (invariance of k (s) and τ (s)). Let α (s) be a curve and let R be a
rigid motion. Then, the curvature k (s) and torsion τ (s) of α are unchanged under
the rigid motion of the curve.

Under a rigid motion, the Frenet trihedron t(s) ,n(s) ,b(s) and their derivatives trans-
form the same way, so their lengths are preserved. Since k (s) and τ (s) are defined via
ratios of these lengths (Frenet-Serret formulas), they remain unchanged.

By a translation, we may assume that α (0) = (0,0,0). By rotations about the origin,
we may further assume that the initial Frenet trihedron aligns with the standard basis
t(0) = (1,0,0), n(0) = (0,1,0), and b(0) = (0,0,1).

Theorem 2.8 (uniqueness up to rigid motion). Suppose α (s) and β (s) are two
smooth curves parametrised by arc length, and they have the same curvature and
torsion for all s ∈ R. That is,

kα (s) = kβ (s) and τα (s) = τβ (s) .

Then, α and β differ by a rigid motion.

Proof. Apply a rigid motion to each curve so that both satisfy the normalisation

α (0) = β (0) = (0,0,0) and (t (0) ,n(0) ,b(0)) = (e1,e2,e3) .

Let (t1,n1,b1) be the Frenet trihedron of α and (t2,n2,b2) that of β . Since k (s) and τ (s)
agree, the Frenet-Serret equations give the same system of differential equations for both
frames with the same initial condition at s = 0. By the uniqueness theorem for ordinary
differential equations, we obtain for all s,

t1 (s) = t2 (s) and n1 (s) = n2 (s) and b1 (s) = b2 (s) .

In particular,
α
′ (s) = t1 (s) = t2 (s) = β

′ (s) .

Integrating both sides, we have α (s) = β (s)+C for some constant vector C, and C = 0
from α (0) = β (0). Undoing the normalisation gives that the original curves differ by a
rigid motion.

Theorem 2.9 (existence). Given any two smooth functions k (s) and τ (s) with
k (s) > 0, there exists a smooth curve α (s) whose curvature is k (s) and whose
torsion is τ (s).





Chapter 3
Surfaces

3.1 Surfaces
Intuitively, a surface in R3 is something on which an ant can move with two degrees of
freedom in a small vicinity of any point. Locally, the ant’s neighbourhood should look
more or less like a flat plane.

In this course, nice surfaces are expected to be smooth and non-self-intersecting (the sur-
face should not cross itself). By smooth, intuitively, we cannot have sharp bends/edges
so we exclude corners like a box, or a cone with a sharp tip. Some prototypical examples
include a plane, a sphere, a disc, and a torus.

On a plane, we represent a point by coordinates (u,v) after choosing axes. On a sphere,
longitude/latitude also give coordinates, but there are built-in defects. Some of which are
as follows:

(i) crossing an international date line causes a sudden jump in the coordinate value

(ii) at the poles, longitude becomes ill-defined

These defects are fatal for Calculus, because differentiation depends on making arbitrarily
small movements without sudden coordinate jumps.

Definition 3.1 (local coordinate region). A local coordinate region on a surface is
a small region of the surface equipped with a coordinate system (u,v) so that each
point in the region is described by a pair of real numbers. Such a region is also
called a local coordinate chart.

Example 3.1. Let S = R2 ⊆ R3 as the z = 0 plane. A chart is just X (u,v) = (u,v,0) with
(u,v) ∈U ⊆ R2 open.

We insist that neighbouring regions overlap along borders, so that in the overlap, a
point has (at least) two coordinate descriptions. To perform Calculus consistently, we
must specify and control how coordinates change from one chart to another on overlaps.

23
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Definition 3.2 (coordinate change/transition map). Let (U,ϕ) and (V,ψ) be two
charts on a surface, where

ϕ : U → R2 and ψ : V → R2.

On the overlap U ∩V , the transition map from ϕ-coordinates to ψ-coordinates is

ψ ◦ϕ
−1 : ϕ (U ∩V )→ ψ (U ∩V ) .

Definition 3.3 (smoothly compatible charts). Two charts (U,ϕ) and (V,ψ) are
smoothly compatible if the transition maps

ψ ◦ϕ
−1 and ϕ ◦ψ

−1

are smooth maps between open subsets of R2.

Note that if you differentiate a function using (u,v)-coordinates, and I differentiate
the same function using (s, t)-coordinates, then the chain rule compares our derivatives
using the transition map. Smooth transition maps guarantee that derivatives computed in
different charts are consistent.

Definition 3.4 (atlas). An atlas on a set S is a collection of charts {(Uα ,ϕα)}α∈A

such that the following hold:

(i) the domains cover S, i.e. S =
⋃

α∈A

Uα

(ii) charts are pairwise smoothly compatible on overlaps

Note that one can reverse engineer a surface as follows. We start with many planar
pieces (regions) with coordinates, then prescribe transition maps on overlaps, and lastly
glue the regions along overlaps so that the coordinate identifications match the transition
maps. This produces a surface intrinsically without first embedding it into R3.

What is the difference between intrinsic geometry and embedding? If we only care about
what happens on the surface (distances, angles, curvature, differentiation along the sur-
face), it is not always necessary to know how the surface sits in R3. This viewpoint allows
exotic examples that may not embed nicely in R3. Take for example the Klein bottle.

We now introduce the concept of a manifold (Definition 3.5).

Definition 3.5 (manifold). A set M is an n-dimensional manifold if it can be covered
by charts mapping into Rn with smooth transition maps on overlaps.

From Definition 3.5, we see that a surface is a 2-dimensional manifold. In this course,
we treat surfaces as 2-manifolds (often embedded in R3), and we build Calculus on them
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by transporting Euclidean Calculus through charts. A surface S ⊆ R3 is a set which is
locally 2-dimensional. That is to say, for each p ∈ S, if we take a sufficiently small open
ball V ⊆ R3 centred at p, then the piece V ∩S should look like an open disk in R2.

Definition 3.6 (open subsets of a surface). Let S ⊆ R3 be a surface and let U ⊆ S.
We say that U is open in S if for every p ∈U , there exists ε > 0 such that

B(p,ε)∩S ⊆U where B(p,ε) =
{

q ∈ R3 : |q− p|< ε
}
.

Equivalently, U is open in S if there exists an open set V ⊆R3 such that U = S∩V .
If p ∈ S, an open neighbourhood of p (in S) is a set U ⊆ S such that p ∈U and U is
open in S.

3.2 Regular Surfaces

Definition 3.7 (regular surface). A subset S ⊆ R3 is called a regular surface if for
each p ∈ S, there exists an open neighbourhood V ⊆ R3 of p, an open set U ⊆ R2,
and a map

x : U →V ∩S where x(u,v) = (x(u,v) ,y(u,v) ,z(u,v)) ,

such that the following hold:

(i) The component functions x(u,v), y(u,v), z(u,v) are smooth on U

(ii) The map x is a bijective homeomorphism onto its image V ∩S, so the inverse
x−1 : V ∩S →U exists and is continuous

(iii) The differential

dx =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂ z
∂u

∂ z
∂v


has rank 2 at every q = (u0,v0)∈U , i.e. dxq has rank 2 as a real 3×2 matrix.

Such a map x is called a coordinate function (or parametrisation), and the pair (U,x)
is called a coordinate chart.

A standard way to prove that a subset S ⊂ R3 is a regular surface is to explicitly ex-
hibit coordinate functions (charts) x : U →V ∩S, where U ⊆ R2 and V ⊆ R3 are open, x
is smooth, bijective onto V ∩S with smooth inverse, and dx has rank 2 everywhere.

In practice, one often checks the smoothness and rank condition ((i) and (iii) respec-
tively in Definition 3.7). In fact, for a regular surface, conditions (i) and (iii) already force
the required topological behaviour in (ii). Also, the regularity condition is frequently
stated as dxq : R2 → R3 being an injective linear transformation — this is equivalent to
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rank
(
dxq
)
= 2.

We now interpret the conditions in Definition 3.7. One can think of x : U → S∩V as
assigning coordinates (u,v) to points on the surface patch S∩V . Firstly, injective means a
point on S∩V is not assigned two different coordinate pairs; surjective means every point
of the patch S∩V has some coordinate pair. For (i), we need the map to be smooth since
we want to differentiate the parametrisation, i.e. perform some calculus on S. Lastly, with
regards to (iii) on the rank 2 condition, fix q = (u0,v0) ∈U and put p = x(u0,v0) ∈ S. If
we fix v = v0 and vary u, we obtain a curve

α (u) = x(u,v0) with α
′ (u0) =

∂x
∂u

(u0,v0) .

If we fix u = u0 and vary v, we obtain a curve

β (v) = x(u0,v) with β
′ (v0) =

∂x
∂v

(u0,v0) .

These two vectors α ′ (u0) and β ′ (v0) are precisely the two columns of dxq. Thus,
rank

(
dxq
)
= 2 means they are linearly independent, and hence they span a 2-dimensional

plane in R3, which we interpret as the tangent plane to the surface at p.

Example 3.2 (MA3215 AY14/15 Sem 2 Tutorial 2). Consider the plane

S =
{
(x,y,z) ∈ R3 : (x,y,z) · (3,2,0) =−1

}
.

Verify that this is a regular surface by checking the three conditions in Definition 3.7.

Solution. Take an arbitrary point p = (x0,y0,z0) ∈ S. Then, 3x0 + 2y0 = −1. Define a
parametrisation of the plane by

x : R2 → R3 and x(u,v) =
(

u,
−1−3u

2
,v
)
.

Clearly, x(u,v) ∈ S since x(u,v) · (3,2,0) =−1. Now, let V ⊆ R3 be an open neighbour-
hood of p. Set

U = x−1 (V ) =
{
(u,v) ∈ R2 : x(u,v) ∈V

}
.

Since x is continuous and V is open, then U is open in R2. We claim that x : U → V ∩S
satisfies the three conditions in Definition 3.7.

For (i), the component functions x(u,v) = u, y(u,v) = −1−3u
2 , and z(u,v) = v are polyno-

mials, so they are smooth on U .

For (ii), we claim that x is a bijective homeomorphism onto V ∩ S. If (u,v) ∈ U , then
x(u,v) ∈ V by definition of U , and x(u,v) ∈ S. Hence, x(U) ⊆ V ∩ S. Conversely, if
(x,y,z) ∈V ∩S, then 3x+2y =−1 so y = −1−3x

2 . So,

(x,y,z) =
(

x,
−1−3x

2
,z
)
= x(x,z) .
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Since (x,y,z) ∈V , then (x,z) ∈ x−1 (V ) =U so V ∩S ⊆ x(U). The result follows.

Lastly for (iii), we have xu (u,v) =
(
1,−3

2 ,0
)

and xv (u,v) = (0,0,1) which are linearly
independent in R3. As such, the 3×2 Jacobian matrix has rank 2 at every (u,v) ∈U . □

Example 3.3. We now give a non-example illustrating condition (iii) on rank in the defi-
nition of a regular surface (Definition 3.7). Let

x : R2 → R3 where x(u,v) =
(
u2,u3,v

)
.

Then,

dx =

 2u 0
3u2 0
0 1

 so dxq (0,v0) =

0 0
0 0
0 1


which has rank 1. Geometrically, for a fixed v = v0, the curve u 7→

(
u2,u3,v0

)
is the

standard planar cusp (x,y) =
(
u2,u3) sitting at height z = v0. Stacking these cusps over

all v gives a cusp-edge along the z-axis, which is not a smooth surface.

Lemma 3.1. Suppose x : U → V ∩ S is a coordinate function. If U ′ ⊆ U is open,
then the restriction

x : U ′ → x
(
U ′)

is also a coordinate function (for an appropriate open set V ′ ⊆ R3 with x(U ′) =

V ′∩S).

Example 3.4 (the unit sphere S2). Define the unit sphere

S2 =
{
(x,y,z) ∈ R3 : x2 + y2 + z2 = 1

}
.

Let
U =

{
(u,v) ∈ R2 : u2 + v2 < 1

}
and V =

{
(x,y,z) ∈ R3 : z > 0

}
.

Then, V ∩S2 is the open northern hemisphere, and we define

xN : U →V ∩S2 where xN (u,v) =
(

u,v,
√

1−u2 − v2
)
. (3.1)

This is a bijective map with inverse x−1
N (x,y,z) = (x,y). Smoothness is clear for the first

two coordinates; for the third coordinate, note that 1− u2 − v2 > 0 on U , so the square
root is smooth on U .

Lastly, we verify that rank(dxN) = 2. We shall compute

∂xN

∂u
(u,v) =

(
1,0,− u√

1−u2 − v2

)
and

∂xN

∂v
(u,v) =

(
0,1,− v√

1−u2 − v2

)
,

which are clearly linearly independent in R3. Hence, rank(dxN) = 2 for all (u,v) ∈U .

Using the same U and V− =
{
(x,y,z) ∈ R3 : z < 0

}
, define

xS : U →V−∩S2 where xS (u,v) =
(

u,v,−
√

1−u2 − v2
)
, (3.2)



28 CHAPTER 3. SURFACES

with inverse x−1
S (x,y,z) = (x,y). The rank check is identical. The two charts in (3.1) and

(3.2) do not cover the equator though. One can add four further charts using open sets
{y > 0}, {y < 0}, {x > 0}, and {x < 0} to obtain a cover of S2 by six coordinate func-
tions.

From this example, we see that coordinate charts are not unique as there are many valid
ways to cover the same surface. Next, redundant charts are allowed: extra charts do not
invalidate anything; we simply ignore redundancy.

Example 3.5 (MA3215 AY14/15 Sem 2 Tutorial 3). Let

S =
{
(x,y,z) ∈ R3 : x2 + y2 +1 = z2} .

Recall that this quadric surface is a hyperboloid of one sheet.

(i) If (x,y,z) ∈ S, show that either z ≥ 1 or z ≤ −1. This shows that S is the union of
the regions

S+ = {(x,y,z) ∈ S : z ≥ 1} and S− = {(x,y,z) ∈ S : z ≤−1} .

(ii) Find parametrisations of S+ and S−.

(iii) Use the parametrisations in (ii) to show that S+ and S− are regular surfaces.

Solution.

(i) Since x2 + y2 ≥ 0, then z2 ≥ 1, so z ≥ 1 or z ≤−1. It follows that S is the union of
the regions S+ and S−.

(ii) We can parametrise S+ and S− using

Φ+ =
(

x,y,
√

1+ x2 + y2
)

and Φ− =
(

x,y,−
√

1+ x2 + y2
)

respectively.

(iii) We will only show that S+ is a regular surface. Note that

(Φ+)x =

(
1,0,

1√
1+ x2 + y2

)
and (Φ+)y =

(
0,1,

1√
1+ x2 + y2

)
.

So, it is easy to see that the Jacobian matrix is of rank 2.

Example 3.6 (union of two planes that is not regular at the origin). Consider

S =
{
(x,y,z) ∈ R3 : yz = 0

}
.

Equivalently, S is the union of the xy-plane z = 0 and the xz-plane y = 0. Then, S is not a
regular surface at p = (0,0,0) since near the origin, it looks like two smooth sheets cross-
ing, so it fails to be locally parametrised by a single smooth coordinate patch with rank 2
everywhere. Intuitively, the tangent plane is not well-defined as a single plane there.

To make it more explicit, write F (x,y,z) = yz and define S = F−1 (0). So, ∇F (x,y,z) =
(0,z,y). At p = (0,0,0), we have ∇F (p) = 0, so the rank condition fails here.
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Proposition 3.1 (graphs are regular surfaces). Let U ⊆R2 be open and let f : U →
R be smooth. Consider the graph

S :=
{
(x,y,z) ∈ R3 : (x,y) ∈U,z = f (x,y)

}
.

Then, S is a regular surface.

Proof. Define
x : U → S where x(u,v) = (u,v, f (u,v)) .

Then, x is smooth, bijective, and the inverse is the projection x−1 (x,y, f (x,y)) = (x,y)
which is smooth. Finally,

∂x
∂u

(u,v) =
(

1,0,
∂ f
∂u

(u,v)
)

and
∂x
∂v

(u,v) =
(

0,1,
∂ f
∂v

(u,v)
)
,

which are linearly independent. Hence, rank(dx) = 2 everywhere.

Example 3.7 (surface of revolution). Let f : R→ R be smooth and assume f (z)> 0 for
all z ∈R. Rotate the curve x = f (z) in the xz-plane about the z-axis. The resulting surface
is

S = {( f (z)cosu, f (z)sinu,z) : u ∈ R,z ∈ R} .

Let

U = (0,2π)×R and x : U → S where x(u,v) = ( f (v)cosu, f (v)sinu,v) .

Then, x is smooth. For the rank condition, we compute

∂x
∂u

(u,v) = (− f (v)sinu, f (v)cosu,0) and
∂x
∂v

(u,v) =
(

f ′ (v)cosu, f ′ (v)sinu,1
)
.

The first vector has length | f (v)|, which is non-zero by assumption, so the two vectors
are linearly independent. Hence, rank(dx) = 2.

Next, given (x,y,z) ∈ S, we can recover v = z. To recover u, we need an angle func-
tion θ (x,y) with values in (0,2π), but a single continuous choice forces us to remove a
ray (a branch cut), e.g.

W = R2 \
{
(x,0) ∈ R2 : x ≥ 0

}
where θ : W → (0,2π) .

Then, on the corresponding subset of S, one may write x−1 (x,y,z) = (θ (x,y) ,z). To
cover the missing ray, one introduces an additional chart.

Example 3.8 (MA3215 AY14/15 Sem 2 Tutorial 2). One way to define a system of
coordinates for the sphere S2, given by x2 + y2 +(z−1)2 = 1 is to consider the so-called
stereographic projection π : S2 \{N}→R2 which carries a point p = (x,y,z) of S2 minus
the north pole N = (0,0,2) onto the intersection of the xy-plane with the straight line that
connects N to p. Figure 3.1 depicts stereographic projection for the sphere x2+y2+ z2 =

1.
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z = 0

z = x+ iy

z = (ξ ,η ,ζ )

N = (0,0,1)

Figure 3.1: Stereographic projection

Let (u,v) = π (x,y,z), where (x,y,z)∈ S2 \{N} and (u,v) is contained in the xy-plane.

(i) Show that π−1 : R2 → S2 \{N} is given by

π
−1 (u,v) =

1
u2 + v2 +4

(
4u,4v,2

(
u2 + v2)) .

(ii) Let U denote the uv-plane. Using stereographic projection, define a coordinate
function x : U → S2 \ {N}. There is no need to verify the 3 conditions (Definition
3.7) on x.

(iii) Briefly explain how one can find a coordinate function y : U → S2 \ {S}, where S
denotes the south pole. There is no need to give exact formulae1.

Solution.

(i) Fix (u,v)∈R2. Consider the line passing through N and (u,v,0), which is parametrised
by (tu, tv,2−2t). We want the point on this line that lies on S2, so

(tu)2 +(tv)2 +(1−2t)2 = 1.

The solution t = 0 corresponds to the north pole, so we reject. The other solution is

t =
4

u2 + v2 +4
.

By using the fact that (x,y,z) = (tu, tv,2−2t), the result follows.

(ii) We can use x(u,v) = π−1 (u,v).

(iii) Let S = (0,0,0) denote the south pole. We perform the analogous construction but
project from the south pole onto a plane that does not pass through the plane. Take
for example z = 2, the plane tangent at N. For p ∈ S2 \{S}, draw the line through
S and p and let it intersect the plane z = 2. The intersection point has coordinates
(u,v,2). Then, identify the plane z = 2 with R2 by (u,v,2) 7→ (u,v). This yields a
stereographic projection π : S2 \{S}→R2. Then, y can be defined as y = π

−1.
1Having said that, see ?? for an answer.
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Example 3.9 (MA3215 AY14/15 Sem 2 Tutorial 3). Let S be the torus which has equation(√
x2 + y2 −2

)2
+ z2 = 1.

(i) Find an open subset V of R3 such that x : U → S∩V is a bijection and

x(u,v) = ((2+ cosu)cosv,(2+ cosu)sinv,sinu) .

Here, U =
{
(u,v) ∈ R2 : 0 < u < 2π,0 < v < 2π

}
is a coordinate function for the

surface. Show that x(u,v) ∈ S.

(ii) Verify the three conditions in Definition 3.7 that x is a coordinate function.

Solution.

(i) It is clear that x(u,v) ∈ S. We then find an open subset V ⊆ R3 such that x : U →
S∩V is a bijection. The idea is to take V to be the image of x, so V corresponds to
the portion of the torus where 0 < u,v < 2π .

(ii) We first verify (i) of Definition 3.7. This is clear because x is composed of polyno-
mials and trigonometric functions.

To verify (ii), note that x is continuous and injective on U since each (u,v) ∈
(0,2π)2 gives a unique point on the torus without overlap, and its inverse (recov-
ering (u,v) from (x,y,z)) is continuous on S∩V . Hence, (ii) is satisfied. Verifying
(iii) is trivial.

3.3 The Inverse Function Theorem
As we would see in Theorem 3.1 eventually, the inverse function theorem is the precise
statement that det(dFp) ̸= 0 implies F is locally invertible near p with a smooth local
inverse. In Differential Geometry, this is one of the key tools behind the local description
of surfaces by coordinate charts.

Let F : Rn → Rm be a smooth map, where

F (u1, . . . ,un) = (F1 (u1, . . . ,un) , . . . ,Fm (u1, . . . ,un)) .

We define its differential dF to be the m×n matrix of first partial derivatives. That is,

dF =


∂F1
∂u1

· · · ∂Fm
∂u1... . . . ...

∂F1
∂un

· · · ∂Fm
∂un

 .

When n = m, dF is an n×n matrix and we define the Jacobian determinant

det(dF) =
∂ (F1, . . . ,Fn)

∂ (u1, . . . ,un)
.
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Definition 3.8 (critical point and regular point). Let F : U →Rn be a smooth map,
where U ⊆ Rn is open, and let p ∈U .

(i) p is a critical point of F if dFp is singular (i.e. not invertible)

(ii) p is a regular point of F if dFp is invertible

Lemma 3.2. Let F : U → Rn be a smooth map and p ∈U . Then, the following are
equivalent:

(i) p is a regular point of F

(ii) det(dFp) ̸= 0

(iii) The n×n matrix dFp is invertible

Proof. This is standard Linear Algebra from MA2001 — an n×n matrix is invertible if
and only if its determinant is non-zero.

Example 3.10 (the case n = 1). We perform a sanity check for the 1-dimensional case.
Let f : R→ R be smooth and write y = f (u). Then,

d f =
∂ f
∂u

=
d f
du

= f ′ (u) .

So, a point p ∈ R is critical if f ′ (p) = 0, which is exactly the situation where f fails to
be locally injective (e.g. local maxima/minima or other flattening behaviour). If instead
p was a regular point, i.e. f ′ (p) ̸= 0, then f is locally invertible near p. As such, one can
solve y = f (x) for x as a function of y in a neighbourhood).

From Example 3.10, we give a remark from MA2002 Calculus that even if f ′ (p) ̸= 0
at some point p, this only guarantees local invertibility near p. It does not mean f is
invertible on all of R.

We now state the inverse function theorem (Theorem 3.1).

Theorem 3.1 (inverse function theorem). Let U ⊆ Rn be open and let F : U → Rn

be a smooth function. Suppose p ∈ U is a regular point, i.e. det(dFp) ̸= 0. Then,
the following hold:

(i) There exists an open neighbourhood V of p in U and an open set W ⊆ Rn

containing F (p) such that F : V →W is a bijection

(ii) The inverse map F−1 : W →V exists and is smooth

The inverse function theorem (Theorem 3.1) is often summarised as follows. If
det(dFp) ̸= 0, then F is a local diffeomorphism2 near p. In particular, near a regular

2Just to jump the gun, we will formally what a diffeomorphism is in Definition 5.1. In this context, a
map F : V →W is a diffeomorphism if F is smooth, F is bijective so F−1 exists, and F−1 is smooth.
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point, F has a well-behaved coordinate change. We shall give some applications of The-
orem 3.1 in due course, but first, we shall give a nice interpretation of regular surfaces.
That is, a very efficient way to prove that many subsets S ⊆ R3 are regular surfaces is to
realise them as level sets

S = f−1 (a) = {p ∈V : f (p) = a}

of a smooth function f : V → R. If the gradient never vanishes on the level set, then S is
a regular surface.

We now discuss regular points of a scalar field. Let V ⊆R3 be open and let f : V →R be
smooth.

Definition 3.9. Let p ∈V . Define

d fp =

(
∂ f
∂x

|p,
∂ f
∂y

|p,
∂ f
∂ z

|p
)
∈ R3.

We say that p is a regular point of f if d fp ̸= 0. In MA2104 Multivariable Calculus,
d fp is the gradient vector and is denoted by grad f (p) or ∇ f (p).

Proposition 3.2 (level sets as regular surfaces). Let V ⊆ R3 be open and let f :
V → R be smooth. Fix a ∈ R and consider the level set

S = f−1 (a) = {p ∈V : f (p) = a} .

If every point of S is a regular point of f , i.e. d fp ̸= 0 for all p ∈ S, then S is a
regular surface in R3.

Here is a geometric remark with regards to Proposition 3.2 and MA2104 Multivariable
Calculus. For a regular level set S = f−1 (a), the gradient grad f (p) is always perpendic-
ular to the surface at p.

Proof. Fix p = (x0,y0,z0) ∈ S. Since d fp ̸= 0, at least one partial derivative is non-zero.
Without a loss of generality, assume that ∂ f

∂ z |p ̸= 0. Then, define

F : V → R3 where F (x,y,z) = (x,y, f (x,y,z)) .

Then,

dF =

1 0 ∂ f
∂x

0 1 ∂ f
∂y

0 0 ∂ f
∂ z


so it implies that det(dF) evaluated at p is ∂ f

∂ z |p ̸= 0. By the inverse function theo-
rem (Theorem 3.1), there exist open sets V0 ⊆ V containing p and W ⊆ R3 containing
F (p) = (x0,y0,a) such that F : V0 →W is a bijection with smooth inverse F−1.
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Write

F−1 (u,v,w) = (g1 (u,v,w) ,g2 (u,v,w) ,g3 (u,v,w)) .

Since F (x,y,z) = (x,y, f (x,y,z)), one obtains

g1 (u,v,w) = u and g2 (u,v,w) = v and f (u,v,g3 (u,v,w)) = w.

Now, restrict to the slice w = a. Let

U = {(u,v) : (u,v,a) ∈W} ⊆ R2,

and define the local parametrisation

x : U −→ S where x(u,v) = F−1 (u,v,a) = (u,v,g3 (u,v,a)) .

Then, x(U) ⊆ S and x is smooth. Moreover, the rank condition holds (it is a genuine
chart), so S is a regular surface near p.

Corollary 3.1 (local graph form). If p ∈ S = f−1 (a) and ∂ f
∂ z |p ̸= 0, then S can be

locally parametrised near p by (x,y)-coordinates. That is, there exists a smooth
function h such that, near p,

S = {(x,y,h(x,y))} .

Equivalently, a local coordinate function is

x(u,v) = (u,v,h(u,v)) .

Example 3.11 (the unit sphere S2 via a level set). Let f (x,y,z) = x2 + y2 + z2, V = R3,
and a = 1. Then,

f−1 (1) =
{
(x,y,z) ∈ R3 : x2 + y2 + z2 = 1

}
= S2.

Next, d f = (2x,2y,2z). On S2, we cannot have (x,y,z) = (0,0,0), so d f ̸= 0 everywhere
on S2. Hence, S2 is a regular surface.

Example 3.12 (A hyperboloid level set). Let f (x,y,z) =−x2 − y2 + z2 −1, V = R3, and
a = 0. Then,

f−1 (0) =
{
(x,y,z) : z2 = x2 + y2 +1

}
.

Next, d f = (−2x,−2y,2z). If d f = (0,0,0), then x = y = z = 0, but (0,0,0) /∈ f−1 (0)
since f (0,0,0) =−1 ̸= 0. Hence, d f ̸= 0 on f−1 (0), so f−1 (0) is a regular surface.

Example 3.13 (MA3215 AY06/07 Sem 2). Prove that

S =
{
(x,y,z) ∈ R3 : x5 + siny+ z3 = 2

}
is a regular surface.
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Solution. Let f (x,y,z) = x5 + siny+ z3 −2. Then,

f−1 (0) =
{
(x,y,z) : x5 + siny+ z3 −2 = 0

}
.

Then, d f =
(
5x4,cosy,3z2). If d f = (0,0,0), then x= z= 0 and siny=±1. However, we

see that f
(
0,sin−1 (±1) ,0

)
̸= 2, which shows that d f ̸= 0 on f−1 (0). As such, f−1 (0)

is a regular surface. □

3.4 Tangent Spaces

Definition 3.10 (differential of a parametrisation). Let S ⊆R3 be a regular surface,
and let

x : U → S∩V where x(u,v) = (x(u,v) , y(u,v) , z(u,v))

be a coordinate function. The differential at p = x(u0,v0) is the 3×2 matrix

(dx)p =


∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂ z
∂u

∂ z
∂v


p

.

Its columns are the velocity vectors

(xu)p =
∂x
∂u

∣∣∣∣
p

and (xv)p =
∂x
∂v

∣∣∣∣
p
.

Definition 3.11 (tangent space). The tangent space of S at p ∈ S is

TpS = span
{
(xu)p ,(xv)p

}
.

Since S is regular, (dx)p has rank 2 by Definition 3.7, so (xu)p and (xv)p are linearly
independent and TpS is a 2-dimensional subspace of R3. Note that the cross product

(xu)p × (xv)p ̸= (0,0,0)

is perpendicular to TpS, hence gives a normal direction to the tangent plane. Equivalently,
one may view it in terms of Jacobians. That is,

xu ∧ xv =

(
∂ (y,z)
∂ (u,v)

,
∂ (z,x)
∂ (u,v)

,
∂ (x,y)
∂ (u,v)

)
and xu ∧ xv ̸= (0,0,0) .

If we translate coordinates so that p is the origin, the tangent plane can be written as{
(X ,Y,Z) ∈ R3 :

(
(xu)p × (xv)p

)
· (X ,Y,Z) = 0

}
.

The tangent plane is said to be a first-order approximation to the surface near p. If we
choose a different coordinate function, the definition via column space gives the same
plane, i.e. TpS is intrinsic.
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Proposition 3.3 (local graph criterion). Let S be a regular surface and x(u,v) a
coordinate function. Suppose at p = x(u0,v0) we have

∂ (x,y)
∂ (u,v)

(u0,v0) ̸= 0.

Then, there exists a neighbourhood W of p in S such that W is the graph of a smooth
function z = f (x,y).

The condition
∂ (x,y)
∂ (u,v)

̸= 0

in Proposition 3.3 geometrically means that the tangent plane at p (and nearby) is not
perpendicular to the xy-plane.

Proof. Let π : S → R2 denote the projection of S onto the xy-plane. Next, define

h = π ◦ x where h(u,v) = (x(u,v) ,y(u,v)) .

The hypothesis says that det(dh)(u0,v0)
̸= 0, so by the inverse function theorem (Theorem

3.1), h has a local inverse h−1 near (x(u0,v0) ,y(u0,v0)). Write

h−1 (x,y) = (u(x,y) ,v(x,y)) .

Then, define
γ (x,y) = x◦h−1 (x,y) = (x,y,z(u(x,y) ,v(x,y))) .

Hence, locally S is parametrised as (x,y, f (x,y)) with f (x,y) = z(u(x,y) ,v(x,y)), so the
surface is a graph.

Example 3.14 (sphere and the equator). On the unit sphere, at the equator it is not
possible to write the surface locally as z = f (x,y). The relevant Jacobian condition fails
precisely on the equator so the local graph criterion (Proposition 3.3) does not apply there.

Away from the equator, we may write the upper and lower hemispheres as the follow-
ing graphs:

z =
√

1− x2 − y2 and z =−
√

1− x2 − y2

Example 3.15 (a surface that is globally a graph). Consider the parametrised surface

x(u,v) = (3u+4v,4u+5v,cos(uv)) .

Compute
∂ (x,y)
∂ (u,v)

= det

(
3 4
4 5

)
=−1 ̸= 0,

so the graph criterion applies. Moreover, solving(
x
y

)
=

(
3 4
4 5

)(
u
v

)
so

(
u
v

)
=

(
−5 4
4 −3

)(
x
y

)
=

(
−5x+4y
4x−3y

)
,
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we get

z = cos(uv) = cos((−5x+4y)(4x−3y)) .

Hence the surface is the graph z = cos((−5x+4y)(4x−3y)).

3.5 Change of Parameters
If x : U → S is a coordinate function (chart) of a regular surface S⊆R3, and y : Y →R3 is a
smooth parametrised patch whose image lies inside x(U), then we can change parameters
by passing from y-coordinates to x-coordinates via x−1 ◦y : Y →U.. The key point is that
this map is smooth.

Proposition 3.4 (change of parameters). Let S be a regular surface and let x : U → S
be a coordinate function. Let Y ⊆ Rn be open and let y : Y → R3 be a smooth map,
i.e.

y(ξ1, . . . ,ξn) = (x(ξ1, . . . ,ξn) ,y(ξ1, . . . ,ξn) ,z(ξ1, . . . ,ξn))

with smooth component functions. Assume that y(Y ) ⊆ x(U). Then, the map
x−1 ◦ y : Y →U is smooth.

Proof. This is an application of the inverse function theorem (Theorem 3.1) to show that
the local inverse x−1 behaves smoothly on the image3.

Let x : U → S and y : V → S be two coordinate functions on the same regular surface
S. Assume their images overlap. That is,

W = x(U)∩ y(V ) ̸= /0 where U ′ = x−1 (W )⊆U and V ′ = y−1 (W )⊆V.

Then, we have a bijection (the change of coordinates)

h = x−1 ◦ y : V ′ →U ′. (3.3)

Proposition 3.5 (transition maps are diffeomorphisms). The bijection

h = x−1 ◦ y : V ′ →U ′

in (3.3) is a diffeomorphism. Equivalently, both h and h−1 = y−1 ◦ x are smooth.

Proof. Smoothness of h follows from Proposition 3.4. Interchanging the roles of x and y
yields the smoothness of h−1.

Example 3.16. Let S2 ⊆ R3 denote the unit sphere and let

U =V =
{
(u,v) ∈ R2 : u2 + v2 < 1

}
.

3We treat this as a technical tool; the detailed proof is omitted.
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We define two charts, namely the northern hemisphere

x(u,v) =
(

u,v,
√

1−u2 − v2
)

and the hemisphere pointing in the direction of the x-axis, which is

y(ξ ,η) =

(√
1−ξ 2 −η2,ξ ,η

)
.

On the overlap W = x(U)∩ y(V ), the transition map is

h := x−1 ◦ y : V ′ →U ′ where h(ξ ,η) =

(√
1−ξ 2 −η2,ξ

)
,

and its inverse is
h−1 (u,v) =

(
v,
√

1−u2 − v2
)
.

Both are smooth on the appropriate restricted domains U ′,V ′.

One can interpret h and h−1 as the precise gluing data that tells us how two flat pa-
rameter domains U ′ and V ′ fit together to form the surface. This viewpoint generalises to
the abstract construction of manifolds by gluing open sets in Rn.

We can define the tangent space TpS intrinsically using smooth curves on the surface,
and then show this definition agrees with the span of xu and xv from a coordinate chart.
The punchline is that TpS does not depend on which chart you use.

Let S be a regular surface and let α : (−ε,ε) → S be a (short) smooth curve on S. We
do not assume arc length parametrisation; we even allow α ′ (t) = 0 for some t. Fix
p = α (0) ∈ S, and choose a chart x : U → S such that the image x(U) contains the whole
curve. Then by change of parameters (Proposition 3.4), the map

h(t) = (h1 (t) ,h2 (t)) =
(
x−1 ◦α

)
(t)

is smooth, and
α (t) = x◦h(t) = x(h1 (t) ,h2 (t)) .

By the chain rule,

α
′ (0) =

∂x
∂u

∣∣∣
(0,0)

h′1 (0)+
∂x
∂v

∣∣∣
(0,0)

h′2 (0) .

Writing a1 = h′1 (0) and a2 := h′2 (0), we obtain the key formula

α
′ (0) = a1xu (0,0)+a2xv (0,0) ,

so α ′ (0) lies in the tangent plane (column space of dxp). Conversely, every tangent plane
vector comes from a curve. We formally describe this in Proposition 3.6.

Proposition 3.6. Let v be any vector in the tangent plane at p = x(0,0), say

v = a1xu (0,0)+a2xv (0,0) .
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Then, there exists a smooth curve α on S with α (0) = p and α ′ (0) = v.

Proof. Define α (t) = x(a1t,a2t) be a parametrisation of a curve. Then, α (0) = x(0,0) =
p, and differentiating yields α ′ (0) = v.

Theorem 3.2 (intrinsic description of the tangent plane). The tangent plane at
p ∈ S is equal to the union of all tangent vectors α ′ (0) where α ranges over smooth
curves on S with α (0) = p.

Corollary 3.2 (independence of coordinates). The tangent plane TpS (equivalently,
the column space of dxp) is independent of the choice of coordinate function x.

Example 3.17 (prescribing a tangent vector on S2). Pick a chart x(u,v) on S2 and a point
p = x(u0,v0). Given a vector v = a1xu (u0,v0)+a2xv (u0,v0), a curve with α (0) = p and
α ′ (0) = v is

α (t) = x(u0 +a1t,v0 +a2t) .

3.6 Smooth Functions on Surfaces
We begin with a motivation on how to differentiate a function on a curved surface. Let
S ⊆ R3 be a regular surface and let f : S → R. Since S is curved, we do not differentiate
f by moving in straight lines in R3. Instead, we differentiate along a parametrised patch
x(u,v), i.e. we pull back f to a function on an open set in R2.

Definition 3.12 (smoothness via coordinate functions). Let f : S →R and let p∈ S.
Let x : U → S be a coordinate function with p = x(u0,v0) ∈ x(U).

(i) We say that f is smooth on x(U) if f ◦ x : U → R is smooth in the usual
MA2104 Multivariable Calculus sense

(ii) We say that f is smooth at p if f is smooth on some open subset of S contain-
ing p

With p = x(u0,v0), we define

∂ f
∂u

∣∣∣∣
p
=

∂ ( f ◦ x)
∂u

∣∣∣∣
(u0,v0)

and
∂ 2 f

∂u∂v

∣∣∣∣
p
=

∂ 2 ( f ◦ x)
∂u∂v

∣∣∣∣
(u0,v0)

and similarly for other mixed/second derivatives.

Example 3.18. Let S=
{
(x,y,z) : x2 + y2 + z2 = 1

}
and define f (x,y,z)= xz2. We parametrise

the northern hemisphere by

x(u,v) =
(

u, v,
√

1−u2 − v2
)
,

so that the north pole is p = x(0,0). Then,

( f ◦ x)(u,v) = u
(
1−u2 − v2) ,
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so
∂ ( f ◦ x)

∂u
(u,v) = 1−3u2 − v2 and

∂ 2 ( f ◦ x)
∂u2 (u,v) =−6u.

In particular, at (u,v) = (0,0), we have ∂ f
∂u

∣∣∣
p
= 1 and ∂ 2 f

∂u2

∣∣∣
p
= 0. Since ( f ◦ x)(u,v) =

u
(
1−u2 − v2) is a polynomial (hence smooth) on the open unit disk in the uv-plane, it

follows from the definition that f is smooth on the northern hemisphere (i.e. on x(U)).

Note that partial derivatives depend on the coordinate function. That is to say, if
y : V → S is another coordinate function around p, then in general

∂ ( f ◦ x)
∂u

∣∣∣∣
(u0,v0)

̸= ∂ ( f ◦ y)
∂ξ

∣∣∣∣
(ξ0,η0)

.

So the numerical value of ∂ f/∂u depends on the chosen parameters.

Also, smoothness at a point is chart-independent. Although derivatives depend on the
chart, the property of being smooth at p does not. That is, if x : U → S and y : V → S
are coordinate functions with p = x(u0,v0) = y(ξ0,η0), let h = x−1 ◦ y be defined near
(ξ0,η0) (a change of parameters map). Then,

( f ◦ y)(ξ ,η) = ( f ◦ x◦h)(ξ ,η) .

Since h is smooth (change of parameters) and f ◦ x is smooth, the composition f ◦ x ◦ h
is smooth. Hence, f ◦ y is smooth. Therefore, the definition of f being smooth at p is
independent of the coordinate function.

Definition 3.13 (smooth function on a surface). A function f : S → R is called a
smooth function on S if it is smooth at every point of S.

Example 3.19 (checking smoothness on the whole sphere). For f (x,y,z) = xz2 on the
unit sphere, we can cover the sphere by several coordinate patches (northern hemisphere,
southern hemisphere, and additional hemispheres to cover the equator). On each patch,
f ◦ x is a smooth function of (u,v), hence f is smooth on the entire sphere.

Proposition 3.7 (restriction of a smooth R3 function is smooth on S). Let V ⊆
R3 be open and let S ⊆ V be a regular surface. If F : V → R is smooth, then its
restriction f := F |S: S → R is a smooth function on S.

Proof. For any coordinate function x : U → S, we have

f ◦ x = (F |S)◦ x = F ◦ x

which is smooth since F and x are smooth.

In many situations, one proves f : S → R is smooth by writing f = F |S where F
is a smooth function on an open set V ⊆ R3 containing S. If F is only defined/smooth
away from a bad set like an axis, one chooses V to avoid that set; then f is smooth by
Proposition 3.7.
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Example 3.20. Let

F (x,y,z) =
(
x2 + y2 + z2)sinx on R3.

On the unit sphere, we have x2+y2+ z2 = 1, hence the restriction of F to S is f (x,y,z) =
sinx. This illustrates that restriction means having the same formula but a smaller domain.

Theorem 3.3 (extension theorem). Conversely, every smooth function on S is the
restriction of some smooth function defined on an open set in R3 containing S.

The proof of Theorem 3.3 is complicated and it uses a technique known as partition
of unity.

3.7 Smooth Functions between Surfaces
A map φ : S1 → S2 between regular surfaces is declared smooth if, after choosing local
coordinates

x1 : U1 → S1 and x2 : U2 → S2,

the coordinate expression

x−1
2 ◦φ ◦ x1 : U1 →U2

is a smooth map in the usual sense. Next, let S1,S2 be regular surfaces and let φ : S1 → S2

be continuous. Fix p1 ∈ S1 and set p2 = φ (p1) ∈ S2. Choose coordinate functions

x1 : U1 → S1 with p1 ∈ x1 (U1) and x2 : U2 → S2 with p2 ∈ x2 (U2) .

By shrinking U1 if necessary, we may assume φ (x1 (U1)) ⊆ x2 (U2) so the coordinate
expression

x−1
2 ◦φ ◦ x1 : U1 →U2

is well-defined.

Definition 3.14 (smoothness). Let φ : S1 → S2 be as in our above discussion.

(i) We say that φ is smooth on x1 (U1) if

x−1
2 ◦φ ◦ x1 : U1 →U2

is smooth in the sense of Calculus

(ii) We say that φ is smooth at p1 if φ is smooth on some open subset of S1

containing p1

(iii) We say that φ is a smooth map if it is smooth at every point of S1

Example 3.21 (antipodal map is smooth). Let S1 = S2 = S2 and define

φ (x,y,z) = (−x,−y,−z) .
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Pick p1 on the northern hemisphere so that φ (p1) lies on the southern hemisphere. Use
the standard charts

x1 (u1,v1) =

(
u1,v1,

√
1−u2

1 − v2
1

)
and x2 (u2,v2) =

(
u2,v2,−

√
1−u2

2 − v2
2

)
.

Then the coordinate expression becomes(
x−1

2 ◦φ ◦ x1
)
(u1,v1) = (−u1,−v1) ,

which is clearly smooth on the open unit disk. Hence, φ is smooth on the northern hemi-
sphere. To finish the global statement, one must also check the southern hemisphere and
the equator using additional charts.

The definition of smoothness in Definition 3.14 looks like it depends on the chosen
coordinate functions x1 and x2, but it actually does not: replacing charts does not change
whether φ is smooth.

Lemma 3.3 (smoothness is independent of charts). If φ is smooth at p1 with respect
to one choice of coordinate functions x1 at p1 and x2 at p2, then it is smooth at p1

for any other choice of coordinate functions around these points.

Proof. Let y1 be another coordinate function around p1. Set the transition map h = x−1
1 ◦

y1 so that y1 = x1 ◦h. Then locally,

x−1
2 ◦φ ◦ y1 = x−1

2 ◦φ ◦ x1 ◦h.

The right side is a composition of smooth maps (by hypothesis x−1
2 ◦ φ ◦ x1 is smooth,

and h is smooth by change of parameters), hence x−1
2 ◦ φ ◦ y1 is smooth. This shows

independence of x1 and similarly for x2).

Proposition 3.8 (restriction of a smooth map in R3). Let V1,V2 ⊆R3 be open and
let Φ : V1 → V2 be smooth. Let S1 ⊆ V1 and S2 ⊆ V2 be regular surfaces such that
Φ(S1)⊆ S2. Define

φ : S1 → S2 where φ = Φ |S1 .

Then, φ is smooth.

Proof. Fix p1 ∈ S1 and p2 = φ (p1) ∈ S2. Near p2, we may assume S2 is locally a graph
and choose coordinates so that

x−1
2 (x,y,z) = (x,y) .

Write Φ = (Φ1,Φ2,Φ3). Then for a chart x1 on S1, we have(
x−1

2 ◦φ ◦ x1
)
(u1,v1) = (Φ1 ◦ x1 (u1,v1) , Φ2 ◦ x1 (u1,v1)) ,

which is smooth because Φ1,Φ2 and x1 are smooth.
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Example 3.22. We are now in position to give a short proof that the antipodal map in
Example 3.21 is smooth. Let Φ : R3 → R3 be Φ(x,y,z) = (−x,−y,−z). Then, Φ is
smooth, and Φ

(
S2)⊆ S2. Hence φ = Φ |S2 is smooth by Proposition 3.8.

Example 3.23 (rotation on a tube). Let S be the tube obtained by rotating the line x = 1
in the xz-plane about the z-axis. Let Φ : R3 → R3 be rotation about the z-axis by 30◦:

Φ(x,y,z) = (xcos30◦+ ysin30◦, −xsin30◦+ ycos30◦, z) .

Then, Φ is smooth and Φ(S)⊆ S, so φ = Φ |S: S → S is smooth by Example 3.8

Lemma 3.4 (composition of smooth maps is smooth). If φ : S1 → S2 and ψ : S2 →
S3 are smooth maps between regular surfaces, then ψ ◦φ : S1 → S3 is smooth.

3.8 Maps between Tangent Planes
A smooth map between surfaces induces a linear map between tangent planes. This is the
main bridge from Differential Geometry to Linear Algebra. Let φ : S1 → S2 be a smooth
map between regular surfaces. Fix p1 ∈ S1 and set p2 = φ (p1)∈ S2. Let p2 = φ (p1)∈ S2.
Say v1 ∈ Tp1S1 is a tangent vector, so there exists a curve

α : (−ε,ε)→ S1 such that α (0) = p1 and α
′ (0) = v1.

Define a curve on S2, say β (t) := φ (α (t)). Then, β (0) = p2 and β ′ (0) ∈ Tp2S2.

Definition 3.15 (differential). We define the map

dφp1 : Tp1S1 → Tp2S2 where dφp1 (v1) = β
′ (0) = (φ ◦α)′ (0) .

We must check that this is well-defined, i.e. independent of the curve α used to
represent v1.

Definition 3.16 (coordinate functions and the induced map Φ). Let x1 : U1 → S1 be
a coordinate function covering p1 and let x2 : U2 → S2 be a coordinate function cov-
ering p2. Shrink U1 so that φ (x1 (U1))⊆ x2 (U2). Define the induced map between
parameter domains

Φ : U1 →U2 where Φ = x−1
2 ◦φ ◦ x1.

Equivalently, φ ◦ x1 = x2 ◦Φ. Write

Φ(u1,v1) = (Φ1 (u1,v1) ,Φ2 (u1,v1)) .

We give a formula for dφp1 in coordinates. Let p1 = x1 (u1,v1). Any tangent vector
v1 ∈ Tp1S1 can be written as

v1 = a(x1,u)p1
+b(x1,v)p1

= (dx1)p1

(
a
b

)
.
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Then,

dφp1 (v1) = (dx2)p2
(dΦ)(u1,v1)

(
a
b

)
.

In particular, dφp1 is a linear transformation. Note that this map is well-defined because

the right side depends only on the coefficients (a,b) of v1 in the basis
{
(x1,u)p1

,(x1,v)p1

}
,

and on the Jacobian matrix (dΦ)(u1,v1)
. Hence, different curves α representing the same

v1 produce the same dφp1 (v1).

We give a matrix representation of the above. Let

(dΦ)(u1,v1)
=

(
a11 a12

a21 a22

)
.

Let
B1 =

{
(x1,u)p1

,(x1,v)p1

}
and B2 =

{
(x2,u)p2

,(x2,v)p2

}
.

Then,

dφp1

(
(x1,u)p1

)
= a11 (x2,u)p2

+a21 (x2,v)p2

dφp1

(
(x1,v)p1

)
= a12 (x2,u)p2

+a22 (x2,v)p2

Equivalently,
[dφp1]B2,B1

= (dΦ)(u1,v1)
.

Example 3.24. Let S1 = S2 = S2 be the unit sphere, and define φ (x,y,z) = (−y,x,z) to
be a 90◦ anticlockwise rotation about the z-axis. Use the northern hemisphere coordinate
functions

x1 (u1,v1) =

(
u1,v1,

√
1−u2

1 − v2
1

)
and x2 (u2,v2) =

(
u2,v2,

√
1−u2

2 − v2
2

)
.

Then the induced map is

Φ(u1,v1) = (−v1,u1) where dΦ =

(
0 −1
1 0

)
.

Hence for v1 = a(x1,u)p1
+b(x1,v)p1

, we obtain

dφp1 (v1) = (dx2)p2

(
0 −1
1 0

)(
a
b

)
=−b(x2,u)p2

+a(x2,v)p2
.

3.9 The First Fundamental Form
We first give the big picture. The first fundamental form is the object that assigns lengths
(and hence angles and distances) on a surface by restricting the Euclidean inner product
of R3 to tangent vectors on the surface. Recall that R3 has the standard inner product

⟨u,v⟩= u1v1 +u2v2 +u3v3.
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This allows us to measure lengths by considering |v|=
√
⟨v,v⟩.

Let S be a regular surface and let p ∈ S. Choose a coordinate function x : U → S cov-
ering p, with p = x(u0,v0). Then, every tangent vector v ∈ TpS can be written as

v = axu (p)+bxv (p) for some a,b ∈ R.

Definition 3.17 (first fundamental form). For v ∈ TpS, define Ip (v) = ⟨v,v⟩, known
as the first fundamental form of S at p.

We then define the functions (evaluated at (u0,v0)), known as the E,F,G coefficients.
These are namely

E (u0,v0) = ⟨xu (p) ,xu (p)⟩
F (u0,v0) = ⟨xu (p) ,xv (p)⟩
G(u0,v0) = ⟨xv (p) ,xv (p)⟩

Then, for v = axu (p)+bxv (p), we have

Ip (v) = ⟨v,v⟩= a2E (u0,v0)+2abF (u0,v0)+b2G(u0,v0) .

E,F,G record how the coordinate directions xu and xv sit in R3. That is, E = |xu|2 and
G = |xv|2, and F = ⟨xu,xv⟩ measures the failure of orthogonality.

Example 3.25 (plane with orthonormal coordinates). Let S be a plane and choose an
orthonormal basis {w1,w2} of the plane. Take the parametrisation

x(u,v) = p0 +uw1 + vw2.

Then, xu =w1 and xv =w2, so E = 1, F = 0, and G= 1. As such, Ip (axu +bxv) = a2+b2.

Example 3.26 (tube). Let

x(u,v) = (cosu,sinu,v) where 0 < u < 2π,v ∈ R.

Then, xu = (−sinu,cosu,0) and xv = (0,0,1). As such, E = 1, F = 0 and G = 1. As
such, Ip (axu +bxv) = a2 +b2.

We now discuss the arc length on a surface using the first fundamental form. Let α (t)
be a smooth curve on S. Since α ′ (t) ∈ Tα(t)S, its speed is∣∣α ′ (t)

∣∣=√Iα(t) (α
′ (t)).

Hence, the arc length from 0 to t is

s(t) =
∫ t

0

∣∣α ′ (τ)
∣∣ dτ =

∫ t

0

√
Iα(τ) (α

′ (τ)) dτ.

Now, suppose α (t) is written in local coordinates as α (t) = x(u(t) ,v(t)). Then,

α
′ (t) = xuu′ (t)+ xvv′ (t) ,
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so the first fundamental form gives

I
(
α
′ (t)
)
= E (u,v)

(
u′ (t)

)2
+2F (u,v)u′ (t)v′ (t)+G(u,v)

(
v′ (t)

)2
.

Therefore,

s(t) =
∫ t

0

√
E (u,v)

(
du
dτ

)2

+2F (u,v)
(

du
dτ

)(
dv
dτ

)
+G(u,v)

(
dv
dτ

)2

dτ.

Formally, we write the metric expression

ds2 = Edu2 +2Fdudv+Gdv2.

At this point, du and dv are treated as symbols encoding the quadratic form determined
by I. They become genuinely meaningful once we develop the differential-geometric in-
terpretation of the metric.

Let θ be the angle between xu and xv. Then, we can write

cosθ =
⟨xu,xv⟩
|xu| |xv|

=
F√

E
√

G
.

We say that x is an orthogonal parametrisation if xu ⊥ xv at all points, i.e. cosθ = 0 if and
only if F = 0 on U .

We then explain how the first fundamental form computes the area of a surface patch.
Let S ⊆ R3 be a regular surface and let x : U → S be a coordinate function. Consider the
parametrised patch x(U)⊆ S. ix (u,v) ∈U and take a small rectangle

[u,u+∆u]× [v,v+∆v]⊆U.

Its image on the surface is approximately a parallelogram spanned by the vectors xu (u,v)∆u
and xv (u,v)∆v. Hence, the side lengths satisfy

∆a = ∥x(u+∆u,v)− x(u,v)∥ ≈ ∥xu (u,v)∥∆u and similarly ∆b ≃ ∥xv (u,v)∥∆v,

and the (approximate) area is

∆A = ∆a∆b |sinθ | ≈ ∥xu (u,v)∧ xv (u,v)∥∆u∆v.

Then, the area of the parametrised patch x(U) is

lim
∆u,∆v→0

∑
U
∥xu ∧ xv∥∆u∆v =

∫∫
U
∥xu ∧ xv∥ dudv. (3.4)

Proposition 3.9 (area formula). Let x : U → S be a coordinate function, and set
E = ⟨xu,xu⟩, F = ⟨xu,xv⟩, and G = ⟨xv,xv⟩. Then,

Area(x(U)) =
∫∫

U
∥xu ∧ xv∥ dudv =

∫∫
U

√
EG−F2 dudv.
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Proof. Recall the vector identity

∥a∧b∥2 = ∥a∥2 ∥b∥2 −⟨a,b⟩2 .

Applying this with a = xu and b = xv gives

∥xu ∧ xv∥2 = ∥xu∥2 ∥xv∥2 −⟨xu,xv⟩2 = EG−F2.

Since ∥xu ∧ xv∥ ≥ 0, we have

∥xu ∧ xv∥=
√

EG−F2,

and substituting into (3.4) yields the result.

The key point is that the area formula in (3.9) depends only on E,F,G, hence depends
only on the first fundamental form. So, we do not need to know the lengths of all vectors
in R3 to compute area on a surface; knowledge of lengths of tangent vectors is sufficient.
This viewpoint generalizes to Riemannian geometry.

Example 3.27 (area of torus). Let a > r and define

x(u,v) = ((a+ r cosu)cosv, (a+ r cosu)sinv, r sinu) where 0 < u,v < 2π.

This parametrises a torus. We then compute the E,F,G coefficients. First,

xu = (−r sinucosv,−r sinusinv,r cosu)

xv = (−(a+ r cosu)sinv,(a+ r cosu)cosv,0)

so E = r2, F = 0, and G = (a+ r cosu)2. Hence,√
EG−F2 = r (a+ r cosu) = r (r cosu+a)

Therefore, by Proposition 3.9, the area is

A =
∫ 2π

0

∫ 2π

0

√
EG−F2 dudv =

∫ 2π

0

∫ 2π

0
r (r cosu+a) dudv = 4π

2ra.

In Do Carmo’s text [1], the integration is sometimes carried out by approximating an
open parameter set by closed sets with boundary because Riemann integration is typically
presented for such domains. Using Lebesgue integration, one can integrate over open
subsets directly.

3.10 The Chain Rule
Whenever we compose smooth maps

U F−→V G−→W,

the differential of the composite H = G ◦F is given by matrix multiplication. That is,
dH = dGdF . This is the multivariable chain rule written in the language of Jacobian
matrices.

Now, let U ⊆ Rk, V ⊆ Rm, W ⊆ Rn be open sets. Let F : U →V be smooth, and write

F (x1, . . . ,xk) = (F1 (x) , . . . ,Fm (x)) where x = (x1, . . . ,xk) .
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Definition 3.18 (differential/Jacobian matrix). The differential of F is the m× k
matrix

dF =
(
Fi j
)

1≤i≤m,1≤ j≤k where Fi j =
∂Fi

∂x j
.

It is also called the Jacobian matrix of F .

If k = m, then dF is a square matrix and we define the Jacobian determinant

det(dF) =
∂ (F1, . . . ,Fm)

∂ (x1, . . . ,xm)
.

Similarly, let G : V →W be smooth, written as

G(y1, . . . ,ym) = (G1 (y) , . . . ,Gn (y)) where y = (y1, . . . ,ym) ,

with differential dG = (Giℓ), where Giℓ =
∂Gi
∂yℓ

.

Proposition 3.10 (chain rule). Define the composite map

H = G◦F : U →W where H (x) = (H1 (x) , . . . ,Hn (x)) .

We have dH = dGdF , where the right side is the product of the n×m matrix dG
with the m× k matrix dF .

Proof. It suffices to check entries. Fix 1 ≤ i ≤ n and 1 ≤ j ≤ k. Since Hi = Gi ◦F , the
usual MA2104 Multivariable Calculus chain rule gives

∂Hi

∂x j
=

m

∑
ℓ=1

∂Gi

∂yℓ

∣∣∣
y=F(x)

· ∂Fℓ
∂x j

.

Using matrices, the (i, j)-entry of dH equals to the (i, j)-entry of dGdF .

Note that if k = m = n, then dF,dG,dH are all m×m matrices. Hence,

det(dH) = det(dGdF) = det(dG)det(dF) .

In particular, if G = F−1, then dG = (dF)−1.

Example 3.28. Let F (t) be a smooth curve on the uv-plane, say

F (t) = (F1 (t) ,F2 (t)) .

Let X : U → S be a coordinate function of a surface S, written as

X (u,v) = (X (u,v) ,Y (u,v) ,Z (u,v)) .

Define
H = X ◦F where H (t) = (H1 (t) ,H2 (t) ,H3 (t)) .

Then, H (t) is a curve on the surface S, and by the chain rule (Proposition 3.10), we have

H ′ (t) = dXF(t)F
′ (t) .
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Writing this out, we have

H ′ (t) =

Xu Xv

Yu Yv

Zu Zv


(u,v)=F(t)

(
F ′

1 (t)
F ′

2 (t)

)
.

To interpret this example, the tangent vector H ′ (t) of the curve on the surface is obtained
by pushing forward the tangent vector F ′ (t) in parameter space via the Jacobian matrix
dX .





Chapter 4
Curvature of Surfaces

4.1 The Gauss Map
In Definition 2.9, we defined the curvature of a curve. For a surface, curvature depends
on a direction. Fix a point p on a regular surface S and choose a unit normal vector N (p).
Given a unit tangent direction v ∈ TpS, slice the surface by the plane spanned by v and
N (p). This produces a plane curve on S called a normal section. The curvature of this
normal section at p is the normal curvature1 of S at p in the direction v.

As we vary the tangent direction v, the normal curvature changes. Gauss’s key obser-
vations [3] were the following:

(i) There exists a direction where the normal curvature is maximal, and a perpendicular
direction where it is minimal

(ii) These extremal values are the principal curvatures k1 (p) and k2 (p) The Gauss cur-
vature at p is the product

K (p) = k1 (p)k2 (p) .

Heuristically, K (p) > 0 means sphere-like, K (p) = 0 means cylinder-like, and
K (p)< 0 means saddle-like.

Definition 4.1 (Gauss map). Let S be a regular surface. A Gauss map is a smooth
map N : S → S2 such that for each q ∈ S, the vector N (q) is a unit vector perpendic-
ular to the tangent plane TqS.

orientability

Definition 4.2. Locally, if x : U → S is a parametrisation, one can define a unit

1Here is a sign convention. The normal curvature is positive if the normal section bends to the same
side of the chosen normal vector N (p). Naturally, the normal curvature is negative if the normal section
bends to the opposite side of the chosen normal vector N (p).

51
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normal by

N(x(u,v)) =± xu (u,v)∧xv (u,v)
|xu (u,v)∧xv (u,v)|

. (4.1)

However, globally we may fail to choose the sign continuously. If a global contin-
uous choice exists, we say S is orientable. If not, S is non-orientable.

Recall from MA2104 Multivariable Calculus that an example of a non-orientable sur-
face is the Möbius strip.

Example 4.1 (plane). If S is the plane ax+by+ cz = 0, a unit normal vector is

n =
(a,b,c)√

a2 +b2 + c2
.

Then, N (q) = n for all q ∈ S, so the image of N is a single point on S2.

Example 4.2 (unit sphere). For S = S2, at p = (x,y,z) ∈ S2, the outward unit normal
equals p itself, so the Gauss map is

N : S2 → S2 where N (p) = p,

i.e. the identity map.

Example 4.3 (hyperbolic paraboloid). Let S be given by f (x,y,z) = z− y2 + x2 = 0 and
parametrise by

x(u,v) =
(
u,v,v2 −u2) .

Since ∇ f = (2x,−2y,1) is perpendicular to S, we obtain the Gauss map (unit normal)

N (x(u,v)) =
(2u,−2v,1)√
4u2 +4v2 +1

.

Example 4.4 (MA3215 AY14/15 Sem 2 Tutorial 7). Describe the region of the unit sphere
S2 covered by the image of the Gauss map of the following surfaces:

(a) paraboloid of revolution z = x2 + y2

(b) hyperboloid of revolution x2 + y2 − z2 = 1

(c) catenoid x2 + y2 = cosh2 z

Solution.

(a) Let a parametrisation of the surface S be x(u,v) =
(
u,v,u2 + v2). Then, xu =

(1,0,2u) and xv = (0,1,2v). By (4.1),

N(u,v) =
xu ×xv

|xu ×xv|
=

(−2u,−2v,1)√
1+4u2 +4v2

.

The z-component of N is
1√

1+4u2 +4v2
.
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As u and v tend to 0, the z-component tends to 1; as u and v tend to infinity, the
z-component tends to infinity. Since the x- and y-components are unaffected, we
see that the image of the Gauss map is the northern hemisphere of the unit sphere
(excluding the equator).

(b) Let a parametrisation of the top half of the hyperboloid’s surface S be

x(u,v) =
(

u,v,
√

u2 + v2 −1
)
.

Then,

xu =

(
1,0,

u√
u2 + v2 −1

)
and xv =

(
0,1,

v√
u2 + v2 −1

)
.

As such,

N(u,v) =

√
u2 + v2 −1

2u2 +2v2 −1

(
− u√

u2 + v2 −1
,− v√

u2 + v2 −1
,1
)
.

Let r = u2 + v2. Then, the z-component of N is√
r2 −1

2r2 −1
.

Note that r > 1, and as r → ∞, the z-component tends to 1√
2
. Hence, for this

parametrisation, the image of the Gauss map is the band 0 < z < 1√
2
. One can then

consider a parametrisation of the bottom half of the hyperboloid’s surface S and by
combining both cases, we see that the overall image of the Gauss map is the band
|z|< 1√

2
.

(c) Let a parametrisation of the top half of the surface S be

x(u,v) =
(

u,v,cosh−1
(√

u2 + v2
))

.

Then,

N(u,v) =

(
− u

u2 + v2 ,−
v

u2 + v2 ,

√
u2 + v2 −1√

u2 + v2

)
.

Let r2 = u2 + v2. Then, the z-component of N is
√

r2−1
r . As r tends to infinity,

the z-component of N tends to 1, and this means that the image of the Gauss map
excludes the north pole. Then, by considering a parametrisation of the bottom half
of the surface S, we see that the image of the overall Gauss map is the unit sphere
excluding the north and south poles.

4.2 The Second Fundamental Form
Fix q ∈ S. The differential dNq : TqS → TN(q)S2 lands in the tangent plane of the sphere at
N (q). However, both planes TqS and TN(q)S2 pass through the origin and are perpendicular
to N (q), hence they coincide as the same 2-plane in R3. Therefore, we may view

dNq : TqS → TqS

as a linear transformation of a 2-dimensional inner product space.
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Proposition 4.1. For each q ∈ S, the linear map dNq : TqS → TqS is self-adjoint with
respect to the induced inner product on TqS.

Definition 4.3 (second fundamental form). For v ∈ TqS, define the quadratic form

IIq (v) =−
〈
dNq (v) ,v

〉
.

This is called the second fundamental form of S at q.

Let B = {v1,v2} be an orthonormal basis of TqS and write

−
[
dNq

]
B,B =

(
a b
b d

)
.

Then, the coefficients are determined by the quadratic form IIq via

a = IIq (v1) and d = IIq (v2) and b =
1
2
(
IIq (v1 + v2)− IIq (v1)− IIq (v2)

)
.

Hence, knowing IIq (·) for all tangent vectors is equivalent to knowing the linear map
dNq.

4.3 Normal Curvature

Definition 4.4 (normal curvature). Let α (s) be a curve on a regular surface S,
parametrised by arc length, and suppose p = α (0) ∈ S. Recall that

α
′′ (0) = k (0)n(0) ,

where k (0) is the curvature of the space curve α and n(0) is its principal normal.
Fix a unit normal N along S. Define

kn (0) =
〈
α
′′ (0) ,N (p)

〉
= k (0)⟨n(0) ,N (p)⟩= k (0)cosθ ,

where θ is the angle between n(0) and N (p). The number kn (0) is called the
normal curvature of α on S at p.

Proposition 4.2. Let α (s) be a curve on S parametrised by arc length with p =

α (0). Then,
IIp
(
α
′ (0)

)
= kn (0) .

In particular, the normal curvature depends only on the tangent vector v = α ′ (0) ∈
TpS, and not on the choice of curve with that tangent direction.

Proof. Since α ′ (s) ∈ Tα(s)S, we have〈
N (α (s)) , α

′ (s)
〉
= 0.
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Differentiate with respect to s and use α ′′ (s) = k (s)n(s) to obtain

0 =
〈
dN
(
α
′ (s)
)
,α ′ (s)

〉
+
〈
N (α (s)) , α

′′ (s)
〉
=− IIα(s)

(
α
′ (s)
)
+ k (s)⟨N,n⟩ .

Evaluating at s = 0 gives IIp (α
′ (0)) = k (0)⟨N,n⟩= kn (0).

Given a unit tangent vector v ∈ TpS, consider the plane spanned by v and N (p). Its
intersection with the surface (for s small) is a curve α (s) called the normal section of S
at p along v. For this curve, the principal normal n(0) is parallel to N (p), so θ = 0 or π

and hence
|kn (0)|= k (0) .

So, among all curves through p with tangent v, the normal section is the one whose
curvature equals |kn|.
Example 4.5 (unit sphere). On S2, the normal sections are great circles (radius 1), hence
curvature 1. With the outward normal, one gets constant normal curvature (sign depend-
ing on convention) for every unit tangent vector v.

Definition 4.5 (principal directions and principal curvatures). At each p ∈ S, the
map dNp : TpS → TpS is self-adjoint, hence −dNp is self-adjoint as well. By the
spectral theorem, there exists an orthonormal basis B = {v1,v2} of TpS such that

(−dNp)(v1) = k1v1 and (−dNp)(v2) = k2v2.

In this basis,

− [dNp]B,B =

(
k1 0
0 k2

)
.

The directions v1 and v2 are the principal directions at p, and the eigenvalues
k1 (p) ,k2 (p) are the principal curvatures.

Proposition 4.3 (extremal normal curvatures occur in principal directions). Let
v ∈ TpS be a unit vector. Write v = av1 +bv2 with a2 +b2 = 1. Then,

IIp (v) = k1a2 + k2b2.

Hence, the maximal and minimal values of IIp (v) (equivalently kn) occur at v = v1

and v = v2 respectively, and these directions are perpendicular.

Definition 4.6 (Gauss curvature and mean curvature). Let k1,k2 be the eigenvalues
of −dNp. Then, define the Gauss curvature K (p) and the mean curvature H (p) as
follows:

K (p) = k1 (p)k2 (p) and H (p) =
1
2
(k1 (p)+ k2 (p))

Equivalently,

K (p) = det(dNp) and H (p) =
1
2

tr(−dNp) ,
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which are independent of basis.

Recall from Definition 4.6 that K denotes Gauss curvature. We give a geometric
meaning of K. If K (p) > 0, then the surface is locally elliptic at p. That is to say, in
a neighbourhood of p, it lies on one side of the tangent plane, and the normal curvature
has the same sign in every tangent direction, so it is sphere-like. If K (p) < 0, then the
surface is locally hyperbolic at p. That is, it crosses its tangent plane and the normal
curvature takes both signs depending on direction, so it is saddle-like. If K (p) = 0, then
the surface is locally parabolic (or flat in at least one direction). That is, at least one
principal curvature vanishes, so the surface is cylinder-like (or planar, if both principal
curvatures vanish).

4.4 The Gauss Map in Local Coordinates
Let x : U → S be a local parametrisation, and define

M (u,v) = (N ◦ x)(u,v) = N (x(u,v)) .

We want formulae for the matrix of dN (equivalently dM) in terms of the first and second
fundamental forms, so that we can compute K, H, and k1,k2 in coordinates. Write

E = ⟨xu,xu⟩ and F = ⟨xu,xv⟩ and G = ⟨xv,xv⟩ .

Also, let D = EG−F2. Let N be the chosen unit normal and define

e = ⟨N,xuu⟩ and f = ⟨N,xuv⟩ and g = ⟨N,xvv⟩ .

Then, for a tangent vector v = axu +bxv at p = x(u,v), we have

IIp (v) = ea2 +2 f ab+gb2.

Proposition 4.4 (Weingarten equations and curvature formulas). Since M (u,v) is
orthogonal to both xu and xv, one can write

Mu = a11xu +a21xv and Mv = a12xu +a22xv.

Let A =
(
ai j
)

be the corresponding 2×2 matrix of dN in the basis {xu,xv}. Then,

a11 =
f F − eG

D
a21 =

eF − f E
D

a12 =
gF − f G

D
a22 =

f F −gE
D

.

Moreover,

K = det(A) =
eg− f 2

EG−F2 and H =−1
2
(a11 +a22) =

eG−2 f F +gE
2(EG−F2)

.

Finally, the principal curvatures are the eigenvalues of −dN, i.e.

k1,k2 = H ±
√

H2 −K.
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Example 4.6. For the torus parametrisation

x(u,v) = ((a+ r cosu)cosv, (a+ r cosu)sinv, r sinu) ,

one can compute E,F,G and e, f ,g explicitly and obtain

K (u,v) =
cosu

r (a+ r cosu)
.

Let S be the graph of z = h(x,y) and parametrise using

x(u,v) = (u,v,h(u,v)) .

Then,
xu = (1,0,hu) and xv = (0,1,hv) .

Hence,
E = 1+h2

u and F = huhv and G = 1+h2
v .

Also,
xuu = (0,0,huu) and xuv = (0,0,huv) and xvv = (0,0,hvv) .

A unit normal vector is
N (x(u,v)) =

(−hu,−hv,1)√
1+h2

u +h2
v
.

Thus,

e =
huu√

1+h2
u +h2

v
and f =

huv√
1+h2

u +h2
v

and g =
hvv√

1+h2
u +h2

v
.

Using

K =
eg− f 2

EG−F2 and EG−F2 = 1+h2
u +h2

v ,

we get

K =
huuhvv −h2

uv

(1+h2
u +h2

v)
2 .

In particular, at a critical point where hu (u,v) = hv (u,v) = 0, we have

K =
(
huuhvv −h2

uv
)∣∣

(u,v) .

So, the sign of K at a critical point is exactly the sign of the Hessian determinant. We
then give a geometric interpretation of the second derivative test. Let (u0,v0) be a critical
point, i.e. hu (u0,v0)= hv (u0,v0)= 0 (so the tangent plane is horizontal and N =(0,0,1)).
Then, we have the following:

(i) If K (u0,v0)> 0 (equivalently huuhvv −h2
uv > 0), then the point is locally elliptic: it

is a local maximum or local minimum

(ii) If K (u0,v0)< 0 (equivalently huuhvv −h2
uv < 0), then the point is saddle-like

(iii) If K (u0,v0) = 0, the test is inconclusive





Chapter 5
Isometries

5.1 Isometries

Definition 5.1 (diffeomorphism). A map φ : S1 → S2 is a diffeomorphism if φ is
smooth, φ is bijective (so φ−1 exists), and φ−1 is smooth. Two surfaces are diffeo-
morphic if there exists a diffeomorphism between them.

In Differential Geometry, two diffeomorphic surfaces are regarded as the same object.
That is, one cannot tell them apart by properties that are invariant under diffeomorphisms.

Definition 5.2 (isometry). A diffeomorphism φ : S1 → S2 is an isometry if arc
lengths of curves are preserved. Equivalently, for every p∈ S1 and every u,v∈ TpS1,
we have

⟨u,v⟩p =
〈
dφp (u) ,dφp (v)

〉
φ(p) .

In particular, taking u = v gives

∥u∥p =
∥∥dφp (u)

∥∥
φ(p) .

Definition 5.3 (local isometry at a point). A smooth map φ : S1 → S2 is a local
isometry at p ∈ S1 if there exist open sets V1 ⊆ S1 containing p and V2 ⊆ S2 con-
taining φ (p) such that

φ : V1 →V2

is an isometry.

From Definition 5.3, we see that φ being a local isometry at p is a stronger condition
than just requiring the metric preserving condition at the single point p; it mustold on an
open neighbourhood around p.

Proposition 5.1. Using the setup in Definition 5.3, φ : S1 → S2 is a diffeomorphism
between the open sets V1 ⊆ S1 and V2 ⊆ S2.
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Example 5.1 (plane to cylinder is locally isometric but not bijective). Let

S1 = {(x,y,0) ∈ R3} ∼= R2 and S2 = {(X ,Y,Z) ∈ R3 : Y 2 +Z2 = 1}

define the xy-plane and the unit cylinder respectively. Define

φ(x,y,0) = (x,cosy,siny).

Equivalently, in coordinates we consider the map

F : R2 → S2 where F(x,y) = (x,cosy,siny).

The map is periodic in the y-variable because F(x,y+2πk) = F(x,y) for all k ∈ Z, so it
is not injective on all of R2. It is also surjective onto S2 (every point (x,cosθ ,sinθ) is hit
by (x,θ)), hence globally it is a covering map rather than a bijection.

We then compute the coordinate derivatives Fx = (1,0,0) and Fy = (0,−siny,cosy).
These are linearly independent for every (x,y), so rank(dF(x,y)) = 2 everywhere. By the
inverse function theorem (Theorem 3.1), for each (x0,y0), there exists a neighbourhood
U of (x0,y0) such that F |U is a diffeomorphism onto its image. Concretely, if we take

U = {(x,y) : |y− y0|< π},

then y 7→ (cosy,siny) is injective on (y0 −π,y0 +π), so F is injective on U .

On the plane with coordinates (x,y), the induced metric is the standard one. That is,
IS1 = dx2 +dy2. On the cylinder parametrised by F , the first fundamental form is

IS2 = ⟨Fx,Fx⟩dx2 +2⟨Fx,Fy⟩ dxdy+ ⟨Fy,Fy⟩ dy2.

Using the derivatives above, we have

⟨Fx,Fx⟩= 1 and ⟨Fx,Fy⟩= 0 and ⟨Fy,Fy⟩= sin2 y+ cos2 y = 1,

hence IS2 = dx2+dy2 = IS1 . Therefore, F preserves lengths of tangent vectors (and hence
lengths of sufficiently short curves) on each neighbourhood where it is one-to-one. In this
precise sense, φ is a local isometry.

This is the standard ‘rolling without stretching’ identification: the cylinder can be de-
veloped (flattened) onto the plane without distortion, but one full turn around the cylinder
corresponds to shifting the plane by 2π in the y-direction, which is why the global map
cannot be injective.

Proposition 5.2 (matching E,F,G gives an isometry on coordinate patches). Let
x : U → S1 and y : U → S2 be coordinate functions. Let (E1,F1,G1) and (E2,F2,G2)

be the coefficients of the first fundamental forms on S1 and S2 induced by x and y.
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If

E1 (u,v) = E2 (u,v) and F1 (u,v) = F2 (u,v) and G1 (u,v) = G2 (u,v)

as functions on U , then

Φ = y◦ x−1 : x(U)→ y(U)

is an isometry.

Definition 5.4 (intrinsic property). A property of a regular surface is intrinsic if it
is invariant under (local) isometries.

Heuristically, if a quantity can be computed purely from E,F,G and their higher par-
tial derivatives, then it is intrinsic.

5.2 Gauss’ Theorema Egregium

Theorem 5.1 (Theorema Egregium). Let φ : S1 → S2 be a local isometry. Fix
p1 ∈ S1 and set p2 = φ (p1) ∈ S2. Let K (p1) and K (p2) be the Gaussian curvatures
at p1 and p2. Then,

K (p1) = K (p2) .

Equivalently, Gaussian curvature is a local intrinsic quantity.

Theorem 5.1 is remarkable. Recall from Definition 4.6 that K = k1k2 is defined using
the shape operator (or second fundamental form), i.e. apparently extrinsic data in R3.
Theorem 5.1 says that despite the definition, K is completely determined by the metric on
the surface, so it cannot change under local distance-preserving deformations.

Example 5.2. For the plane, k1 = k2 = 0 so K = 0. For the cylinder, k1 = 1 and k2 = 0 so
K = 0. By Theorem 5.1, there is no curvature obstruction to locally rolling a plane into a
cylinder.

Example 5.3 (plane vs sphere). The plane has K = 0 while the unit sphere has K = 1.
Hence, there cannot exist a local isometry from the plane to the sphere. Geometrically,
one cannot wrap a flat sheet smoothly onto a sphere without crumpling.

To prove Theorem 5.1, it suffices to show that the Gaussian curvature K is determined
by the first fundamental form. Concretely, we aim to show K is a function of E,F,G and
their higher partial derivatives. Then, under a local isometry, the coefficients (E,F,G)

(hence all derivatives) agree in corresponding coordinates, so K must agree as well.

Definition 5.5 (Christoffel symbols from the metric). Let x : U → S be a coordinate
function, and write p = x(u,v). Then, {xu,xv,N} is a basis of R3 at p, so we may
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expand to obtain

xuu = Γ
1
11xu +Γ

2
11xv + eN

xuv = Γ
1
12xu +Γ

2
12xv + f N

xvv = Γ
1
22xu +Γ

2
22xv +gN

The coefficients Γk
i j are the Christoffel symbols. A key point is that each Γk

i j can be
written purely using E,F,G and their first derivatives

Eu,Fu,Gu,Ev,Fv,Gv,

by taking inner products of the above expansions with xu and xv and solving the
resulting linear system. Hence,

Γ
k
i j = Γ

k
i j (E,F,G,Eu,Fu,Gu,Ev,Fv,Gv) .

Proposition 5.3 (Christoffel symbols are invariant under local isometries). If φ :
S1 → S2 is a local isometry and x : U → S1 is a coordinate function, then y = φ ◦
x : U → S2 is also a coordinate function. Moreover, the first fundamental form
coefficients agree. That is, E = E, F = F , and G = G as functions on U , and hence
their partial derivatives agree. Therefore the Christoffel symbols computed from(
E,F ,G

)
coincide with those from (E,F,G), so

Γ
k
i j = Γ

k
i j.

One derives identities by differentiating xuv = xvu and expanding everything in the
basis {xu,xv,N}, and also using the Weingarten equations for Nu,Nv. After simplifying,
one obtains formulas that express EK and FK (hence K) in terms of E,F,G,Γk

i j and
the first derivatives of Γk

i j. Since each Γk
i j is itself a function of E,F,G and their first

derivatives, it follows that

K = K (E,F,G, partial derivatives of E,F,G up to some finite order) .

This is the intrinsicness statement needed for Theorem 5.1.

A refinement of the computation also yields the Peterson-Mainardi-Codazzi equations
(relations between E,F,G and e, f ,g and derivatives). Together with the Gauss equation,
they form the compatibility conditions in the fundamental theorem of surfaces: given
smooth functions E,F,G,e, f ,g satisfying positivity and these equations, one can locally
realize them as the first and second fundamental forms of some surface (unique up to rigid
motions).



Chapter 6
Tangent Vector Fields

6.1 Tangent Vector Fields

Definition 6.1 (tangent vector fields in coordinates). Let S ⊆ R3 be a regular sur-
face with a coordinate map

x(u,v) : U → S.

At a point p = x(u,v), the tangent space is

TpS = span{xu (u,v) ,xv (u,v)} .

A tangent vector field on S is a map w : S → R3 such that

w(p) ∈ TpS for all p ∈ S.

In a coordinate patch, any tangent vector field can be written as

w(x(u,v)) = a(u,v)xu (u,v)+b(u,v)xv (u,v) .

We call w smooth if in every coordinate patch, the coefficient functions a(u,v) and
b(u,v) are smooth.

It is crucial that w is tangent, i.e. w(p)⊥ N (p) where N (p) is a unit normal to S at p.

6.2 Differentiating Vector Fields

Definition 6.2 (covariant derivatives in coordinate directions). Let w be a smooth
tangent vector field on S, written in a coordinate patch as

w(u,v) = w(x(u,v)) ∈ R3.

The ordinary partial derivatives ∂w
∂u and ∂w

∂v need not be tangent to S. We define the
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covariant derivatives by projecting back to the tangent plane:

Dw
du

=
∂w
∂u

−
〈

∂w
∂u

,N
〉

N and
Dw
dv

=
∂w
∂v

−
〈

∂w
∂v

,N
〉

N,

where N = N (u,v) is the unit normal along the patch.

By construction, Dw
du and Dw

dv are tangent vector fields.

Definition 6.3 (covariant derivative along a curve). Let α : I → S be a smooth curve
and let w be a tangent vector field along α , i.e. for each t ∈ I we have w(t)∈ Tα(t)S.
Differentiate w(t) in R3 and project to the tangent plane:

Dw
dt

=
dw
dt

−
〈

dw
dt

,N (α (t))
〉

N (α (t)) .

Definition 6.4. A vector field w along α is called parallel along α if

Dw
dt

= (0,0,0) for all t ∈ I.

Definition 6.5 (Christoffel symbols via tangent projections). Let x(u,v) be a co-
ordinate map with tangent basis {xu,xv}. The tangent components of the second
derivatives are encoded by the Christoffel symbols Γk

i j:

Dxu

du
= Γ

1
11xu +Γ

2
11xv,

Dxu

dv
= Γ

1
12xu +Γ

2
12xv,

Dxv

du
= Γ

1
21xu +Γ

2
21xv,

Dxv

dv
= Γ

1
22xu +Γ

2
22xv.

For regular surfaces one has xuv = xvu, hence typically Γk
12 = Γk

21.

Proposition 6.1. If w = a(u,v)xu +b(u,v)xv, then

Dw
du

=
(
au +aΓ

1
11 +bΓ

1
21
)

xu +
(
bu +aΓ

2
11 +bΓ

2
21
)

xv

Dw
dv

=
(
av +aΓ

1
12 +bΓ

1
22
)

xu +
(
bv +aΓ

2
12 +bΓ

2
22
)

xv
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6.3 Geodesic Curvature

Definition 6.6 (geodesic curvature and normal curvature). Let α (s) be a curve
on S parametrised by arc length. Fix p = α (s0). Let t = α ′ (s0), N = N (p), and
s = N ∧ t. Then, {t,s,N} is an orthonormal basis of R3 at p, and we decompose

α
′′ (s0) =

〈
N,α ′′ (s0)

〉
N +

〈
s,α ′′ (s0)

〉
s.

Define
kn =

〈
N,α ′′ (s0)

〉
and kg =

〈
s,α ′′ (s0)

〉
.

Here kn is the normal curvature and kg is the geodesic curvature. Since N ⊥ s,
Pythagoras’ theorem gives

k2 = k2
n + k2

g,

where k = |α ′′ (s0)| is the usual curvature of α in R3.

We say that a curve α (s) on S parametrised by arc length is called a geodesic if

Dα ′

ds
= (0,0,0) for all s.

Proposition 6.2 (equivalent characterizations of geodesics). Let α (s) be a curve
on S parametrised by arc length. The following are equivalent:

(i) Dα ′

ds = (0,0,0) for all s

(ii) α ′′ (s) is perpendicular to Tα(s)S for all s

(iii) α ′′ (s) is parallel to the unit normal N (α (s)) for all s

(iv) The geodesic curvature satisfies kg (s) = 0 for all s

If α (s) is a geodesic and c ̸= 0, then β (t) = α (ct) has constant speed and is also
treated as a geodesic in some texts.

Proposition 6.3 (isometries preserve geodesics). Let ϕ : S1 → S2 be an isometry. If
α is a geodesic on S1, then β = ϕ ◦α is a geodesic on S2.

Proposition 6.4 (existence and uniqueness). Let p ∈ S and let v ∈ TpS be a unit
tangent vector. Then there exists a unique geodesic α (s) parametrised by arc length
such that

α (0) = p and α
′ (0) = v.

Example 6.1. On the unit sphere, the geodesics are exactly the arcs of great circles.

Proposition 6.5 (geodesics are locally shortest paths). Given two points p,q ∈ S
that are sufficiently near, there exists a geodesic joining p to q, and among all nearby
curves joining p to q, this geodesic has minimal arc length.
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Let x : U → S be a coordinate map and write a curve as

α (t) = x(a(t) ,b(t)) .

Using α ′′ (t) ⊥ span{xu,xv} and expressing the tangent components via the Christoffel
symbols, one obtains the geodesic equations

a′′ (t)+Γ
1
11 (a(t) ,b(t))

(
a′ (t)

)2
+2Γ

1
12 (a(t) ,b(t))a′ (t)b′ (t)+Γ

1
22 (a(t) ,b(t))

(
b′ (t)

)2
= 0

b′′ (t)+Γ
2
11 (a(t) ,b(t))

(
a′ (t)

)2
+2Γ

2
12 (a(t) ,b(t))a′ (t)b′ (t)+Γ

2
22 (a(t) ,b(t))

(
b′ (t)

)2
= 0

Given initial conditions α (0) = p and α ′ (0) = v, ODE theory yields a unique local
solution, hence a unique geodesic with the prescribed initial data.
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The Gauss-Bonnet Theorem

7.1 The Local Gauss-Bonnet Theorem

Let S be an orientable regular surface, with a smooth unit normal field N (equivalently,
a Gauss map exists). Then, the Gaussian curvature K (p) is defined for each p ∈ S and
gives a function K : S →R. Let R ⊆ S be a simple region bounded by three smooth curves
C1,C2,C3, each parametrised by arc length, and oriented so that the boundary direction
and N obey the right hand rule. Along each boundary curve Ci, we have the geodesic
curvature kg, hence a function kg : Ci →R. At the three vertices, record the interior angles
λ1,λ2,λ3.

Theorem 7.1 (local Gauss-Bonnet theorem). With the above setup,

3

∑
i=1

∫
Ci

kg ds+
∫∫

R
K dS = 2π −

3

∑
i=1

(π −λi) . (7.1)

The same identity (7.1) holds when ∂R is a union of n smooth curves surrounding the
region. Also, requiring arc length parametrisation is not essential since

∫
kg ds is a line

integral and is independent of parametrisation.

Example 7.1 (Euclidean plane). If S = R2 (the xy-plane), then K = 0. If the boundary
curves are geodesics (straight lines), then kg = 0. By the local Gauss-Bonnet theorem
(Theorem 7.1), we have

0 = 2π −
3

∑
i=1

(π −λi) so λ1 +λ2 +λ3 = π.

Example 7.2 (sphere). Let S be a sphere of radius r, so K = r−2. If the boundary curves
are arcs of great circles, then kg = 0. Thus,

∫∫
R

K dS = 2π −
3

∑
i=1

(π −λi) so λ1 +λ2 +λ3 = π +
Area(R)

r2 .
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7.2 The Global Gauss-Bonnet Theorem
A triangulation of a nice region R ⊂ S divides R into finitely many triangles. Let F denote
the number of faces (triangles), E denote the number of edges, and V denote the number
of vertices. The Euler-Poincaré characteristic of the triangulation is

χ (R) = F −E +V.

It is a fact that χ (R) does not depend on the chosen triangulation. We now state the global
Gauss-Bonnet theorem with boundary (Theorem 7.2).

Theorem 7.2 (global Gauss-Bonnet Theorem with boundary). Let R be a nice re-
gion in an oriented surface S. Suppose the boundary ∂R is a union of nice curves
C1, . . . ,Cn, each positively oriented (with respect to the chosen normal field). Let
λ1, . . . ,λn be the internal angles at the corners of ∂R. Then,

n

∑
i=1

∫
Ci

kg (s) ds+
∫∫

R
K dS+

n

∑
i=1

(π −λi) = 2πχ (R) .

We give a rough proof sketch of Theorem 7.2. First, triangulate R into sufficiently
small triangles so that each triangle lies in a coordinate patch. Then, apply the local
Gauss-Bonnet theorem (Theorem 7.1) to each triangle and sum over all triangles. The
boundary terms telescope on interior edges, leaving only the contribution from ∂R, and
the angle bookkeeping produces the Euler characteristic term.

Definition 7.1 (genus). For a bounded surface without boundary (i.e. a compact
surface without boundary), the topology is determined by the number of holes/han-
dles, called the genus, denoted by genus(S). For such surfaces,

χ (S) = 2−2genus(S) .

We now state the Gauss-Bonnet theorem for compact surfaces without boundary.

Theorem 7.3 (Gauss-Bonnet theorem for compact surfaces without boundary).
Let S be a compact regular surface (without boundary). Then,∫∫

S
K dS = 2πχ (S) .

Theorem 7.3 is a prototypical bridge between a local differential-geometric quantity
(K) and a global topological invariant (χ or genus).

Example 7.3 (ellipsoid). An ellipsoid has genus 0, hence χ (S) = 2 by Definition 7.1. By
Theorem 7.3, we have ∫∫

S
K dS = 2πχ (S) = 4π.

In particular, the value 4π depends only on the topology, not on the specific shape (round
sphere vs. rugby ball).
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Example 7.4 (MA3215 AY14/15 Sem 2 Tutorial 10). Let

U =
{
(u,v) ∈ R2 : 0 < u < 2π,0 < v < 2π

}
.

Also, let
x(u,v) = ((a+ r cosu)cosv,(a+ r cosu)sinv,r sinu)

for (u,v) ∈ U . This yields a parametrisation of the torus S. In Example 3.27 on our
discussion of the first fundamental form, we showed that√

EG−F2 = r (a+ r cosu) .

In Example 4.6, we computed the Gaussian curvature

K =
cosu

r (a+ r cosu)
.

The torus is a compact regular surface without boundary. Then,∫∫
S

K dS =
∫ 2π

0

∫ 2π

0

cosu
r (a+ r cosu)

·
√

EG−F2 dudv =
∫ 2π

0

∫ 2π

0
cosu dudv = 0.

By Theorem 7.3, χ (S) = 0. By Definition 7.1, we know that χ (S) = 2−2genus(S), and
because the genus of a torus is 1, the Gauss-Bonnet theorem indeed holds.
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