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Chapter 1
Metric Spaces

1.1 Metric Spaces
Functional Analysis is essentially the study of infinite-dimensional Linear Algebra.

Example 1.1 (Euclidean metric/distance). Recall the familiar metric in Euclidean space
R

d (x,y) = |x− y| .

We call this the Euclidean metric or Euclidean distance. Naturally, we can extend this to
the Euclidean 2-space R2. Consider x = (x1,x2) and y = (y1,y2) in R2. Then,

d (x,y) =
√
(x1 − x2)

2 +(y1 − y2)
2.

We give the definition of a metric space (Definition 1.1).

Definition 1.1 (metric space). Let X be a set. A metric space is an ordered pair
(X ,d) equipped with a distance function d : X ×X → R such that the following
properties are satisifed:

(i) Non-negativity: d (x,y)≥ 0

(ii) Positive-definiteness: x = y if and only if d (x,y) = 0

(iii) Symmetry: for all x,y ∈ X , we have d (x,y) = d (y,x)

(iv) Triangle inequality: for all x,y,z, we have d (x,z)≤ d (x,y)+d (y,z)

Example 1.2 (MA4211 AY24/25 Sem 2 Tutorial 1). Given two non-empty subsets A,B
of a metric space (X ,d), their distance is defined as

D(A,B) = inf
a∈A,b∈B

d (a,b) .

Consider the power set of X and the function D. Which of the axioms of a metric space
does this pair satisfy?

1



2 CHAPTER 1. METRIC SPACES

Solution. We first claim that non-negativity is satisfied. For A,B ⊆ X , we have

d (a,b)≥ 0 which implies inf
a∈A,b∈B

d (a,b)≥ 0.

Next, symmetry is satisfied since

D(B,A) = inf
a∈A,b∈B

d (b,a) = inf
a∈A,b∈B

d (a,b)

which follows from the fact that d satisfies symmetry. Next, the triangle inequality is
satisfied. To see why, let A,B,C ⊆ X . Then,

D(A,C) = inf
a∈A,c∈C

d (a,c)≤ inf
a∈A,b∈B

d (a,b)+ inf
b∈B,c∈C

d (b,c) = D(A,B)+D(B,C)

We claim that the property D(A,B) = 0 if and only if A = B is not satisfied. Recall from
Definition 1.1 that this is called positive-definiteness. Anyway, to see why, let A = {x}
and B = {xn}∞

n=1, where xn → x. Then, D(A,B) = 0 since xn can be arbitrarily close to x
for large n. However, A ̸= B. □

Example 1.3 (MA4211 AY24/25 Sem 2 Homework 1). Let (X ,d) be a metric space.
Define

ρ (x,y) =
d (x,y)

1+d (x,y)
.

Show that ρ is a metric on X and that the identity map on X is a homeomorphism (a
continuous, bijective map with continuous inverse) between (X ,d) and (X ,ρ). Thus,
every metric space is homeomorphic to a space with a bounded metric.

Solution. We first show that ρ is a metric on X . Note that non-negativity, symmetry and
homogeneity are obvious (as usual) so it suffices to only prove that it satisfies the triangle
inequality. Let x,y,z ∈ X such that

d (x,z)≤ d (x,y)+d (y,z) since d satisfies the triangle inequality.

As such,

ρ (x,y)+ρ (y,z)−ρ (x,z) =
d (x,y)

1+d (x,y)
+

d (y,z)
1+d (y,z)

− d (x,z)
1+d (x,z)

Let a = d (x,y), b = d (y,z), and c = d (x,z). Then, the above becomes

a
1+a

+
b

1+b
− c

1+ c
=

a(1+b)(1+ c)+b(1+a)(1+ c)− c(1+a)(1+b)
(1+a)(1+b)(1+ c)

=
a+ab+ac+abc+b+ab+bc+abc− c−ac−bc−abc

(1+a)(1+b)(1+ c)

=
a+b− c+2ab+abc
(1+a)(1+b)(1+ c)

Since a+b− c ≥ 0 is equivalent to d (x,z)≤ d (x,y)+d (y,z), then

a+b− c+2ab+abc
(1+a)(1+b)(1+ c)

≥ 2ab+abc
(1+a)(1+b)(1+ c)

≥ 0
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and we conclude that ρ is indeed a metric on X .

For the second part, we wish to show that

idX : (X ,d)→ (X ,ρ) where x 7→ x is a homeomorphism.

Note that a map is continuous if it takes convergent sequences in the domain metric to
convergent sequences in the codomain metric. Suppose xn → x in (X ,d). Then, d (xn,x) =
0. As such, ρ (xn,x) = 0. Similarly, we can consider the inverse map

idX = (·)−1 : (X ,ρ)→ (X ,d) where x 7→ x.

Again, it is clear that ρ (xn,x) = 0 implies d (xn,x) = 0, so idX is indeed a homeomor-
phism. □

Definition 1.2 (R∞). Define R∞ to be the space of all infinite sequences of real
numbers, i.e. (x1,x2, . . .) where x1,x2, . . . ∈ R.

Example 1.4 (R∞). We have the infinite sequences (0,0, . . . ,) and (1,2,3, . . . ,100, . . .) in
R∞.

Example 1.5. For X = R, we can define

d (x,y) = min{|x− y| ,1} such that it is a metric.

Example 1.6. For X =R∞, let x = (x1,x2, . . .) and y = (y1,y2, . . .), where each element is
in R. Then, one can check that

d (x,y) = supd (xi,yi) is a metric.

Example 1.7 (ℓ∞). We give an introduction to the sequence space ℓ∞. This example gives
one an impression of how surprisingly general the concept of a metric space is. We can
define

X = {bounded sequences of complex numbers} .

So, every element of X is a complex sequence ξ j such that for all j = 1,2, . . ., we have∣∣ξ j
∣∣≤ cx where cx is a real number which may depend on x.

Then, the following is a metric:

d (x,y) = sup
j∈N

∣∣ξ j −η j
∣∣ where y = (η1,η2, . . .) ∈ X

Definition 1.3 (translation invariant and homogeneous metrics). Let X be a normed
space and d be a metric. We say that d is translation invariant if

for all x,y,z ∈ X we have d (x,y) = d (x+ z,y+ z) .
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Similarly, d is said to be homogeneous if

for all x,y ∈ X and α ∈ F we have d (αx,αy) = |α|d (x,y) .

Example 1.8 (MA4211 AY24/25 Sem 2 Tutorial 2). Let X be a normed space and d be
a metric. We say that d is translation invariant if

for all x,y,z ∈ X we have d (x,y) = d (x+ z,y+ z) .

Similarly, d is said to be homogeneous if

for all x,y ∈ X and α ∈ F we have d (αx,αy) = |α|d (x,y) .

(a) Show that the metric induced on X by its norm is translation invariant and homo-
geneous.

(b) Show that if d is a translation invariant and homogeneous metric on X , then ∥x∥=
d (x,0) defines a norm on X .

Solution.

(a) We have

∥x− y∥= ∥(x− z)+(z− y)∥= ∥x+ z∥+∥y+ z∥

so d is translation invariant.

Next, we prove that d is homogeneous. We have

∥αx−αy∥= |α|∥x− y∥ .

(b) Since d is non-negative, then ∥·∥ is also non-negative. Positive-definiteness is also
clear. Then,

d (αx,0) = ∥αx∥= |α|∥x∥= |α|d (x,0)

so homogenity holds. Lastly, we prove that ∥·∥ satisfies the triangle inequality. We
have

∥x− z∥= d (x− z,0)

= d (x,z) since d is translation invariant

≤ d (x,y)+d (y,z) since d satisfies the triangle inequality

= d (x− y,0)+d (y− z,0) since d is translation invariant

= ∥x− y∥+∥y− z∥

so ∥·∥ defines a norm on X .
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Definition 1.4 (function space). A function space is a set of functions holding the
properties of a vector space structure, norm, or inner product. In particular, it has
either of the following properties:

• Vector space structure:

– Closure under addition: for any f ,g ∈ C [a,b], we have f +g ∈ C [a,b]
– Closure under scalar multiplication: for any k ∈ R, k f ∈ C [a,b] for

f ∈ C [a,b]

• Norm: A norm ∥·∥ is a function ∥·∥ : C [a,b]→R that satisfies the following:

– Non-negativity: ∥ f∥ ≥ 0 for all f ∈ C[a,b], and ∥ f∥= 0 if and only if
f = 0

– Scalar multiplication: ∥k f∥= |k|∥ f∥ for any k ∈ R and f ∈ C[a,b]

– Triangle inequality: ∥ f +g∥ ≤ ∥ f∥+∥g∥ for all f ,g ∈ C[a,b]

• Inner product: An inner product ⟨·, ·⟩ is a function ⟨·, ·⟩ : C[a,b]×C[a,b]→
R that satisfies the following:

– Conjugate symmetry: ⟨ f ,g⟩= ⟨g, f ⟩

– Linearity in the first argument: ⟨k f + g,h⟩ = k⟨ f ,h⟩+ ⟨g,h⟩ for any
k ∈ R

– Positive-definiteness: ⟨ f , f ⟩ ≥ 0 for all f ∈ C[a,b], and ⟨ f , f ⟩ = 0 if
and only if f = 0

Example 1.9. Let

C [a,b] denote the set of continuous functions on [a,b] .

Example 1.10 (function space). Let X = C [a,b], for which we recall that this refers to
the set of continuous functions on [a,b]. Let f ,g ∈ C [a,b]. Then,

d ( f ,g) = max
x∈[a,b]

| f (x)−g(x)| and d ( f ,g) =

√∫ L

0
| f (x)−g(x)|2 dx are metrics.

Example 1.11 (Hamming distance). Consider the two English words ‘word’ and ‘wind’
of the same length for which the second and third letters differ. Since two letters differ,
we say that their Hamming distance is 2. We write

d (wind,word) = 2.

In this case, d is a metric. The reader can read Kreyszig p. 9 Question 10 to prove that
the Hamming distance is indeed a metric.

Example 1.12 (Hamming metric; Kreyszig p. 9 Question 10). Let X be the set of all
ordered triples of zeros and ones. Show that X consists of eight elements and a metric d
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on X defined by

d (x,y) = number of places where x and y have different entries.

Solution. First, non-negativity clearly holds as it is impossible for two words of the same
length to differ by a negative number of letters. So, d (x,y)≥ 0. Symmetry is also obvious.

For positive-definiteness, suppose x = y. Then, x and y are the same word. Hence, they
are two words of the same length which differ by 0 letters. By definition of d, we have
d (x,y) = 0. Similarly, if d (x,y) = 0, then x and y are two words of the same length that
are of Hamming distance 0, which implies that they differ by 0 letters. As such, x = y.

Lastly, we prove that d satisfies the triangle inequality. Let x, y and z be three words
of length n. We can explicitly define d as follows:

d (x,y) =
n

∑
i=1

1{xi ̸=yi} where 1{xi ̸=yi} =

1 if xi ̸= yi;

0 if xi = yi

We note that for each position 1 ≤ i ≤ n, the inequality

1{xi ̸=zi} ≤ 1{xi ̸=yi}+1{yi ̸=zi}.

To see why, if xi = zi, then 1{xi ̸=zi} = 0 and the inequality holds trivially since 1{xi ̸=yi} and
1{yi ̸=zi} are non-negative. If xi ̸= zi, then either xi ̸= yi, or yi ̸= zi, or both. Hence, at least
one of 1{xi ̸=yi} or 1{yi ̸=zi} is 1, and the inequality holds. Hence,

n

∑
i=1

1{xi ̸=zi} ≤
n

∑
i=1

1{xi ̸=yi}+
n

∑
i=1

1{yi ̸=zi} or equivalently d (x,z)≤ d (x,y)+d (y,z) .

so the triangle inequality is satisfied. □

At the time of writing, I am currently revising for my CS1010S practical examination so
I decided to find some random problems on the Internet to try. Here is a Python code
which returns the Hamming distance between two bits x and y. [frame=single]python def

hammingdistance(x,y) : binaryx = bin(x)[2 :]binaryy = bin(y)[2 :]
if len(binaryx)< len(binaryy) : binaryx = ”0”∗(len(binaryy)−len(binaryx))+binaryxelse :

binaryy = ”0”∗ (len(binaryx)− len(binaryy))+binaryy

count = 0 for i in range(len(binaryx)) : i f binaryx[i] == binaryy[i] : count = countelse :
count+= 1returncount

Definition 1.5 (ℓp-space). Let p ≥ 1 be a fixed real number. Each element in the
space ℓp is a sequence (x1, . . .) such that |x1|p + . . . converges. So,

ℓp =

x ∈ R∞ :

(
∞

∑
i=1

|xi|p
)1/p

< ∞

 .
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Definition 1.6 (p-norm). Every element in ℓp-space is equipped with a norm,
known as the p-norm. We define it as follows (will not be strict with the use of
either x or x):

if x ∈ ℓp then ∥x∥p =

(
∞

∑
i=1

|xi|p
)1/p

Example 1.13 (MA4211 AY24/25 Sem 2 Tutorial 1). Give an example of a sequence xn

such that

xn → 0 but xn ̸∈ ℓp for any 1 ≤ p < ∞.

Solution. Consider

xn =
1

log(n+1)
for which lim

n→∞
xn = 0.

Then, we have

∥xn∥p =
1

[log(n+1)]p
so

∞

∑
n=1

∥xn∥p =
∞

∑
n=1

1
[log(n+1)]p

diverges.

□

Example 1.14 (MA4211 AY24/25 Sem 2 Homework 1). Recall that for 1 ≤ p < ∞, we
defined

ℓp =

{
xi ∈ R∞ |

∞

∑
i=1

|xi|p < ∞

}
with norm ∥x∥p =

(
∞

∑
i=1

|xi|p
)1/p

.

Show that if p ≤ q, then ∥x∥q ≤ ∥x∥p and hence ℓp ⊆ ℓq.

Solution. We have

∥x∥q =

(
∞

∑
i=1

|xi|q
)1/q

=

( ∞

∑
i=1

|xi|q
)p/q

1/p

≤

(
∞

∑
i=1

|xi|q(p/q)

)1/p

=

(
∞

∑
i=1

|xi|p
)1/p

The inequality holds because( ∞

∑
i=1

|xi|q
)p/q

1/p

≤

(
∞

∑
i=1

|xi|q(p/q)

)1/p

is equivalent to

(
∞

∑
i=1

|xi|q
)p/q

≤
∞

∑
i=1

|xi|q(p/q)

Let

ai = |xi|q .

Then, it suffices to prove that(
∞

∑
i=1

ai

)r

≤
∞

∑
i=1

ar
i where r =

p
q
≤ 1.
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To see why this holds, note that for all a,b ≥ 0 and 0 < r ≤ 1, we have

(a+b)r ≤ ar +br.

Let f (a) = ar + br − (a+b)r. Then, f ′ (a) = rar−1 − r (a+b)r−1 ≥ 0. Since f (0) = 0,
then f (a)≥ 0. As such, the inequality (a+b)r ≤ ar +br holds. We can extend it to any
finite sum by induction; for an infinite sum, use a limiting argument. As such, for any
sequence in ℓp, it must be contained in ℓq. □

Definition 1.7 (Lp). Define the Lp space as follows:

Lp [a,b] =
{

f : [a,b]→ R such that
∫ b

a
| f (x)|p dx < ∞

}

Theorem 1.1 (Young’s inequality). Suppose α,β > 0. Then,

αβ ≤ α p

p
+

β q

q
where

1
p
+

1
q
= 1.

Example 1.15. Let t = 1/p. Then,

ln(tα p +(1− t)β
q)≥ t ln(α p)+(1− t) ln(β q) since ln is concave down

=
1
p

ln(α p)+
1
q

ln(β q)

= lnα + lnβ

= lnαβ

Taking exponentials on both sides yields the desired result.

Theorem 1.2 (Hölder’s inequality). For 1 ≤ p,q < ∞ such that 1/p+1/q = 1, we
have

∞

∑
i=1

|xiyi| ≤ ∥x∥p ∥y∥q .

Theorem 1.3 (Minkowski’s inequality). For 1 ≤ p < ∞, we have

∥x+ y∥p ≤ ∥x∥p +∥y∥p .

Please refer to my MA4262 notes for proofs of Theorems 1.2 and 1.3. Minkowski’s
inequality (Theorem 1.3) looks like a generalisation of the triangle inequality to some ℓp

space, where 1 ≤ p < ∞. We will see in Example 1.16 that the inequality does not hold if
0 < p < 1 as it would violate the triangle inequality.

Example 1.16 (MA4211 AY24/25 Sem 2 Tutorial 2). Consider the space ℓp for 0< p< 1,
with ∥·∥p defined as usual. Which of the properties of a norm does ∥·∥p satisfy?
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Solution. We claim that ∥·∥p satisfies all properties of a norm in Definition 2.6 except the
triangle inequality. Verifying the other properties is easy. We have

∥(1,0)+(0,1)∥p = ∥(1,1)∥p = 21/p ≥ 2 = 1+1 = ∥(1,0)∥p +∥(0,1)∥p

so the triangle inequality is not satisfied. □

Example 1.17 (MA4211 AY24/25 Sem 2 Tutorial 1). Prove the reverse triangle inequality

|d (x,z)−d (z,y)| ≤ d (x,y) for all x,y,z in a metric space (X ,d) .

Solution. Recall the triangle inequality which states that

d (x,z)≤ d (x,y)+d (y,z) for x,y,z in a metric space (X ,d) .

So,

d (x,z)−d (z,y)≤ d (x,y) where we used the fact that the metric d is symmetric.

If d (x,z)− d (z,y) ≥ 0, then the result follows by taking absolute value; otherwise, we
now consider the case where d (x,z)< d (z,y). So,

d (x,y)≥ d (y,z)−d (x,z)> 0.

Taking absolute value again yields the desired result. □

1.2 Convergence, Completeness, and Topology

Definition 1.8 (convergence of sequence). Let xn be a sequence in R. We say that

xn → x if there exists x ∈ R such that lim
n→∞

d (xn,x) = 0.

One should recall from MA2108 that this is equivalent to saying that

for all ε > 0 there exists N ∈ N such that for all n ≥ N we have d (xn,x)< ε.

Definition 1.9 (continuous function). Let (X ,dX) and (Y,dY ) be metric spaces. We
say that f is continuous at x0 ∈ X if

for all ε > 0 there exists δ > 0 such that dX (x,x0)< δ implies dY ( f (x) , f (x0))< ε.

Theorem 1.4. Let (X ,dX) and (Y,dY ) be metric spaces and T : X → Y be a map.
Then,

T is continuous if and only if xn → x implies T (xn)→ T (x) .
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Definition 1.10 (isometry). Let (X ,dX) and (Y,dY ) be metric spaces and T : X →Y .
We say that

T is an isometry if dX (x1,x2) = dY (T (x1) ,T (x2)) .

Definition 1.11 (isometric spaces). If there exists a bijective isometry T between
two metric spaces X and Y , then we say that X and Y are isometric.

Definition 1.12 (open and closed intervals). Let

(a,b) and [a,b] denote the open interval and closed interval in R respectively.

Definition 1.13 (open and closed balls). Define

B(x,r) = {y ∈ Rn : d (x,y)< r} denote the open ball in Rn

B(x,r) = {y ∈ Rn : d (x,y)≤ r} denote the closed ball in Rn

Here, each ball is centred at x and is of radius r.

Definition 1.14 (open set). A subset A ⊆ X is open if

for all x ∈ A there exists r > 0 such that B(x,r)⊆ A.

Definition 1.15 (closed set). A subset of a metric space S ⊆ X is closed if

its complement Sc is open.

Example 1.18 (MA4211 AY24/25 Sem 2 Tutorial 2). Show that the closed unit ball of a
normed linear space is closed.

Solution. Let (X ,∥·∥) be a normed space. Define the closed unit ball as follows:

B(0,1) = {x ∈ X : ∥x− y∥ ≤ 1 where y ∈ X}

It suffices to show that B(0,1) contains all of its limit points. Let xn ∈ B(0,1) be such
that xn → x. Since xn converges, then for all ε > 0, there exists N ∈ N such that

for all n ≥ N we have ∥x− xn∥< ε

By the triangle inequality,

∥x− y∥ ≤ ∥x− xn∥+∥xn − y∥< 1+ ε.

Since ε > 0 can be made sufficiently small, we see that ∥x− y∥ ≤ ∥xn − y∥ ≤ 1. We
conclude that ∥x∥ is contained in B(0,1), or to be more explicit, the limit point of xn is
contained in the closed unit ball, making B(0,1) a closed set. □
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Definition 1.16 (topology). Given a set X , a topology T on X is a collection of
subsets of X satisfying the following properties:

(i) /0,X ∈ T

(ii) T is closed under arbitrary unions

(iii) T is closed under finite intersection

Definition 1.17 (limit point). In a topological space, a point x is a limit point of
a sequence xn if for every neighbourhood of x, there exists N ∈ N such that for all
n ≥ n, xn belongs to that neighbourhood.

Definition 1.18 (continuous function). If f : X → Y is a function between two
topological spaces X and Y , then f is continuous if the pre-image of every open set
in Y is open in X .

Example 1.19 (MA4211 AY24/25 Sem 2 Homework 1). Let X and Y be normed linear
spaces over the same field F and having norms ∥·∥1 and ∥·∥2 respectively. For (x,y) ∈
X ×Y , define

∥(x,y)∥= ∥x∥1 +∥y∥2 .

Show that this defines a norm on X ×Y and that the projection maps

π1 : (x,y) 7→ x and π2 : (x,y) 7→ y are continuous.

Solution. Note that

∥(0,0)∥= ∥0∥1 +∥0∥2 = 0

and conversely, if ∥(x,y)∥ = 0, then ∥x∥1 + ∥y∥2 = 0. Since the 1-norm and 2-norm are
non-negative, then ∥x∥1 = ∥y∥2 = 0, so ∥·∥ is positive-definite.

Non-negativity and homogeneity of ∥·∥ is clear. Lastly,

∥(x1 + x2,y1 + y2)∥= ∥x1 + x2∥1 +∥y1 + y2∥2

≤ ∥x∥1 +∥x∥2 +∥y∥1 +∥y2∥2 since ∥·∥1 and ∥·∥2 satisfy triangle inequality

= ∥x1∥+∥y1∥+∥x2∥2 +∥y2∥2

= ∥(x1,y1)∥+∥(x2,y2)∥

so ∥·∥ satisfies the triangle inequality. As such, ∥·∥ defines a norm on X ×Y .

We wish to prove for every ε > 0, there exists δ > 0 such that

∥(x,y)− (x0,y0)∥< δ implies ∥π1 (x,y)−π1 (x0,y0)∥< ε.

We have

∥π1 (x,y)−π1 (x0,y0)∥= ∥x− x0∥1 ≤ ∥x− x0∥+∥y− y0∥2 < δ

so π1 is a continuous map. Similarly, π2 is a continuous map. □
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Definition 1.19 (closure). Let X be a topological space. For A ⊆ X , the closure of
A, denoted by cl(A) or A, is defined as follows:

A = A∪{limit points of A}

Definition 1.20 (dense set). Let X be a topological space. If D ⊆ X such that

D = X then D is dense in X .

Example 1.20 (MA4211 AY24/25 Sem 2 Homework 1). Suppose that (X ,ρ) and (Y,d)
are metric spaces and A is a dense subset of X . Show that if

F : X → Y and G : X → Y are two continuous functions such that F = G on A then F = G on X .

Solution. Since A is a dense subset of X , we take some sequence xn in A such that xn → x
in (X ,ρ). As F and G are continuous, we have

xn
ρ−→ x implies F (xn)

d−→ F (x) and G(xn)
d−→ G(x) .

Since xn ∈ A for all n ∈ N, then F (xn) = G(xn), i.e. these sequences are the same. These
two sequences converge in (Y,d), i.e.

F (x) = lim
n→∞

F (xn) and G(x) = lim
n→∞

G(xn) .

By the unqiueness of limits, we must have F (x) = G(x). As this holds for all x ∈ X , then
F = G on X . □

Definition 1.21 (separable space). A topological space is separable if it has a count-
able dense subset.

Theorem 1.5. Let 1 ≤ p < ∞. Then, ℓp is separable.

Proof. Define X ⊆ ℓp to be the collection of sequences of the form

(x1,x2, . . . ,xn,0,0, . . .) where xi ∈Q.

As X is a countable union of countable sets, X is countable. Let y ∈ ℓp and ε > 0 be
arbitrary. That is,

∞

∑
i=1

|yi|p < ∞.

Also, there exists n ∈ N such that

∞

∑
i=n+1

ε p

2
.
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Since Q is dense in R, we can choose x ∈ X such that

n

∑
i=1

|yi − xi|p <
ε p

2
.

Then,

∥y− x∥p
p =

n

∑
i=1

|yi − xi|p +
∞

∑
i=n+1

|yi|p <
ε p

2
+

ε p

2
= ε

p.

Taking the pth root, we obtain d (x,y) = ∥x− y∥p < ε .

Theorem 1.6. ℓ∞ is not separable.

Proof. Let y ∈ R∞ be a sequence of 0s and 1s. Define z ∈ R to be as follows:

z =
y1

2
+

y2

22 +
y3

23 + . . . so we infer that 0 ≤ z ≤ 1.

Because there are uncountably many real numbers in [0,1], it follows there are uncount-
ably many distinct sequences y ∈ {0,1}N. Denote this uncountable family by Y ⊂ ℓ∞.
Note that for any two distinct sequences

y = (y1,y2,y3, . . .) y′ =
(
y′1,y

′
2,y

′
3, . . .

)
∈ Y,

there is at least one index i such that yi ̸= y′i. Because each coordinate is either 0 or 1, at
index i, we have|yi − y′i|= 1. Hence,∥∥y− y′

∥∥
∞
= sup

n∈N

∣∣yn − y′n
∣∣≥ 1.

In fact, it is exactly 1 if the two sequences differ in at least one place (and cannot exceed 1
because each coordinate difference is 0 or 1). Around each y ∈ Y , consider the open ball
B(y,1/3) of radius 1/3. Since any two distinct y,y′ are at distance ∥y− y′∥

∞
= 1, their

balls B(y,1/3) and B(y′,1/3) cannot overlap. In other words, these balls are pairwise
disjoint.

Suppose on the contrary that D ⊆ ℓ∞ is a countable dense set. Then, for each y ∈ Y ,
B(y,1/3) must contain at least one point of D. However, there are uncountably many
such disjoint balls B(y,1/3) since Y is uncountable. A single countable set D cannot
meet each of these uncountably many disjoint balls in a distinct point. This leads to a
contradiction.

Definition 1.22 (Cauchy sequence). A sequence xn in a metric space X is Cauchy
if

for all ε > 0 there exists N ∈ N such that for all m,n ≥ N we have d (xm,xn)< ε.

Proposition 1.1. Every convergent sequence is Cauchy.
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Remark 1.1. The converse of Proposition 1.1 is not true, i.e. not every Cauchy
sequence is convergent.

Definition 1.23 (complete metric space). A metric space is called complete if every
Cauchy sequence in the space converges.

Example 1.21. ℓp and ℓ∞ are complete.

Example 1.22. The space of continuous functions on [a,b]

C [a,b] equipped with the norm d∞ ( f ,g) = sup
x∈[a,b]

| f (x)−g(x)| is complete.

However, for any 1 ≤ p < ∞,

C [a,b] equipped with the norm dp ( f ,g) =
(∫ b

a
| f (x)−g(x)|p dx

)1/p

is not complete.

Having said that, the completion of this is denoted by Lp [a,b].

Example 1.23 (MA4211 AY24/25 Sem 2 Tutorial 1). Show that the limits of Cauchy
sequences in a complete metric space are unique.

Solution. Let xn be a Cauchy sequence in a complete metric space. Suppose xn has two
limits x and y. Then, for all ε > 0, there exist N1,N2 ∈ N such that

for all n ≥ N1 we have |xn − x|< ε

2
and for all n ≥ N2 we have |xn − y|< ε

2
.

By the triangle inequality,

|x− y| ≤ |xn − x|+ |xn − y|< ε.

Since ε can be made arbitrarily small, then x = y, i.e. the limits of the Cauchy sequence
are the same. □

Example 1.24 (MA4211 AY24/25 Sem 2 Tutorial 1). Let

(X ,d) and (Y,ρ) be metric spaces and suppose f : X → Y is uniformly continuous.

Prove that under f , the image of every Cauchy sequence is a Cauchy sequence.

Solution. Since f : X → Y is uniformly continuous, for all ε > 0, there exists δ > 0 such
that for all x,y ∈ X such that

d (x,y)< δ we have ρ ( f (x) , f (y))< ε.

Let xn be a Cauchy sequence in the metric space (X ,d). Then, for all ε > 0, there exists
N ∈ N such that for all m,n ≥ N, we have d (xm,xn) < δ . Hence, ρ ( f (xm) , f (xn)) <

ε . □
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Theorem 1.7 (completion of metric space). Every metric space can be completed,
and the completion is unique up to isometry.

We first state a rough proof sketch of Theorem 1.7 before formally proving it. Given
a metric space (X ,d), we can construct a new metric space

(
X̃ , d̃

)
. Then, there exists

W ⊆ X̃ such that X is isometric to W and W = X̃ . So, X̃ is complete and X̃ is unique up
to isometry.

Proof. Let X be a metric space. Suppose xn and yn be Cauchy sequences of X . We say
that

xn ∼ yn if and only if lim
n→∞

d (xn,yn) = 0.

Define X̃ to be the set of equivalence clases determined by ∼. We write xn ∈ X̃ . Then,

d̃ (x̃, ỹ) = lim
n→∞

d (xn,yn) where xn,yn ∈ X .

By applying the triangle inequality twice, we obtain

d (xn,yn)≤ d
(
xn,x′n

)
+d
(
x′n,yn

)
≤ d

(
xn,x′n

)
+d
(
x′n,y

′
n
)
+d
(
y′n,yn

)
Also, by applying the triangle inequality, we have

d
(
x′n,y

′
n
)
≤ d

(
x′n,xn

)
+d (xn,yn)+d

(
yn,y′n

)
.

We claim that d (xn,yn) is a Cauchy sequence. To see why, let ε > 0 be arbitrary. Recall
that xn and yn are both Cauchy sequences. So, there exists N ∈N such that for all m,n≥N,
we have

d (xn,xm)< ε and d (yn,ym)< ε.

Then,

d (xn,yn)≤ d (xn,xm)+d (xm,yn)

≤ d (xn,xm)+d (xm,ym)+d (ym,yn)

Let x ∈ X and consider the infinite sequence (x,x, . . .). This sequence belongs to some
element of X̃ , so we call it x̃. Define ϕ : X → X̃ via ϕ (x) = x̃. We also define W = ϕ (X).
Then,

d̃ (ϕ (x) ,ϕ (y)) = d̃ (x̃, ỹ) = lim
n→∞

d (xn,yn) = lim
n→∞

d (x,y) = d (x,y) .

Let x̃ ∈ X̃ and consider xn ∈ x̃. Then, for all ε > 0, there exists N ∈ N such that

d (xn,xN)<
ε

2
for all n ≥ N.
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Now, consider the sequence (xN ,xN , . . .), so x̃N ∈W . As such,

d̃ (x̃, x̃N) = lim
n→∞

d (xn,xN)≤
ε

2
< ε.

This shows that W is dense in X̃ .

Next, let x̃n be a Cauchy sequence of elements in X̃ . Since W is dense in X̃ , for each
n ∈ N, there exists w̃n ∈W such that d̃ (x̃n, w̃n)< 1/n. Hence,

d̃ (w̃m, w̃n)≤ d̃ (w̃m, x̃m)+ d̃ (x̃m, x̃n)+ d̃ (x̃n, w̃n)

<
1
m
+ d̃ (x̃m, x̃n)+

1
n

Hence, w̃n is Cauchy. For each w̃n, define wn ∈ X by wn = ϕ−1 (w̃n). Since ϕ is an
isometry, then wn is Cauchy. Let wn ∈ X̃ . Then,

d̃ (x̃n, x̃)≤ d̃ (x̃n, w̃m)+d (w̃m, x̃)

<
1
n
+d (w̃m, x̃)

So,

d̃ (w̃m, x̃) = lim
n→∞

d (wm,wn) .

As such, the sequence wn is Cauchy, which implies

lim
n→∞

d̃ (x̃n, x̃) = 0 or equivalently x̃n → x̃.

Finally, we need to argue that Y is another complete metric space and there is an isometric
embedding f : X → Y with f (X) dense in Y , then Y is isometric to X̃ . Concretely, each
Cauchy sequence xn in X gives a Cauchy sequence f (xn) in Y . Since Y is complete, then
f (xn) converges to some point in Y . Define a map ψ : X̃ → Y by sending x̃ to the limit of
f (xn) in Y . ψ is well-defined, isometric and surjective by the density of f (X) in Y . We
conclude that X̃ is unique up to isometry.

Example 1.25 (continuous extension theorem; MA4211 AY24/25 Sem 2 Tutorial 1).
1 Suppose W is a dense subset of a metric space X and f is a uniformly continuous
function from W into some complete metric space Y . Prove that f has a unique continuous
extension to X . That is,

there exists a unique continuous function F : X → Y such that F (w) = f (w) for all w ∈W.

Solution. Since W is dense in X , there exists a sequence {wn}∞

n=1 ⊆W such that wn → x in
X . We first show that { f (wn)} is a Cauchy sequence in Y . Since f : W → Y is uniformly
continuous, then for every ε > 0, there exists δ > 0 such that for all u,v ∈W , we have

dX (u,v)< δ implies dY ( f (u) , f (v))< ε.

1As remarked by Tianle, this was taken from Rudin’s Principles of Mathematical Analysis p. 99 Ques-
tion 11.



1.2. CONVERGENCE, COMPLETENESS, AND TOPOLOGY 17

For m,n large enough, suppose wm and wn are within δ/2 of x, so

dX (wm,wn)≤ dX (wm,x)+dX (wn,x)<
δ

2
+

δ

2
= δ by the triangle inequality.

Hence,

dY ( f (wm) , f (wn))< ε.

As such, { f (wn)} is a Cauchy sequence. As Y is a complete metric space, then the limit
of the sequence { f (wn)} exists in Y . Now, we define

F : X → Y such that F (x) = lim
n→∞

f (wn) .

Note that F extends f . To see why, if x ∈W , we can take the constant sequence wn = x,
so wn → x, which implies

F (x) = lim
n→∞

f (wn) = lim
n→∞

f (x) = f (x) .

We then show that F is continuous at x. Suppose x,x′ ∈ X such that dX (x,x′) < δ/3.
Then, choose sequences wn → x and w′

n → x′n. For large n, we have

dX (wn,x)<
δ

3
and dX

(
w′

n,x
′)< δ

3
.

By the triangle inequality, dX (wn,w′
n)< δ . As f : W → Y is uniformly continuous, then

dY ( f (wn) , f (w′
n))< ε for large n. As F extends f , it follows that dY (F (x) ,F (x′))< ε2.

Lastly, we prove that the extension is unique. Suppose there exists another continuous
map F̃ : X → Y such that F̃ (w) = f (w) for all w ∈W . Since F̃ is continuous, then

lim
n→∞

F̃ (wn) = F̃
(

lim
n→∞

wn

)
= F̃ (x) but also lim

n→∞
F̃ (wn) = lim

n→∞
f (wn) = F (x)

so F̃ = F . The result follows. □

2Here, we are proving a stronger result, which is that f has a unique uniformly continuous extension to
X .





Chapter 2
Normed Spaces and Banach Spaces

2.1 Vector Spaces

Definition 2.1 (vector space). A vector space is a set V together with a field F
equipped with two operations (addition + and multiplication ·)

+ : V ×V →V and · : F×V →V

satisfying the following properties

(i) + is commutative

(ii) + is associative

(iii) There exists an additive identity

(iv) There exists an additive inverse

(v) · is associative

(vi) There exists a multiplicative iden-
tity

(vii) The distributivity properties hold

In this course, we are interested in infinite-dimensional vector spaces. Next, we are
interested in continuous functions over R. Recall that the set of continuous functions
on [a,b] over R is denoted by C [a,b]. We define the addition and scalar multiplication
functions by the obvious way — that is for any f ,g ∈ C [a,b], we have

( f +g)(x) = f (x)+g(x) and (α f )(x) = α · f (x) ,

where α ∈ R.

Example 2.1. ℓp for 1 ≤ p ≤ ∞ is a vector space.

Example 2.2. R∞ is a vector space.

Definition 2.2 (linear combination and span). A linear combination is a vector of
the form

v = α1v1 + . . .+αnvn for all αi ∈ F and vi ∈V.

Given a set of vectors S, its span, denoted by span(S), is the set of all linear combi-
nations of its elements.

19
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Definition 2.3 (linear independence). A set of vectors v1, . . . ,vn is linearly inde-
pendent if for any α1, . . . ,αn ∈ F, we have

α1v1 + . . .+αnvn = 0 implies α1 = . . .= αn = 0.

Definition 2.4 (dimension). Let V be a vector space. If there exists S ⊆V such that
|S| < ∞ and span(S) = V , then V is finite-dimensional. Otherwise, V is infinite-
dimensional.

Example 2.3 (infinite-dimensional vector spaces). We give some examples of infinite-
dimensional vector spaces. For 1 ≤ p < ∞, ℓp (R), which denotes the space of real se-
quences an such that

∞

∑
n=1

|an|p converges is infinite-dimensional.

ℓ∞ (R), which denotes the space of bounded real sequences equipped with the supremum
norm, is also infinite-dimensional. Lastly, the space of polynomials with real coefficients,
denoted by R [x], is infinite-dimensional.

Definition 2.5 (basis). If B is an independent spanning set for a finite-dimensional
vector space V , then we say that dim(V ) = |B|. Such a set B is a basis. More
formally, we call it a Hamel basis.

In Definition 1.4 on the definition of a function space, we briefly discussed the defini-
tion of a norm. We also talked about the p-norm in Definition 1.6. Now, we will formally
introduce p-norms.

Definition 2.6 (norm). Given a vector space V , a norm on V is a function ∥·∥ : V →
R satisfying the following properties for any u,v ∈V :

(i) Non-negativity: ∥v∥ ≥ 0 for all v ∈V

(ii) Positive-definiteness: ∥v∥= 0 if and only if v = 0

(iii) Homogeneity: For any α ∈ F, we have ∥αv∥= |α|∥v∥

(iv) Triangle inequality: ∥u+v∥ ≤ ∥u∥+∥v∥

It is important to note that a metric space is a space where we wish to measure dis-
tance, but a normed space is a space where we wish to measure the Euclidean distance
between two vectors. We then discuss some properties of normed spaces.

Definition 2.7. Let u,v,x,y,z be vectors in a normed space and α be a real-valued
scalar. Then, we have the following:

(i) d (u,v) = ∥u−v∥, which defines the metric induced by the norm, also known
as the norm-induced metric
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(ii) We have the familiar p-norm

∥x∥p =

(
∞

∑
i=1

|xi|p
)1/p

(iii) d (x+ z,y+ z) = d (x,y), which denotes translation invariance

(iv) d (αx,αy) = |α|d (x,y), which denotes the homogeneity of the metric

Definition 2.8 (Banach space). A normed space where the space is complete with
respect to the induced metric is called a Banach space.

Example 2.4 (MA4211 AY24/25 Sem 2 Tutorial 2). Consider the space of continuously
differentiable functions C1 ([a,b]) with the C1-norm

∥ f∥= sup
a≤x≤b

| f (x)|+ sup
a≤x≤b

∣∣ f ′ (x)∣∣ .
Prove that C1 ([a,b]) is a Banach space with respect to the given norm.

Solution. We first show that ∥·∥ is indeed a norm. As usual, non-negativity, positive-
definiteness and homogeneity are obvious. It suffices to prove that it satisfies the triangle
inequality. We have

∥ f +g∥= sup
a≤x≤b

| f (x)+g(x)|+ sup
a≤x≤b

∣∣ f ′ (x)+g′ (x)
∣∣

≤ sup
a≤x≤b

| f (x)|+ sup
a≤x≤b

|g(x)|+ sup
a≤x≤b

∣∣ f ′ (x)∣∣+ sup
a≤x≤b

∣∣g′ (x)∣∣
= sup

a≤x≤b
| f (x)|+ sup

a≤x≤b

∣∣ f ′ (x)∣∣+ sup
a≤x≤b

|g(x)|+ sup
a≤x≤b

∣∣g′ (x)∣∣
= ∥ f∥+∥g∥

Next, let fn be a Cauchy sequence in C1 ([a,b]). Then, for every ε > 0, there exists N ∈N
such that for all m,n ≥ N, we have

∥ fm − fn∥= sup
a≤x≤b

| fm (x)− fn (x)|+ sup
a≤x≤b

∣∣ f ′m (x)− f ′n (x)
∣∣< ε.

As C1 ([a,b]) equipped with the supremum norm is a Banach space, then fn and f ′n con-
verge uniformly to some continuous functions f and g respectively. By the Fundamental
Theorem of Calculus, we have

fn (x)− fn (a) =
∫ x

a
f ′n (t) dt.

Taking the limit as n → ∞, we have

f (x)− f (a) =
∫ x

a
g(t) dt.

Since fn → f uniformly and f ′n → g uniformly, then ∥ fn − f∥ → 0, which implies every
Cauchy sequence in C1 ([a,b]) converges to a limit in C1 ([a,b]). □
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Example 2.5 (MA4211 AY24/25 Sem 2 Tutorial 3). For f : [0,1]→ R, let

∥ f∥= sup
x∈[0,1]

{
x2 | f (x)|

}
.

(a) Prove that ∥·∥ defines a norm on the linear space C ([0,1]) of continuous functions
f : [0,1]→ R.

(b) Prove that C ([0,1]) is not complete with respect to this norm.

Solution.

(a) We will only prove that ∥·∥ satisfies the triangle inequality. Note that

∥ f +g∥= sup
x∈[0,1]

{
x2 | f (x)+g(x)|

}
≤ sup

x∈[0,1]

{
x2 | f (x)|+ x2 |g(x)|

}
by the triangle inequality

≤ sup
x∈[0,1]

{
x2 | f (x)|

}
+ sup

x∈[0,1]

{
x2 |g(x)|

}
by the identity sup(A+B)≤ sup(A)+ sup(B)

= ∥ f∥+∥g∥

Hence, ∥·∥ defines a norm.

(b) Let { fn}n∈N be a Cauchy sequence in C ([0,1]). It suffices to show that { fn}n∈N
does not converge to some value in this space. Let

fn (x) =

0 if 0 ≤ x < 1/n;

1 if x ≥ 1/n.

Then, { fn}n∈N is Cauchy. To see why, let ε > 0 be arbitrary. In particular, we can
set ε = 1. Then, there exists N ∈ N such that for all m,n ≥ N, we have

∥ fm (x)− fn (x)∥= sup
x∈[0,1]

{
x2 | fm (x)− fn (x)|

}
≤ 1.

However,

fn → f =

0 if x = 0;

1 if x > 0
pointwise.

Clearly, f (x) is not continuous at x = 0. As such, there is no limit of { fn}n∈N in
C [0,1], showing that the space is not complete.

Example 2.6 (MA4211 AY24/25 Sem 2 Tutorial 3). Let ∥·∥1 and ∥·∥2 be two norms on
a linear space X . We say that

∥·∥2 is stronger than ∥·∥1 if for any sequence {xn}n∈N ⊆ X we have ∥xn∥2 → 0 implies ∥xn∥1 → 0.

Show that ∥·∥2 is stronger than ∥·∥1 if and only if there exists a constant C > 0 such that
∥x∥1 ≤C∥x∥2 for all x ∈ X .
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Solution. For the forward direction, suppose no such C exists. Then, for all n ∈ N, we
can always find a sequence {xn}n∈N ⊆ X such that

∥xk∥2 = 1 but ∥xk∥1 > k.

Define yk = xk/k, so

∥yk∥2 =
∥xk∥2

k
=

1
k

but ∥yk∥1 =
∥xk∥1

k
>

1
k
.

Since ∥·∥2 is stronger than ∥·∥1, then the result follows.

For the reverse direction, since ∥x∥1 ≤ C∥x∥2, where ∥xn∥2 → 0, by the squeeze theo-
rem, the result follows. □

Example 2.7 (MA4211 AY24/25 Sem 2 Tutorial 3). Suppose X is a normed linear space
with norm ∥·∥. Define

ρ =
∥x∥

1+∥x∥
.

(a) Define r : X ×X → R by
r (x,y) = ρ (x− y) .

Prove that r is a metric on X .

(b) Define the diameter of X with respect to a metric d by

diam(X) = sup
x,y∈X

d (x,y) .

What is the diameter of X with respect to the metric r (x,y) = ρ (x− y)?

(c) Prove that ∥xn − x∥→ 0 as n → ∞ if and only if (xn,x)→ 0 as n → ∞.

Solution.

(a) Again, we will only prove that r satisfies the triangle inequality as the other prop-
erties are deemed trivial. Let x,y,z ∈ X . Then,

ρ (x,y)+ρ (y,z) =
∥x− y∥

1+∥x− y∥
+

∥y− z∥
1+∥y− z∥

≥ ∥x− y∥
1+∥x− y∥+∥y− z∥

+
∥y− z∥

1+∥x− y∥+∥y− z∥
by the triangle inequality

=
∥x− y∥+∥y− z∥

1+∥x− y∥+∥y− z∥

≥ ∥x− z∥
1+∥x− y∥+∥y− z∥

(b) We have

diam(X) = sup
x,y∈X

ρ (x,y) = sup
x,y∈X

∥x− y∥
1+∥x− y∥

= sup
x,y∈X

(
1− 1

1+∥x− y∥

)
= 1.
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(c) The forward direction is trivial. For the reverse direction, if r (xn,x)→ 0, then

∥xn − x∥
1+∥xn − x∥

→ 0

so ∥xn − x∥→ 0.

Theorem 2.1. A subspace Y of a Banach space X is complete if and only if it is
closed in X .

Theorem 2.1 can be reformulated as saying that a subspace of a Banach space X is a
Banach space if and only if X is closed. We now prove it.

Proof. We first prove the forward direction. Suppose Y is complete. Let y ∈ Y . Then,
there exists a subsequence yn ⊆ Y such that

lim
n→∞

yn = y.

So, yn is Cauchy and in fact, yn converges in Y . So, Y is closed in X .

For the reverse direction, suppose Y is closed in X . Let yn be Cauchy in Y . Since Y ⊆ X
and X is complete, then

lim
n→∞

yn = y.

So, y ∈ Y = Y .

Definition 2.9 (convergence). If X is a normed space and xn is a sequence of ele-
ments in X , then we can define

sn =
n

∑
k=1

xk.

If there exists s ∈ X such that lim
n→∞

∥sn − s∥= 0, then we write

s =
∞

∑
k=1

xk.

Note that if
∞

∑
k=1

∥xk∥< ∞, the series is said to be absolutely convergent.

Example 2.8 (MA4211 AY24/25 Sem 2 Tutorial 2). Let Y be a closed subspace of a
normed linear space (X ,∥·∥). Let X/Y denote the quotient space (elements of X/Y are
additive cosets). For x+Y ∈ X/Y , define the quotient norm ∥·∥q by

∥x+Y∥q = inf
y∈Y

∥x− y∥ .

Show that ∥·∥q is a norm on X/Y . Also, if X is a Banach space, show that X/Y is a
Banach space under the quotient norm.
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Solution. Clearly, the norm satisfies positive-definiteness, non-negativity and homogene-
ity. We prove that it satisfies the triangle inequality. We have

∥x+Z∥q = inf
z∈Z

∥x− z∥

≤ inf
z∈Z

∥(x− y)+(y− z)∥

= ∥x− y∥+ inf
z∈Z

∥y− z∥

= inf
y∈Y

∥x− y∥+ inf
z∈Z

∥y− z∥

≤ ∥x+Y∥q +∥y+Z∥q

so ∥·∥q is a norm on X/Y .

Next, suppose X is a Banach space. We wish to prove that X/Y is also a Banach space, i.e.
every Cauchy sequence in X/Y converges to a limit in X/Y (norm on X/Y was established
earlier). For each x ∈ X , let x̂ = x+Y ∈ X/Y . Consider x̂n such that

∞

∑
n=1

∥x̂n∥ converges.

We have for every n∈N, there exists xn ∈ x̂n such that ∥xn∥≤ 2∥x̂n∥. Since the mentioned
sum converges, then

∞

∑
n=1

∥xn∥ converges.

As X is Banach, then

∞

∑
n=1

xn converges in X to some x ∈ X .

From definition of the norm in X/Y , it follows that

∞

∑
n=1

x̂n converges to x̂ in X/Y.

We conclude that X/Y is Banach as well. □

Definition 2.10 (c0). Let F be a field. The space c0 is the set of all real or complex
sequences that converge to zero, formally defined as follows:

c0 =
{
{xn}n∈N ∈ FN : lim

n→∞
xn = 0

}
where F is either R or C

The space c0 is equipped with the supremum norm, i.e.∥∥{xn}n∈N
∥∥

∞
= sup

n∈N
|xn| .

With this norm, c0 is a Banach space because it is a normed space and it is complete. For
the first property, it is clear that the supremum norm satisfies the properties of a norm.
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As for completeness, if
{

x(k)n

}
n∈N

in c0 is a Cauchy sequence in the supremum norm,

then it must converge uniformly to a sequence {xn}n∈N. Since each term of a Cauchy
sequence of elements in c0 must go to zero, the limit sequence also belongs to c0, ensuring
completeness.

Example 2.9 (MA4211 AY24/25 Sem 2 Homework 1). Much of our motivation comes
from wanting to do Linear Algebra in infinite dimensions. In order to compute Ax, where
A is an infinite matrix and x is an infinite sequence, we need expressions like

∞

∑
k=1

akxk to converge.

Even better, we would like these to converge absolutely, i.e.

∞

∑
k=1

|akxk|< ∞.

In this problem, we investigate what conditions are needed to guarantee convergence.

(a) Give an example of x,y ∈ R∞ such that

∞

∑
k=1

|xkyk| does not converge.

(b) Give an example of x,y ∈ R∞ \ ℓ∞ such that

∞

∑
k=1

|xkyk| does not converge.

(c) Prove or disprove: If x ∈ R∞ \ ℓ∞, then there exists y ∈ ℓ1 such that

∞

∑
k=1

|xkyk| does not converge.

(d) Recall Hölder’s inequality (Theorem 1.2): if 1 ≤ p,q < ∞ such that 1/p+1/q = 1,
then

∞

∑
k=1

|xkyk| ≤ ∥x∥p ∥y∥q .

Prove that this inequality still holds if we take q = ∞ and use the convention that
1
∞
= 0.

(e) Prove or disprove: If p,q ∈ [1,∞] such that 1/p+1/q ≥ 1 and x ∈ ℓp, y ∈ ℓq, then

∞

∑
k=1

|xkyk| converges.

(f) Prove or disprove: If p,q ∈ [1,∞] such that 1/p+ 1/q < 1, then there exist x ∈
ℓp,y ∈ ℓq such that

∞

∑
k=1

|xkyk| does not converge.



2.1. VECTOR SPACES 27

Solution.

(a) Let x = y = (1, . . .) be two sequences of ones, so

∞

∑
k=1

|xkyk|=
∞

∑
k=1

1 which is divergent.

(b) Let xk = yk = k for all k ∈ N. Then,

∞

∑
k=1

|xkyk|=
∞

∑
k=1

k2 which does not converge.

(c) Yes. Recall that R∞ \ ℓ∞ denotes the set of unbounded sequences. Let xk = 2k and
yk = 1/2k, so

∞

∑
k=1

|xkyk|=
∞

∑
k=1

1 which does not converge.

(d) If q = ∞, then p = 1, so we wish to prove that

∞

∑
k=1

|xkyk| ≤

(
∞

∑
k=1

|xk|
)
· sup

k∈N
|yk| .

This is obvious because

∞

∑
k=1

|xkyk|= |x1y1|+ |x2y2|+ . . .≤
∣∣∣∣x1 · sup

k∈N
|yk|
∣∣∣∣+ ∣∣∣∣x2 · sup

k∈N
|yk|
∣∣∣∣+ . . .= sup

k∈N
|yk|

∞

∑
k=1

|xk|

(e) Recall Example 1.14, which mentioned that if 1 ≤ p ≤ q, then ℓp ⊆ ℓq. Hence,
ℓ1 ⊆ ℓq. It suffices to prove that if x,y ∈ ℓ1, then

∞

∑
k=1

|xkyk| converges.

This holds because

∞

∑
k=1

|xkyk| ≤

(
∞

∑
k=1

|xk|
)(

∞

∑
k=1

|yk|
)

As such, the statement is true.

(f) The statement is true1. We shall consider three cases.

• Case 1: Suppose p = q = ∞. Then, we can take x = y to be the constant
sequence 1. As such,

∞

∑
k=1

|xkyk|=
∞

∑
k=1

1 which diverges.

1We credit the solution to Lou Yi.
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• Case 2: Suppose exactly one of p or q is ∞. Say p = ∞, then 1/q < 1. Let x
be the constant sequence 1 and y be the sequence 1/k. Then, x ∈ ℓ∞ and

∞

∑
k=1

∣∣∣∣1k
∣∣∣∣p = ∞

∑
k=1

1
kp .

Since 1/p < 1, then p > 1 so the series converges. However,

∞

∑
k=1

|xkyk|=
∞

∑
k=1

1 which does not converge.

• Case 3: Suppose 1 ≤ p,q < ∞. Since 1/p+1/q < 1, let

ε =
1
2

(
1− 1

p
− 1

q

)
.

Define
xk =

1
kε+1/p

and yk =
1

kε+1/q
.

Hence,

∞

∑
k=1

|xk|p =
∞

∑
k=1

1
kε+1/p

.

As 1+ ε p > 1, then x ∈ ℓp. A similar argument shows that y ∈ ℓq. However,

∞

∑
k=1

|xkyk|=
1

k2ε+1/p+1/q
=

∞

∑
k=1

1
k
.

This is precisely the harmonic series, which does not converge!.

Definition 2.11 (Schauder basis). If X is a normed space and ek is a sequence of
elements of x such that for all x ∈ X , there exists a unique sequence of scalars an

such that

lim
n→∞

∥∥∥∥∥ n

∑
k=1

akek − x

∥∥∥∥∥= 0 then {e1, . . . ,en} is a Schauder basis.

In a slightly more general notion, a Schauder basis is also called a countable basis.

Definition 2.12 (partial order). A partial order ≤ on a set S is a binary relation that
satisfies the following properties:

(i) Reflexivity: a ≤ a

(ii) Transitivity: If a ≤ b and b ≤ b, then a ≤ c

(iii) Antisymmetry: If a ≤ b and b ≤ a, then a = b

Definition 2.13 (total order). A total order relation is a partial order in which every
element of the set is comparable with every other element of the set, i.e. if ≤ is a
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partial order on a set S, then

for any x,y ∈ S such that either x ≤ y or y ≤ x then ≤ is a total order on S.

Note that every total order is a partial order, but the converse does not hold.

Theorem 2.2 (Zorn’s lemma). If S is a partially ordered set such that every totally
ordered subset of S has an upper bound in S, then

there exists an element m ∈ S such that for all a ∈ S we have m ≥ a.

Theorem 2.3. Every vector space has a Hamel basis.

Proof. If V = {0}, then /0 is its basis. Suppose V ̸= /0. Let P be the set of linearly inde-
pendent subsets of V ordered by inclusion.

Let Sα be a totally ordered subset of P and define

M =
⋃
α

Sα .

Suppose v1, . . . ,vn ∈ M such that α1v1 +αnvn = 0 with not all αi = 0. Then, there exists
an α such that Sα contains all v1, . . . ,vn. By Zorn’s lemma (Theorem 2.2), Sα has a max-
imal element, say B.

Suppose on the contrary that B does not span V . Then, there exists v ∈ V such that
v ̸∈ span(B). So, B∪{v} is linearly independent but B ⊆ B∪{v}. This is a contradic-
tion. Hence, B spans V and is a Hamel basis. Since V was an arbitrary vector space, we
conclude that every vector space has a Hamel basis.

Lemma 2.1 (frame condition). Let x1, . . . ,xn be linearly vectors independent in X .
The set {x1, . . . ,xn} is a frame in X if there exist constants 0 < A ≤ B such that for
any scalars α1, . . . ,αn, we have

A
n

∑
i=1

|αi| ≤

∥∥∥∥∥ n

∑
i=1

αixi

∥∥∥∥∥≤ B
n

∑
i=1

|αi| .

Note that one part of the frame condition in Lemma 2.1 is obvious — by the triangle
inequality ,we have ∥∥∥∥∥ n

∑
i=1

αixi

∥∥∥∥∥= n

∑
i=1

|αi|∥xi∥ ≤ max
1≤i≤n

∥xi∥
n

∑
i=1

|αi|

As such,

setting B = max
1≤i≤n

∥xi∥ yields part of the desired result.
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2.2 Compactness
We first define sequential compactness (Definition 2.14). Note that in metric spaces,
compactness and sequential compactness are equivalent. This is a key property of metric
spaces, where the structure of the metric allows for this equivalence to hold.

Definition 2.14 (sequential compactness). Let X be a metric space. A subset K of
X is said to be sequentially compact if every sequence of elements in K contains a
subsequence that converges to an element in K.

Theorem 2.4 (Heine-Borel theorem). A subset of Rn is

compact if and only if it is closed and bounded.

Remark 2.1. In any metric space, a compact set is always closed and bounded.

Theorem 2.5 (Bolzano-Weierstrass theorem). Every bounded sequence in Rn has
a convergent subsequence.

Proof. Let xn be a bounded sequence in Rn. Then, there exists a positive constant M > 0
such that the sequence is contained in [−M,M]n = C0 Then, partition C0 into 2n smaller
cubes of side length M. By the pigeonhole principle, at least one of these subcubes, call
it C1, contains infinitely many points of the sequence.

From C1 (which has side length M), divide it again into 2n subcubes of side length M/2.
At least one of these subcubes contains infinitely many points of the sequence; call it C2.
Next, from C2 (side length M/2), divide it into 2n subcubes of side length M/4. Again, at
least one of these new subcubes contains infinitely many points; call it C3.

Continue the above process inductively. At the kth step, we will have a cube Ck of side
length M/2k−1. Subdivide Ck into 2n smaller cubes of side length M/2k. At least one of
these smaller cubes, denoted by Ck+1, contains infinitely many points of {xn}.

Hence, we obtain a nested sequence of closed cubes as follows:

C0 ⊇C1 ⊇C2 ⊇ . . .⊇Ck ⊇ . . . with side lengths decreasing to 0.

As each cube Ck contains infinitely many terms of the sequence, we can choose at least
one index nk such that xnk ∈Ck. We wish to construct a subsequence {xnk}. To ensure it is
well-defined (i.e. so that n1 < n2 < n3 < .. .), choose each index nk+1 to be strictly larger
than nk. This gives us a subsequence

{
xnk

}
.

Since
C0 ⊇C1 ⊇C2 ⊇ . . .⊇Ck ⊇ . . . ,
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each Ck is a closed cube whose diameter goes to 0 as k → ∞. More precisely,

the diameter of Ck is
√

n · M
2k−1 which tends to 0 as k goes to infinity.

As xnk ∈ Ck for each k, any two points xnk ,xnℓ eventually lie in the same small cube for
sufficiently large k, ℓ. Hence,

lim
k,ℓ→∞

∥xnk − xnℓ∥→ 0 which shows that xnk is a Cauchy subsequence in Rn.

∥xnk − xnℓ∥→ 0 as k, ℓ→ ∞,

As Rn is complete, then every Cauchy sequence converges to some limit point in Rn.
Therefore, the subsequence {xnk} converges and the proof is complete.

Example 2.10 (MA4211 AY24/25 Sem 2 Tutorial 3). Prove that K ⊆ Rn is sequentially
compact if and only if it is closed and bounded.

Solution. Suppose K is sequentially compact. Then, every sequence in K has a conver-
gent subsequence. So, K is bounded, otherwise there exists some unbounded sequence in
K which clearly does not have a convergent subsequence, contradicting sequential com-
pactness. Also, if a sequence in K converges, then its limit must be in K so K must be
closed. By the Heine-Borel theorem (Theorem 2.4), K is compact.

For the reverse direction, suppose K is compact. Then, by the Heine-Borel theorem (The-
orem 2.4), K is closed and bounded. By the Bolzano-Weierstrass theorem (Theorem 2.5),
K has a convergent subsequence. Since K is closed, the limit of every sequence is in K,
so K is sequentially compact. □

Theorem 2.6. If f : K → Y is continuous, then f (K) is compact.

Theorem 2.7 (Heine-Cantor theorem). If f : K → Y is continuous, where K is
compact, then f is uniformly continuous.

We now turn our attention to the extreme value theorem (Theorem 2.8), which ex-
tends the familiar result from Calculus and Real Analysis (MA2002 and MA2108, re-
spectively). This generalisation, originally attributed to Weierstrass, provides a broader
framework for understanding the attainment of extrema.

Theorem 2.8 (extreme value theorem). If f : K → R is continuous, where K is
compact, then f attains its maximum and minimum on K.

Lemma 2.2. Let X be a finite-dimensional normed space and let {e1, . . . ,en} be a
basis for X . Then, there exist 0 < A ≤ B such that

for all x ∈ X where x =
n

∑
i=1

αiei we have A
n

∑
i=1

|αi| ≤ ∥x∥ ≤ B
n

∑
i=1

|αi| .
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Proof. Define

S =

{
(α1, . . . ,αn) ∈ Rn :

n

∑
i=1

|αi|= 1

}
which is is closed and bounded, hence compact.

Note that S denotes the unit sphere in Rn, i.e. the boundary of the unit ball. Define

f : S → X where (α1, . . . ,αn) 7→
n

∑
i=1

αiei.

Let (α1, . . . ,αn) ,(β1, . . . ,βn) ∈ S. Then,

∥ f (α1, . . . ,αn)− f (β1, . . . ,βn)∥=

∥∥∥∥∥ n

∑
i=1

αiei −
n

∑
i=1

βiei

∥∥∥∥∥
=

n

∑
i=1

|αi −βi|∥ei∥

≤ max
1≤i≤n

∥ei∥
n

∑
i=1

|αi −βi|

Recall that ∥·∥ : X → R is continuous. Since S is compact and f is continuous, the com-
position ∥·∥ ◦ f is a continuous real-valued function on the compact set S. By the ex-
treme value theorem (Theorem 2.8), it achieves its minimum and maximum on S. Let
A = min∥ f∥ and B = max∥ f∥.

Then, let (β1, . . . ,βn) be a point in S where ∥ f∥ attains a minimum. Then,∥∥∥∥∥ n

∑
i=1

βiei

∥∥∥∥∥= A.

Since we cannot have all βi = 0 and {e1, . . . ,en} is linearly independent, then A > 0. The
proof pretty much follows from here.

Theorem 2.9. Every finite-dimensional normed space is a Banach space.

Theorem 2.10 (equivalence of norms). If X is a finite-dimensional vector space and
∥·∥a and ∥·∥b are norms on X , then there exist 0 < A ≤ B such that for all x ∈ X , we
have

A∥x∥a ≤ ∥x∥b ≤ B∥x∥a

Proof. Let xk be a Cauchy sequence in X , where X is a finite-dimensional vector space.
Let e1, . . . ,en be a basis for X . So, we can write

xk =
n

∑
i=1

αikei.

Fix i and consider the sequence αik, so k ∈ N. Now,∥∥xk −x j
∥∥≥ A

n

∑
i=1

∣∣αi j −αik
∣∣≥ A

∣∣αi j −αik
∣∣ which implies

∣∣αi j −αik
∣∣≤ 1

A

∥∥xk −x j
∥∥ .
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As such, αik is a Cauchy sequence, hence convergent. Call its limit αi, i.e.

lim
k→∞

αik = αi.

Define

x =
n

∑
i=1

αiei.

Then,

∥xk −x∥ ≤ B
n

∑
i=1

|αik −αi| .

Since αik is a Cauchy sequence, then xk → x and the result follows.

Theorem 2.11 (equivalence of norms). Let X be a finite-dimensional vector space
and let ∥·∥1 and ∥·∥2 be norms on X . Then, there exist constants 0 ≤ A < B such
that

A∥x∥2 ≤ ∥x∥1 ≤ B∥x∥2 for all x ∈ X .

Theorem 2.12 (Riesz’s lemma). Let Y and Z be subspaces of a normed space X ,
and suppose that Y is closed and is a proper subset of Z. Then for every θ ∈ (0,1),
there exists z ∈ Z such that

∥z∥= 1 and ∥z− y∥ ≥ θ for all y ∈ Y.

Example 2.11. Consider the normed space X = R2 equipped with the usual Euclidean
norm. Define the subspace

Y = {(x,0) : x ∈ R} which is the x-axis.

Also, let Z = R2. Clearly, Y is a closed proper subspace of Z. Now, take any θ with 0 <

θ < 1. A concrete choice by the Riesz’s lemma (Theorem 2.12) is the vector z = (0,1).
Then, ∥z∥= 1, and for any y = (x,0) ∈ Y , we have

∥z− y∥= ∥(0,1)− (x,0)∥= ∥(−x,1)∥=
√

x2 +1 ≥ 1.

Since 1 ≥ θ , this vector z satisfies ∥z− y∥ ≥ θ for all y ∈ Y .

Example 2.12 (MA4211 AY24/25 Sem 2 Tutorial 3). Let Y be a proper closed subspace
of a normed linear space X . The canonical projection of X onto X/Y is the map π : X →
X/Y defined by

π (x) = x+Y.

(a) Show that π is linear.

(b) Use the Riesz lemma to prove that ∥π∥= 1.

Solution.
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(a) For any k ∈ F, we have

π (kx1 + x2) = kx1 + x2 +Y = (kx1 +Y )+(x2 +Y ) = k (x1 +Y )+(x2 +Y ) = kπ (x1)+π (x2) .

Hence, π is linear.

(b) Recall that the norm of the quotient space is

∥x+Y∥= inf
y∈Y

∥x− y∥ ≤ ∥x∥ .

Also,

∥π∥= sup
∥x∥≤1

∥x+Y∥

Hence, if ∥x∥≤ 1, then ∥x+Y∥≤ 1, so taking the supremum over all ∥x∥≤ 1 yields
∥π∥ ≤ 1. By the Riesz lemma (Theorem 2.12), ∥π∥ ≥ 1, so the result follows.

2.3 Linear Operators
In the case of vector spaces and in particular, normed spaces, a mapping is called an
operator. Of special interest are operators which preserve the two algebraic operations of
a vector space, so we have the following definition of a linear operator (Definition 2.15):

Definition 2.15 (linear operator). A linear operator T is an operator such that the
domain D (T ) is a vector space and the range R(T ) lies in a vector space over the
same field such that for all x,y ∈ D (T ) and α ∈ F, we have

T (x+ y) = T (x)+T (y) and T (αx) = αT (x) .

Note that some authors may write T x in place of T (x) — this simplification is
standard in Functional Analysis.

Definition 2.15 expresses the fact that a linear operator T is a homomorphism of a
vector space (its domain) into another vector space (its codomain), i.e. T preserves the
two operations of a vector space in the following sense: on the left of each equation, we
first apply a vector space operation (addition or multiplication by a scalar respectively)
and then map the resulting vector into Y , whereas on the right, we first map x and y into
Y and then perform the vector space operations in Y , with the outcome being the same.
This property makes linear operators important.

The reader should vividly recall from MA2001 the concepts of range and nullspace. For a
linear operator T , we denote its range space or range using R(T ); its nullspace is denoted
by N (T ).

Example 2.13 (identity operator). For all x ∈ X , the identity operator

IX : X → X is defined by x 7→ x.

We also simply write I in place of IX , so I (x) = x.
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Example 2.14 (zero operator). For all x ∈ X , the zero operator

0 : X → Y is defined by x 7→ 0 (or equivalently 0x = 0).

Example 2.15 (differentiation). Let X denote the vector space of all polynomials on [a,b].
We may define a linear operator T on X by setting

T (x(t)) = x′ (t) for all x ∈ X .

Here, the prime symbol denotes differentiation with respect to t.

Example 2.16 (integration). A linear operator T from C [a,b] to itself can be defined by

T (x(t)) =
∫ t

a
x(u) du for all t ∈ [a,b] .

Example 2.17 (multiplication operator). Let X = C [a,b]. Another linear operator T from
X to itself is defined by

T (x(t)) = t (x(t)) .

Multiplication operators appear in Quantum Mechanics in various contexts, particularly
in the representation of position observables. The most relevant connection is in the
position operator. In the Schrödinger representation of quantum mechanics, the position
operator x̂ acts on wave functions ψ (x) as

(x̂ψ)(x) = xψ (x) .

Example 2.18 (dot product and cross product). The dot product · with one fixed factor
defines a linear operator T1 : R3 → R, say

T1 (x) = x ·a = ξ1α1 +ξ2α2 +ξ3α3 where a = (α1,α2,α3) ∈ R3 is fixed.

Also, the cross product with one product kept fixed defines a linear operator T2 :R3 →R3.

Example 2.19 (matrices). A real matrix A =
(
αi j
)

with r rows and n columns defines an
operator T : Rn → Rr by means of

y = Ax or equivalently


η1

η2
...

ηr

=


α11 a12 . . . α1n

a21 a22 . . . a2n
...

... . . . ...
ar1 ar2 . . . arn




ξ1

ξ2
...

xn

 .
Here, x has n rows and y has r components and both vectors are written as column vectors
due to the usual convention of matrix multiplication.

Note that T is linear (we say that T is a linear transformation) because matrix multi-
plication is a linear operation. If on the other hand A were complex, then T would be a
linear operator from Cn to Cr.
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Theorem 2.13. Let T be a linear operator. Then, the following hold:

(i) R(T ) is a vector space

(ii) If dim(D (T )) = n < ∞, then dim(R(T ))≤ n

(iii) N (T ) is a vector space

Corollary 2.1. Linear operators preserve linear independence.

Proof. This follows from (b) of Theorem 2.13.

Theorem 2.14 (linear operator). Let X and Y be arbitrary vector spaces. Let T :
D (T ) → Y be a linear operator such that D (T ) ⊆ X and R(T ) ⊆ Y . Then, the
following hold:

(i) The inverse T−1 : R(T )→D (T ) exists if and only if T (x) = 0 implies x = 0

(ii) If T−1 exists, then it is a linear operator

(iii) If dim(D (T )) = n < ∞ and T−1 exists, then dim(R(T )) = dim(D (T ))

Lemma 2.3 (inverse of composition). Let X ,Y,Z be vector spaces and

T : X → Y and S : Y → Z be bijective linear operators.

Then, the inverse (S◦T )−1 : Z → X of the product ST exists, and (S◦T )−1 = T−1 ◦
S−1.

2.4 Bounded and Continuous Linear Operators
When we were discussing linear operators previously, we did not make use of any norms.
We now take norms into account, in the following basic definition:

Definition 2.16 (bounded linear operator). Let X and Y be normed spaces and
T : D (T )→ Y be a linear operator, where D (T )⊆ X . The operator T is said to be
bounded if there exists c ∈ R such that for all x ∈ D (T ), we have

∥T (x)∥Y ≤ c∥x∥X .

In Definition 2.16, on the LHS of the equation, the norm is that on Y , whereas the
norm on the RHS is on X . Actually, we can denote both norms by the same symbol ∥·∥,
i.e. the same subscript, without danger of confusion. Moreover, Definition 2.16 shows
that a bounded linear operator maps bounded sets in D (T ) onto bounded sets in Y .

However, our present use of the word ‘bounded’ is different from that in Calculus —
for the latter, a bounded function is one whose range is a bounded set.
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As we have
∥T (x)∥
∥x∥

≤ c,

then it shows that c must be at least as big as the supremum of the expression on the left
taken over D (T ) \ {0}. So, the smallest possible c in Definition 2.16 is that supremum.
We denote this quantity by ∥T∥, called the norm of T . We write

∥T∥= sup
x∈D(T )\{0}

∥T (x)∥
∥x∥

.

On the other hand, if D (T ) = {0}, then we define ∥T∥= 0.

Lemma 2.4. Let T be a bounded linear operator. Then, an alternative formula for
the norm of T is

∥T∥= sup
x∈D(T )
∥x∥=1

∥T (x)∥ .

We then take a look at some typical examples of bounded linear operators so that we
can better understand the concept of a bounded linear operator.

Example 2.20 (identity operator). The identity operator I : X → X on a normed space
X ̸= {0} is bounded and has norm ∥I∥= 1.

Example 2.21 (zero operator). The zero operator 0 : X → Y on a normed space X is
bounded and has norm ∥0∥= 0.

Example 2.22 (differentiation operator). Let X be the normed space of all polynomials
on J = [0,1] with norm given by ∥x∥= max |x(t)| for all t ∈ J. A differentiation operator
T is defined on X by

T (x(t)) = x′ (t) .

Again, the prime denotes differentiation with respect to t. Note that this operator is linear
but not bounded. For example, let xn (t) = tn, where n ∈ N. Then, ∥xn∥= 1 and

T (xn (t)) = x′n (t) = ntn−1

so
∥T (xn)∥= n and ∥T∥= ∥T (xn)∥

∥xn∥
= n.

Since n ∈ N is arbitrary, then there does not exist any c ∈ R such that ∥T∥ ≤ c. As such,
T is not a bounded operator.

Remark 2.2. Since differentiation is an important operation, Example 2.22 seems
to imply that unbounded operators are also of importance.

Example 2.23 (integral operator). We can define an integral operator T : C [0,1]→C [0,1]
by

y = T (x) where y(t) =
∫ 1

0
k (t,u)x(u) du.
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Here, k is a given function, which is called the kernel of T (think of the kernel as the
weight, and obviously do not confuse this with the null space of the matrix of a linear
transformation), and it is assumed to be continuous on the closed square G = [0,1]× [0,1]
in the tu-plane. This operator is linear.

Moreover, the good news is tht T is bounded. To see why, we note that the continuity
of k on the closed square implies k is bounded, i.e.

for all (t,u) ∈ G there exists k0 ∈ R such that |k (t,u)| ≤ k0.

Moreover,

|x(t)| ≤ max
t∈J

|x(t)|= ∥x∥ .

Hence,

∥y∥= ∥T (x)∥ by definition of y

= max
t∈J

∣∣∣∣∫ 1

0
k (t,u)x(u) du

∣∣∣∣
≤ max

t∈J

∫ 1

0
|k (t,u)| |x(u)| du by the triangle inequality

≤ k0 ∥x∥

We conclude that ∥T (x)∥ ≤ k0 ∥x∥. This is precisely Definition 2.16 with c = k0, so T is
bounded.

Example 2.24 (matrices). Let A =
(
α jk
)

be a real matrix with r rows and n columns.
Then, A defines an operator T : Rn → Rr by the equation

y = Ax.

Here, x = (ξ1, . . . ,ξn) and y = (η1, . . . ,ηr) are column vectors with n and r rows respec-
tively. In terms of the components, y = Ax becomes

η j =
n

∑
k=1

α jkξk.

Clearly, T is linear because matrix multiplication is a linear operation.

We claim that T is bounded. Recall that the norm on Rn is given by

∥x∥=

(
n

∑
m=1

ξ
2
m

)1/2

.
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The same idea holds for y ∈ Rr. As such,

∥T (x)∥2 =
r

∑
j=1

η
2
j

=
r

∑
j=1

(
n

∑
k=1

α jkξk

)2

≤
r

∑
j=1

( n

∑
k=1

α
2
jk

)1/2( n

∑
m=1

ξ
2
m

)1/2
2

by the Cauchy-Shcwarz inequality

= ∥x∥2
r

∑
j=1

n

∑
k=1

α
2
jk

Since the double sum in the last line does not depend on x, we can express the inequality
as

∥T (x)∥2 ≤ c2 ∥x∥2 where c2 =
r

∑
j=1

n

∑
k=1

α
2
jk.

Hence, T is bounded.

Theorem 2.15. If a normed space X is finite-dimensional, then every linear operator
on X is bounded.

Proof. Let dimX = n and {e1, . . . ,en} be a basis for X . We take any linear combination

x = ∑ξiei

and consider any linear operator T on X . Hence,

∥T (x)∥=

∥∥∥∥∥ n

∑
i=1

ξiT (ei)

∥∥∥∥∥ since T is a linear operator

≤
n

∑
i=1

|ξi|∥T (ei)∥

≤ max
1≤k≤n

∥T (ek)∥
n

∑
i=1

|ξi|

Hence,

n

∑
i=1

|ξi| ≤
1
c

∥∥∥∥∥ n

∑
i=1

ξiei

∥∥∥∥∥= 1
c
∥x∥ .

As such,

∥T (x)∥ ≤ 1
c

max
1≤k≤n

∥T (ek)∥ · ∥x∥

and we conclude that T is bounded.

Theorem 2.16 (continuity and boundedness). Let T : X → Y be a linear operator,
where X ,Y are normed spaces. Then, the following hold:
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(i) T is continuous if and only if T is bounded

(ii) If T is continuous at a single point, it is continuous

Proof. We only prove (i) as (ii) is trivial. We start off with the reverse direction of (i).
Suppose T is a bounded linear operator and let x ∈ X . Let ε > 0 be arbitrary and define
δ = ε/∥T∥. Here, division by ∥T∥ is under the assumption that T is a non-zero linear
operator.

For any y ∈ X such that ∥x− y∥< δ , we have

∥T (x)−T (y)∥= ∥T (x− y)∥ ≤ ∥T∥∥x− y∥< ∥T∥δ = ε.

So, T is continuous.

We then prove the forward direction. Suppose T is continuous at some point y ∈ X .
Then, for any ε > 0, there exists δ > 0 such that ∥x− y∥ < δ . Say ∥T (x)−T (y)∥ < ε .
Let z ∈ X , where z ̸= 0. The remaining part of the proof relies on the clever choice of y
—

choose y = x+
δ

∥z∥
z or equivalently x = y− δ

∥z∥
z

so

y− x =
δ

∥z∥
z.

Since ∥x− y∥< δ , then

∥T (x)−T (y)∥= ∥T (x− y)∥=
∥∥∥∥T
(

δ

∥z∥
z
)∥∥∥∥= δ

∥z∥
· ∥T (z)∥ .

This implies

∥T (z)∥< ε

δ
∥z∥ .

Thus, we can write this as ∥T (z)∥ ≤ c∥z∥, where c = ε/δ . By Definition 2.16, we
conclude that T is bounded.

Corollary 2.2 (continuity). Let T be a bounded linear operator. Suppose xn,x ∈
D (T ). Then, the following hold:

(i) xn → x implies T (xn)→ T (x)

(ii) N (T ) is closed

Definition 2.17 (equal operators). Two operators T1 and T2 are equal, i.e. T1 = T2,
if they have the same domain D (T1) = D (T2) and if T1 (x) = T2 (x) for all x ∈
D (T1) =D (T2).
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Definition 2.18 (restriction and extension). The restriction of an operator T :
D (T ) → Y to a subset B ⊆ D (T ) is denoted by T |B and is the following opera-
tor:

T |B : B → Y where x 7→ T (x) for all x ∈ B.

An extension of T to a set M ⊇D (T ) is an operator

T̃ : M → Y such that T̃ |D(T ) = T.

That is, T̃ (x) = T (x) for all x ∈ D (T ).

Definition 2.19 (linear maps and bounded linear maps). We let

L(X ,Y ) denote the set of all linear maps from X to Y and

B(X ,Y ) denote the set of all bounded linear maps from X to Y

Theorem 2.17 (bounded linear extension). Let T : D (T )→ Y be a bounded linear
operator, where D (T ) lies in a normed space X and Y is a Banach space. Then, T
has an extension

T̃ : D (T )→ Y,

where T̃ is a bounded linear operator of the form
∥∥∥T̃
∥∥∥= ∥T∥.

Theorem 2.18. If Y is complete, then B(X ,Y ) is a Banach space.

2.5 Linear Functionals

Definition 2.20 (functional). We define a functional to be an operator whose range
lies on the real line R or in the complex plane C.

We will denote functionals by lowercase letters f ,g,h, . . ., the domain of f by D ( f ),
the range by R( f ), and the value of f at an x ∈D ( f ) by f (x). Functionals are operators.

Definition 2.21 (linear functional). A linear functional f is a linear operator with
domain in a vector space X and range in the scalar field K of X , thus

f : D ( f )→ K,

where K = R if X is real and K = C if X is complex.

Example 2.25 (MA4211 AY24/25 Sem 2 Tutorial 4). Let Y be a subspace of a vector
space X with dim(X/Y ) = 1. Then X/Y is a family of parallel hyperplanes contained in
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X . Suppose f is a non-trivial linear functional on X and

H1 = {x ∈ X : f (x) = 1} .

Show that H1 is a hyperplane parallel to the null space of f .

Solution. Note that the null space of f is the following set:

{x ∈ X : f (x) = 0} .

Choose any x0 ∈ X . Then, there exist x ∈ X and y in the null space of f such that

f (x0 + y) = f (x0)+ f (y) since f is a linear functional

= 1+0 since x0 ∈ X and y ∈ null space of f

which evaluates to 1. So, x+ y ∈ H, i.e. H1 is the sum of x0 and the null space of f .
Indeed, H1 is a hyperplane in X .

We then prove that H1 is parallel to the null space of f . It suffices to prove that for
any two points in H1, their difference lies in the null space of f . Choose x1,x2 ∈ H. Then,
f (x1) = f (x2) = 1. Then,

f (x1 − x2) = f (x1)− f (x2) since f is a linear functional

= 1−1

which evaluates to 0. So, x1 − x2 lies in the null space of f . □

Naturally, we have the following definition of a bounded linear functional (Definition
2.22):

Definition 2.22 (bounded linear functional). A bounded linear functional f is a
bounded linear operator with range in the scalar field of the normed space X in
which D ( f ) lies, i.e. there exists c ∈ R such that for all x ∈ D ( f ), the inequality

| f (x)| ≤ c∥x∥ holds.

Furthermore, the norm of f is

∥ f∥= sup
x∈D( f )\{0}

| f (x)|
∥x∥

or ∥ f∥= sup
x∈D( f )
∥x∥=1

| f (x)| .

Example 2.26 (MA4211 AY24/25 Sem 2 Tutorial 4). Let δ : C [0,1]→ R be the linear
functional that evaluates a function at the origin: δ ( f ) = f (0). If C [0,1] is equipped with
the norm

∥ f∥
∞
= sup

0≤x≤1
| f (x)| ,
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show that δ is bounded and compute its norm. If C [0,1] is equipped with the norm

∥ f∥1 :=
∫ 1

0
| f (x)| dx,

show that δ is unbounded.

Solution. For the first part, we have

|δ ( f )|= | f (0)| ≤ sup
0≤x≤1

| f (x)|= ∥ f∥
∞
.

As such, we can take C = 1, i.e.

|δ ( f )| ≤ 1 · ∥ f∥
∞
.

This shows that δ is bounded. We then compute its norm, so

∥δ∥= sup
∥ f∥

∞
=1

|δ ( f )|= sup
∥ f∥

∞
=1

| f (0)|

Given any f ∈ C [0,1] such that ∥ f∥
∞
= 1, then | f (x)| ≤ 1 for all 0 ≤ x ≤ 1. As such,

∥δ∥≤ 1. It remains to show that the supremum is actually attained. Consider the constant
function f (x) = 1. Then, ∥ f∥

∞
= 1 and f (0) = 1 so |δ ( f )| = | f (0)| = 1. This implies

that ∥δ∥= 1.

For the second part, we shall prove that δ is unbounded. Suppose on the contrary that
there exists C′ ∈ R such that

|δ ( f )| ≤C∥ f∥1 .

Then,

| f (0)| ≤C′
∫ 1

0
| f (x)| dx.

To obtain a contradiction, we shall construct a sequence of continuous functions { fn}n∈N
that converges piecewise to f . Consider

fn (x) =

1−nx if 0 ≤ x ≤ 1/n;

0 otherwise.

Then,

∥ fn∥1 =
∫ 1

0
|1−nx| dx =

1
2n

.

Moreover, |δ ( f )|= 1. However, the inequality

1 ≤ C′

2n
or equivalently C′ ≥ 2n

does not hold in general since 2n can get arbitrarily large, i.e. there does not exist C ∈ R
satisfying the inequality. □

Example 2.27 (MA4211 AY24/25 Sem 2 Tutorial 3). Let X and Y be normed linear
spaces over R. Suppose X is infinite-dimensional and Y ̸= {0}. Prove that there exists at
least one unbounded linear operator T : X → Y .
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Solution. Let H be an Hamel basis for X . We will show that any function T : H → Y can
be extended to a linear operator T̃ : X → Y . Let x ∈ X . Since H is an Hamel basis, then
there exist x1, . . . ,xn ∈ H and scalars α1, . . . ,αn,β1, . . . ,βk ∈ R such that

x = α1x1 + . . .+αnxn and y = β1y1 + . . .+βkyk.

We define
T̃ (x) = α1T (x1)+ . . .+αnT (xn) .

This is well-defined because any element x ∈ X has a unique representation with respect
to H. Moreover, T̃ is a linear map, i.e.

T̃ (αx+βy) = T̃ (α (α1x+ . . .+αnxn)+β (β1y1 + . . .+βkyk))

= T̃ (αα1x1 + . . .+ααnxn +ββ1y1 + . . .+ββkyk)

= αα1T (x1)+ . . .+ααnT (xn)+ββ1T (y1)+ . . .+ββkT (yk)

= αT̃ (x)+β T̃ (y)

Since H is an infinite set, let v1,v2, . . . ∈ H. Fix a non-zero y ∈ Y . Define

T : H → Y where T (vn) = n∥vn∥y.

Then, T can be extended to a linear operator T̃ : X → Y. But T̃ is unbounded — given
c > 0,

choose n >
c

∥y∥
so

∥∥∥T̃ vn

∥∥∥= n∥vn∥∥y∥ .

This implies that ∥∥∥T̃ vn

∥∥∥
∥vn∥

= n∥y∥> c

and the result follows. □

Theorem 2.19 (continuity and boundedness). A linear functional f with domain
D ( f ) in a normed space is continuous if and only if f is bounded.

Example 2.28 (norm). Let (X ,∥·∥) be a normed space. Then the norm ∥·∥ : X → R is a
non-linear functional on X .

Example 2.29 (dot product). The dot product with one factor kept fixed defines a func-
tional f : R3 → R by means of

f (x) = x ·a = ξ1α1 +ξ2α2 +ξ3α3 where a = (α1,α2,α3) ∈ R3 is fixed.

We see that f is linear and bounded. Moreover, we shall justify that the norm of f is
∥ f∥= ∥a∥. To see why, we have

| f (x)|= |x ·a| ≤ ∥x∥∥a∥ .

Taking the supremum over all x of norm 1, it follows that ∥ f∥ ≤ ∥a∥. On the other hand,
letting x = a, we obtain

∥ f∥ ≥ | f (a)|
∥a∥

=
∥a∥2

∥a∥
= ∥a∥ .

This proves that ∥ f∥= ∥a∥.
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Example 2.30 (definite integral). The definite integral is a number if we consider it for a
single function — as we do in Calculus. However, the situation changes completely if we
consider that integral for all functions in a certain function space. As such, the integral
becomes what is called a functional on that space. Call this functional f . As a space, we
can choose the set of continuous functions on [a,b], denoted by C [a,b]. Thus, f is defined
by

f (x) =
∫ b

a
x(t) dt.

Note that f is linear. We shall prove that f is bounded and has norm ∥ f∥ = b− a. In
fact, if we recall the norm on C [a,b], we obtain the following result which resembles the
estimation lemma in Complex Analysis:

| f (x)|=
∣∣∣∣∫ b

a
x(t) dt

∣∣∣∣≤ (b−a) max
t∈[a,b]

|x(t)|= (b−a)∥x∥ .

Hence, taking the supremum over all x of norm 1, we obtain ∥ f∥ ≤ b−a. To obtain the
inequality ∥ f∥ ≥ b−a, we choose x = x0 = 1 and note that ∥x0∥= 1. As such,

∥ f∥ ≥ | f (x0)|
∥x0∥

= | f (x0)|=
∫ b

a
dt = b−a.

It is of basic importance that the set of all linear functionals defined on a vector space
X can itself be made into a vector space. This space is denoted by X∗ and is called the
algebraic dual space of X .

Definition 2.23 (dual space). Let X be a vector space. Call X∗ its dual space. Its
algebraic operations of vector spaces are defined in a natural way as follows. The
sum f1 + f2 of two functionals f1 and f2 is the functional s whose value at every
x ∈ X is

s(x) = ( f1 + f2)(x) = f1 (x)+ f2 (x) .

Also, the product α f of a scalar α and a functional f is the functional p whose
value at x ∈ X is

p(x) = (α f )(x) = α f (x) .

Of course, this is like the usual way of adding functions and multiplying them by
constants.

We can further consider the algebraic dual (X∗)∗ of X∗, whose elements are linear
functionals defined on X∗. We denote (X∗)∗ by X∗∗ and call it the second algebraic dual
space of X . It turns out that there exist some interesting relationships between X and X∗∗

as shown in the following table:

Space General element Value at a point
X x −
X∗ f f (x)
X∗∗ g g( f )
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We can obtain a g ∈ X∗∗ which is a linear functional defined on X∗ by choosing a fixed
x ∈ X and then setting g( f ) = gx ( f ) = f (x). The subscript x serves as a reminder that
g is obtained by the use of a certain x ∈ X . Here, f is the variable, whereas x is fixed.
Hence, g is clearly linear! For any α,β ∈ F, we have

gx (α f1 +β f2) = (α f1 +β f2)(x) = α f1 (x)+β f2 (x) = αgx ( f1)+βgx ( f2) .

As such, gx is an element of X∗∗.

For each x ∈ X , we associate a functional gx ∈ X∗∗. This defines a mapping

C : X → X∗∗, where x 7→ gx.

Example 2.31 (MA4211 AY24/25 Sem 2 Tutorial 4). Let c0 be the subspace of ℓ∞ whose
elements are of the form x = (x1,x2,x3, . . .) with

lim
n→∞

xn = 0

Prove that (c0)
∗ = ℓ1.

Solution. Let x ∈ c0 and y ∈ ℓ1. We claim that

fy (x) =
∞

∑
k=1

xkyk is a bounded linear functional.

We see that

∣∣ fy (x)
∣∣= ∣∣∣∣∣ ∞

∑
k=1

xkyk

∣∣∣∣∣≤ ∞

∑
k=1

|xk| |yk| ≤ ∥x∥
∞

∞

∑
k=1

|yk|= ∥x∥
∞
∥yk∥1 .

So, fy (x) is bounded. It is also to see that fy (x) is linear. Let ε > 0. Since y ∈ ℓ1, then

∞

∑
k=1

|yk| converges.

So, there exists N ∈ N such that for all n ≥ N, we have

∞

∑
k=n

|yk|< ε.

Let x = {xk}k∈N be defined as follows:

xk =

sgn(yk) if k ≤ N;

0 otherwise.

Then, x ∈ c0 and

∣∣ fy (x)−∥y∥1

∣∣= ∣∣∣∣∣ ∞

∑
k=1

xkyk −|yk|

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
k=1

sgn(yk)yk −|yk|

∣∣∣∣∣=
∣∣∣∣∣ N

∑
k=1

|yk|−
∞

∑
k=1

|yk|

∣∣∣∣∣=
∣∣∣∣∣ ∞

∑
k=N+1

|yk|

∣∣∣∣∣< ε.
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Hence, ℓ1 ⊆ (c0)
∗. We then prove the reverse inclusion. Suppose f ∈ (c0)

∗. Then, for
every n ∈ N, define yn = f (en), where ei is the standard basis vector, i.e. 1 in the ith

position and 0 elsewhere. We claim that y = {yn}n∈N is contained in (c0)
∗. To see why,

let

x = (sgn(y1) ,sgn(y2) , . . . ,sgn(yN) ,0,0 . . .) .

Note that x ∈ c0 because at some point onward, all the terms would be zero. So,

| f (x)|=

∣∣∣∣∣ ∞

∑
k=1

xk f (ek)

∣∣∣∣∣≤ ∞

∑
k=1

|xk| | f (ek)|=
N

∑
k=1

| f (ek)|=
N

∑
k=1

|yk|

which implies
N

∑
k=1

|yk| ≤ ∥ f∥ .

The result follows. □

The map C is called the canonical mapping of X into X∗∗. It is a linear map because
X is a vector space, and

C (αx+βy)( f ) = gαx+βy ( f ) = f (αx+βy) = α f (x)+β f (y) = αgx ( f )+βgy ( f ) = α (Cx)( f )+β (Cy)( f ) .

Thus, C is a linear map. The map C is also called the canonical embedding of X into
X∗∗. To understand this concept, let us first introduce the notion of isomorphism, which
is widely applicable.

In Mathematics, we often deal with spaces that share a common structure. Let X de-
note a set, and let a specific structure be defined on X . For instance, in a metric space,
this structure is the metric; in a vector space, it consists of the two algebraic operations,
namely addition and scalar multiplication; in a normed space, it includes the two alge-
braic operations as well as the norm.

Given two spaces X and X̃ of the same type (for example, two vector spaces), we are
interested in whether X and X̃ are essentially identical, meaning they differ only in the
nature of their elements, not their structural properties. If this is the case, we can treat X
and X̃ as two representations of the same abstract space.

This leads to the concept of an isomorphism, which is defined as a bijective mapping
T between X and X̃ that preserves the given structure. For a metric space X = (X ,d) and
X̃ =

(
X̃ , d̃

)
, an isomorphism T satisfies

d̃ (T x,Ty) = d (x,y) for all x,y ∈ X .

In general, we have the following definition:
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Definition 2.24 (isomorphism). An isomorphism T of a vector space X onto a vec-
tor space X̃ over a field F is a bijective map that preserves the two algebraic opera-
tions of vector spaces. Specifically, for all x,y ∈ X and scalars α ,

T (x+ y) = T (x)+T (y) and T (αx) = αT (x) ,

that is, T : X → X̃ is a bijective linear operator. The space X̃ is then isomorphic to
X , and X and X̃ are called isomorphic vector spaces.

Isomorphisms for normed spaces are vector space isomorphisms that also preserve
norms. We will discuss this in due course.

It can be shown that the canonical mapping C is injective. Since C is linear (as shown
previously), it is an isomorphism of X onto the range R(C)⊂ X∗∗.

Definition 2.25 (embedding). If X is isomorphic to a subspace of a vector space Y ,
we say that X is embeddable in Y . Hence, X is embeddable in X∗∗, and C is the
canonical embedding of X into X∗∗.



Chapter 3
Hilbert Spaces

3.1 Inner Products and Hilbert Spaces

Definition 3.1 (inner product). Let X be as vector space. An inner product is a
function

⟨·, ·⟩ : X ×X → F

satisfying the following properties for any x,y,z ∈ X :

(i) Non-negativity: ⟨x,x⟩ ≥ 0

(ii) Positive-definiteness: ⟨x,x⟩= 0 if and only if x = 0

(iii) Linearity in the first argument: ⟨x+ y,z⟩= ⟨x,z⟩+ ⟨y,z⟩

(iv) Homogeneity: for any α ∈ F, ⟨αx,y⟩= α ⟨x,y⟩

(v) Conjugate symmetry: ⟨x,y⟩= ⟨y,x⟩

Example 3.1 (inner product on continuous functions). Recall that C [a,b] denotes the set
of continuous functions on [a,b]. Let f ,g ∈ C [a,b]. Then, we define their inner product
to be

⟨ f ,g⟩=
∫ b

a
f (x)g(x) dx.

Theorem 3.1 (Cauchy-Schwarz inequality). For any x,y ∈ X , we have

|⟨x,y⟩| ≤ ∥x∥∥y∥ .

Proof. If y = 0, then we are done. Suppose y ̸= 0. Let α ∈ F and we shall consider

0 ≤ ∥x−αy∥2 = ⟨x−αy,x−αy⟩
= ⟨x,x⟩−⟨αy,x⟩−⟨x,αy⟩+ ⟨αy,αy⟩ by (ii) of Definition 3.1

= ⟨x,x⟩−α ⟨y,x⟩−α ⟨x,y⟩+αα ⟨y,y⟩ by (iii) of Definition 3.1

49
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Here, α ∈ F denotes the complex conjugate of α . Note that it satisfies the property
αα = |α|2. As such,

α ⟨y,x⟩+α ⟨y,x⟩ ≤ ⟨x,x⟩+ |α|2 ⟨y,y⟩ .

The trick is to define
α =

⟨x,y⟩
∥y∥2

so the above inequality becomes

⟨x,y⟩⟨y,x⟩
∥y∥2 +

⟨x,y⟩⟨y,x⟩
∥y∥2 ≤ ∥x∥2 +

|⟨x,y⟩|2

∥y∥4 · ∥y∥2 .

As such,

2 |⟨x,y⟩|2

∥y∥2 ≤ ∥x∥2 +
|⟨x,y⟩|2

∥y∥2 which implies
|⟨x,y⟩|2

∥y∥2 ≤ ∥x∥2 .

The result follows from here.

Example 3.2 (MA4211 AY24/25 Sem 2 Tutorial 5). Let X be an inner product space,
and suppose x,y ∈ X . Show that if

⟨x,z⟩= ⟨y,z⟩ for all z ∈ X then x = y.

Solution. We have ⟨x− y,z⟩ = 0. Since z ∈ X is arbitrary, we can choose z = x− y, so
⟨x− y,x− y⟩= 0. Hence, ∥x− y∥2 = 0, which implies that x = y. □

Example 3.3 (MA4211 AY24/25 Sem 2 Tutorial 5). Let {yn}n∈N be a sequence in an
inner product space X . Show that if

yn → y and ⟨yn,x⟩= 0 for all n then ⟨y,x⟩= 0.

Solution. Recall the Cauchy-Schwarz inequality, which states that

|⟨u,v⟩| ≤ ∥u∥∥v∥ .

Set u = yn − y so we have |⟨yn − y,x⟩| ≤ ∥yn − y∥2 ∥x∥. As yn → y, then ∥yn − y∥2 → 0 so
⟨yn − y,x⟩ → 0, i.e. ⟨yn,x⟩ → ⟨y,x⟩. Since ⟨yn,x⟩= 0 for all n ∈ N, then

lim
n→∞

⟨yn,x⟩= 0.

It follows that
⟨y,x⟩=

〈
lim
n→∞

yn,x
〉
= lim

n→∞
⟨yn,x⟩= 0.

□

Example 3.4 (MA4211 AY24/25 Sem 2 Tutorial 5). Let X be an inner product space and
x,y ∈ X . Show that

⟨x,y⟩= 0 if and only if ∥x∥ ≤ ∥x+αy∥ for all α ∈ F.
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Solution. Suppose ⟨x,y⟩= 0. Then, consider

∥x+αy∥2 −∥x∥2 = ⟨x+αy,x+αy⟩−∥x∥2

= ∥x∥2 +α ⟨y,x⟩+α ⟨x,y⟩+α
2 ∥y∥2 −∥x∥2

= α ⟨y,x⟩+α ⟨x,y⟩+α
2 ∥y∥2

Since ⟨x,y⟩= 0, then ⟨y,x⟩= ⟨x,y⟩= 0, so

∥x+αy∥2 −∥x∥2 = α
2 ∥y∥2 ≥ 0

so the forward direction follows.

For the reverse direction, suppose ∥x∥ ≤ ∥x+αy∥. Suppose F ∈ R. Then,

2α ⟨x,y⟩+α
2 ∥y∥2 ≥ 0.

By considering its discriminant, one can deduce that ⟨x,y⟩ ≤ 0. As such, ⟨x,y⟩ = 0. For
the case where F= R, the argument is similar. □

Theorem 3.2 (triangle inequality). For any x,y ∈ X , we have

∥x+ y∥ ≤ ∥x∥+∥y∥ .

Proof. We have∣∣∣∥x+ y∥2
∣∣∣= |⟨x+ y,x+ y⟩|=

∣∣∣∥x∥2 +∥y∥2 + ⟨x,y⟩+ ⟨y,x⟩
∣∣∣≤ ∥x∥2 +2⟨x,y⟩+∥y∥2 = (∥x∥+∥y∥)2 .

Hence, the result follows.

Proposition 3.1 (parallelogram law). Let X be an inner product space. For any
x,y ∈ X , we have

∥x+ y∥2 +∥x− y∥2 = 2
(
∥x∥2 +∥y∥2

)
.

Example 3.5 (MA4211 AY24/25 Sem 2 Tutorial 4). Suppose X is an inner-product space
with norm defined by ∥x∥=

√
⟨x,x⟩. Show that this norm satisfies the parallelogram law1.

Solution. Recall Proposition 3.1. We have

∥x+ y∥2 +∥x− y∥2 = ⟨x+ y,x+ y⟩+ ⟨x− y,x− y⟩
= ⟨x,x⟩+ ⟨x,y⟩+ ⟨y,x⟩+ ⟨y,y⟩+ ⟨x,x⟩+ ⟨−y,x⟩+ ⟨x,−y⟩+ ⟨−y,−y⟩
= ∥x∥2 +∥y∥2 + ⟨x,y⟩+ ⟨x,y⟩+∥x∥2 +∥y∥2 −⟨x,y⟩−⟨y,x⟩
= 2∥x∥2 +2∥y∥2

so indeed, the parallelogram law is satisfied. □

1After knowing about the definition of a Hilbert space in Definition 3.2, you will know that X as defined
in this example is a Hilbert space.
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Proposition 3.2 (polarisation identity). Let X be an inner product space and x,y ∈
X . We have

⟨x,y⟩= 1
4

(
∥x+ y∥2 −∥x− y∥2

)
if F= R

and

Re(⟨x,y⟩) = 1
4

(
∥x+ y∥2 −∥x− y∥2

)
if F= C and

Im(⟨x,y⟩) = 1
4

(
∥x+ iy∥2 −∥x− iy∥2

)
if F= C

We shall prove these results2.

Proof. We first prove for the case when F= R. We have

∥x+ y∥2 −∥x− y∥2 = ⟨x+ y,x+ y⟩−⟨x− y,x− y⟩
= ∥x∥2 + ⟨y,x⟩+ ⟨x,y⟩+∥y∥2 −∥x∥2 −⟨−y,x⟩−⟨x,−y⟩−∥y∥2

= 4⟨x,y⟩

Here, we used the fact that ⟨x,y⟩= ⟨y,x⟩ in R.

For the case when F= C, we have

∥x+ y∥2 −∥x− y∥2 = ⟨y,x⟩+ ⟨x,y⟩+ ⟨y,x⟩+ ⟨x,y⟩= 2⟨x,y⟩+2⟨x,y⟩.

The result pretty much follows from here.

Definition 3.2 (Hilbert space). A Hilbert space is a complete inner product space.
More precisely, a Hilbert space is a vector space over a field F equipped with an
inner product ⟨·, ·⟩H ×H → F and the inner product induces a norm given by

∥x∥=
√

⟨x,x⟩.

A Hilbert space is a vector space that is complete with respect to this norm.

Definition 3.3 (convex set). A set Y is said to be convex if for all y1,y2 ∈ Y and
any 0 < λ < 1, we have

z = λy1 +(1−λ )y2 ∈ Y.

Theorem 3.3. Let X be an inner product space and /0 ̸=Y ⊆ X such that Y is convex
and complete. Then,

for any x ∈ X there exists a unique y0 ∈ Y such that inf
y∈Y

∥x− y∥= ∥x− y0∥ .

2Also appears in MA4211 AY24/25 Sem 2 Tutorial 4.
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Proof. Let
δ = inf

y∈Y
∥x− y∥ .

Then, there exists a sequence {yn}n∈N in Y such that

∥xn − yn∥= δn and lim
n→∞

δn = δ .

Define zn = yn − x so ∥zn∥= δn. For any m,n ∈ N, we he

∥zm + zn∥= ∥ym + yn −2x∥= 2
∥∥∥∥1

2
(ym + yn)− x

∥∥∥∥≥ 2δ .

Next,

∥yn − ym∥2 = ∥zn − zm∥2

=−∥zn + zm∥2 +2
(
∥zn∥2 +∥zm∥2

)
≤ (2δ )2 +2

(
δ

2
n +δ

2
n
)

which is bounded above by −2δ 2. For large m,n ∈ N, note that δm,δn both tend to δ . As
such, yn → y0 and ∥x− y0∥ ≥ δ . By the triangle inequality, we have

∥x− y0∥ ≤ ∥x− yn∥+∥yn − y0∥= δn +∥yn − y0∥ .

As such, ∥x− y0∥ ≤ δ . Combining both inequalities yields ∥x− y0∥= δ .

Definition 3.4 (orthogonal vectors). Let X be an inner product space. For x,y ∈ X ,
if ⟨x,y⟩= 0, then x and y are said to be orthogonal.

Theorem 3.4. Let Y ⊆ X , where Y is a complete subspace. Let y0 ∈ Y such that

inf
y∈Y

∥x− y∥= ∥x− y0∥ .

Then, for all y ∈ Y , we have ⟨x− y0,y⟩= 0.

3.2 Orthogonality

Definition 3.5 (orthogonal complement). Let X be an inner product space. For
Y ⊆ X , define

Y⊥ = {x ∈ X : ⟨x,y⟩= 0 for all y ∈ Y} .

Example 3.6 (MA4211 AY24/25 Sem 2 Tutorial 5). Suppose that A ⊆ B are non-empty
subsets of an inner product space X . Show that A ⊆ A⊥⊥ and B⊥ ⊆ A⊥.

Solution. Suppose x ∈ A. Then, x ⊥ A⊥, which implies x ∈ A⊥⊥. The first result follows.
For the second result, suppose y ∈ B⊥. Then, ⟨y,b⟩ = 0 for all b ∈ B. Since A ⊆ B, then
⟨y,a⟩= 0 for all a ∈ A. Hence, y ∈ A⊥. □
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Theorem 3.5 (orthogonal decomposition). Let X be an inner product space. If Y is
a closed subspace of X , then

X = Y ⊕Y⊥.

That is, for all x ∈ X , there exists a unique y ∈ Y and z ∈ Y⊥ such that x = y+ z.

Definition 3.6 (orthogonal set). Let X be an inner product space. A subset A ⊆ X
is orthogonal if

⟨a1,a2⟩= 0 for all distinct a1,a2 ∈ A.

From Definition 3.6, we infer that

⟨a1,a2⟩=

0 if a1 ̸= a2;

1 if a1 = a2.

If A is countably infinite, then we say that (a1,a2, . . .) is an orthonormal sequence.

Theorem 3.6 (Pythagoras’ theorem). If {x1, . . . ,xn} is orthogonal, then

∥x1 + . . .+ xn∥2 = ∥x1∥2 + . . .+∥xn∥2 .

Proof. We have

∥x1 + . . .+ xn∥2 = ⟨x1 + . . .+ xn,x1 + . . .+ xn⟩
= ⟨x1,x1 + . . .+ xn⟩+ . . .+ xn ⟨x1 + . . .+ xn⟩
= ⟨x1,x1⟩+ . . .+ ⟨xn,xn⟩
= ∥x1∥2 + . . .+∥xn∥2

where we repeatedly used the fact that
〈
xi,x j

〉
= 1 if i = j and 0 otherwise.

Theorem 3.7 (Bessel’s inequality). For n ∈N and an orthonormal set {ek}k∈N , we
have

n

∑
k=1

|⟨x,ek⟩|2 ≤ ∥x∥2 for all x ∈ X .

Proof. Define

y = x−
n

∑
k=1

⟨x,ek⟩ek.

This vector y represents the difference between x and its partial Fourier expansion with
respect to the orthonormal set {ek}k∈N. So,

⟨y,ek⟩=

〈
x−

n

∑
j=1

〈
x,e j

〉
e j,ek

〉

= ⟨x,ek⟩−
n

∑
j=1

〈
x,e j

〉〈
e j,ek

〉
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Since
{

e j
}

j∈N forms an orthonormal set, then
〈
e j,ek

〉
= 0 for distinct j and k. Hence,

the above sum reduces to 0. As such, ⟨y,ek⟩, i.e. y is orthogonal to each ek for all k ∈ N.
Thus, we can write

∥x∥2 =

∥∥∥∥∥ n

∑
k=1

⟨x,ek⟩ek + y

∥∥∥∥∥
2

=

∥∥∥∥∥ n

∑
k=1

⟨x,ek⟩ek

∥∥∥∥∥
2

+∥y∥2 since y is orthogonal to each ek

=
n

∑
k=1

|⟨x,ek⟩|2 +∥y∥2 since {ek}k∈N is an orthonormal set

With some rearrangement, the result follows.

Example 3.7 (Kreyzig p. 159 Question 7). Let {ek}k∈N be an orthonormal sequence in
an inner product space X . Show that for any x,y ∈ X ,

∞

∑
k=1

⟨x,ek⟩⟨y,ek⟩ ≤ ∥x∥∥y∥ .

Solution. This can be seen as a generalisation of Bessel’s inequality (Theorem 3.7) and
the proof is the same. Consider the following inner product:〈

x−
∞

∑
k=1

⟨y,ek⟩ek,x−
∞

∑
k=1

⟨y,ek⟩ek

〉
=

∥∥∥∥∥x−
∞

∑
k=1

⟨y,ek⟩ek

∥∥∥∥∥
2

≥ 0.

Alternatively, the left side of the equation can be rewritten as

⟨x,x⟩−

〈
x,

∞

∑
k=1

⟨y,ek⟩ek

〉
−

〈
∞

∑
k=1

⟨y,ek⟩ek,x

〉
+

∥∥∥∥∥ ∞

∑
k=1

⟨y,ek⟩ek

∥∥∥∥∥
2

=∥x∥2 −2Re

(〈
∞

∑
k=1

⟨y,ek⟩ek,x

〉)
+∥y∥2 since {ek}k∈N is an orthonormal sequence

=∥x∥2 +∥y∥2 −2Re

(〈
∞

∑
k=1

⟨y,ek⟩ek,x

〉)

By some rearrangement, the result follows. □

Theorem 3.8. Let H be a Hilbert space and {ek}k∈N be an orthonormal sequence.
The series

∞

∑
k=1

αkek converges in H if and only if
∞

∑
k=1

|αk|2 converges in H.

Moreover, if
∞

∑
k=1

αkek converges to x then αk = ⟨x,ek⟩ .
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Proof. Set

sn =
n

∑
k=1

αkek and σn =
n

∑
k=1

|αk|2 .

Assume that n ≥ m. Then,

∥sn − sm∥2 =

∥∥∥∥∥ n

∑
k=m+1

αkek

∥∥∥∥∥
2

=
n

∑
k=m+1

∥αkek∥2 since {ek}k∈N is an orthonormal sequence

=
n

∑
k=m+1

|αk|2

which evaluates to σn −σm. Note that for any n ∈ N, we have〈
sn,e j

〉
= α j for some fixed j = 1, . . . ,k.

So, if

sn → x then
〈
sn,e j

〉
→
〈
x,e j

〉
.

This implies that α j =
〈
x,e j

〉
for all 1 ≤ j ≤ k.

Lemma 3.1. For any x ∈ X and any orthogonal family {eα}α∈I , at most countably
many of the terms ⟨x,eα⟩ are non-zero.

Definition 3.7 (total space). A total set in a normed space X is a set B where
span(B) is dense in X . If B is also orthonormal, we call it a total orthonormal set.

Theorem 3.9. Every Hilbert space has a total orthonormal set.

Theorem 3.10. Let X be a normed space. Then, the following hold:

(i) If B is total in X , then B⊥ = {0}

(ii) If X is complete and B⊥ = {0}, then B is total

Lemma 3.2. Let H be a Hilbert space and A ⊆H, where A ̸= /0. Then,

span(A) is dense in H if and only if A⊥ = {0} .

Proof. For the forward direction, suppose x ∈ A⊥ and span(A) is dense in H. Then, there
exists a sequence {xn}n∈N contained in span(A) such that xn → x. So, ⟨xn,x⟩. As such,
⟨xn,x⟩ → ⟨x,x⟩. By continuity, ⟨x,x⟩= 0 so we can conclude that x = 0.

For the reverse direction, suppose A⊥ = {0}. This implies that (spanA)⊥ = {0}, so
(spanA)

⊥
= {0}. As span(A) is a subspace of X , then H= spanA⊕

(
spanA

)⊥.
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Theorem 3.11 (Parseval-Pythagorean identity). Let H be a Hilbert space and
{ek}k∈N be an orthonormal basis for H. we have

n

∑
k=1

|⟨x,ek⟩|2 = ∥x∥2 .

Note that the Parseval-Pythagorean identity (Theorem 3.11) is directly analogous to
Pythagoras’ theorem (Theorem 3.6, where the latter asserts that the sum of the squares of
the components of a vector in an orthonormal basis is equal to the squared length of the
vector.

Theorem 3.12. An orthonormal set B in a Hilbert space H is total if and only if it
satisfies the Parseval-Pythagorean identity (Theorem 3.11).

Proof. For the reverse direction, suppose on the contrary that the orthonormal set B is not
total. Then, there exists 0 ̸= x ∈H such that x ⊥ B. Now, for all ek, we have ⟨x,ek⟩= 0 by
the Parseval-Pythgorean identity (Theorem 3.11). However, as x ̸= 0, then ∥x∥2 ̸= 0, so

0 =
n

∑
k=1

|⟨x,ek⟩|2 ̸= ∥x∥2 .

So, B is total.

We then prove the forward direction. Suppose B is total. Let x ∈H and consider

y =
n

∑
k=1

⟨x,ek⟩ek.

Hence,

〈
x− y,e j

〉
=
〈
x,e j

〉
−

〈
n

∑
k=1

⟨x,ek⟩ek,e j

〉
=
〈
x,e j

〉
−

n

∑
k=1

⟨x,ek⟩
〈
ek,e j

〉
which is equal to

〈
x,e j

〉
−
〈
x,e j

〉
= 0. That is, (x− y)⊥ B, so x− y ∈ B⊥. We conclude

that x = y.

Theorem 3.13. The following properties hold:

(i) If B is total in X , then B⊥ = {0}

(ii) If X is complete and B⊥ = {0}, then B is total

Theorem 3.14. Let H be a Hilbert space.

(i) If H is separable, then every orthonormal set is countable

(ii) If H contains a countable total orthonormal set, then H is separable
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Proof. For (i), say H is separable with a countable dense subset D. Let M ⊆ H be or-
thonormal and x,y ∈ M such that x ̸= y. The,

∥x− y∥2 = ⟨x− y,x− y⟩= ⟨x,x⟩+ ⟨y,y⟩−2Re(⟨x,y⟩) .

Since x and y are orthonormal, t hen ⟨x,x⟩ = ⟨y,y⟩ = 1 and ⟨x,y⟩ = 0, so ∥x− y∥2 = 2,
which implies ∥x− y∥=

√
2. For each x ∈ M, consider the open ball

B
(

x,
1√
2

)
=

{
z ∈H : ∥z− x∥< 1√

2

}
.

If x ̸= y in M, then the balls B
(

x, 1√
2

)
and B

(
y, 1√

2

)
are disjoint. This is because if there

were a point z common to both balls, then by the triangle inequality, we have

∥x− y∥ ≤ ∥x− z∥+∥z− y∥< 1√
2
+

1√
2
=
√

2 which contradicts ∥x− y∥=
√

2.

Since D is dense in H, each open ball B
(

x, 1√
2

)
must contain at least one point of D.

Moreover, because the balls are disjoint, the points of D selected from different balls are
distinct. So there exists an injection M ↪→ D. Since D is countable, then M must also be
countable.

We then prove (ii). Let {en}n∈N be a countable orthonormal set in H. As this set is
total, then the closed linear span of {en}n∈N is H. Consider the set of all finite linear
combinations of the en’s with coefficients taken Q (if F = R; if F = C, then replace Q
with Q+ iQ). Formally, for the case when F= R, we have

D =

{
N

∑
n=1

qnen : N ∈ N,qn ∈Q

}
.

Since there are only countably many choices for N and the coefficients qn, then D is
countable. Note that D is dense in span{en} since any finite linear combination with
real coefficients can be approximated arbitrarily well by finite linear combinations with
rational coefficients. As such, D =H, so it follows that H is separable.

To conclude, we point out what an isomorphism of a Hilbert space H onto a Hilbert
space H̃ over the same field is: namely, a bijective linear operator

T : H→ H̃ such that for all x,y we have ⟨T x,Ty⟩= ⟨x,y⟩ .

The spaces H and H̃ are then called isomorphic Hilbert spaces. Since T is linear, it
preserves the vector space structure, and from the condition ⟨T x,Ty⟩ = ⟨x,y⟩, we see
that T is also an isometry. From this and the bijectivity of T , it follows that H and H̃
are algebraically as well as metrically indistinguishable; in essence, they are the same
except that we may think of each vector x in H as having a “tag” T attached to it in H̃.
Alternatively, we may regard H̃ as a new “geometric copy” of H, the difference being
that, for example, H̃ could be realised in an n-dimensional Euclidean setting or have a
dimension shifted by some index n, but in all essential respects it is still “the same” as H.
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3.3 Legendre, Hermite and Laguerre Polynomials

The theory of Hilbert spaces has applications to various topics in Analysis. Now, we dis-
cuss some total orthogonal and orthonormal sequences which are used quite frequently in
connection with practical problems (such as Quantum Mechanics).

We first discuss the Legendre polynomials. Let X be an inner product space. Then,
the set of continuous real-valued functions [−1,1] with inner product defined by

⟨x,y⟩=
∫ 1

−1
x(t)y(t) dt

can be completed. In this context, ‘can be completed’ means that although the set of
continuous functions on [−1,1] with the given inner product is not itself a complete met-
ric space (i.e. there are Cauchy sequences that do not converge within that set), it can
be embedded in a larger Hilbert space in which all such Cauchy sequences do converge.
Concretely, the completion in this case is the space L2 [−1,1], which a Hilbert space and
is complete under the norm induced by the integral inner product. The original space of
continuous functions sits inside L2 ([−1,1]) as a dense subspace.

Say we wish to obtain an orthonormal sequence in L2 [−1,1] which consists of functions
that are easy to handle. Polynomials are of this type, and we can proceed with a simple
idea. Consider the powers x0 (t) = 1,x1 (t) = t, . . . ,xi (t) = t i and so on. This sequence
of terms is linearly independent. Thereafter, one can use the Gram-Schmidt process to
obtain an orthonormal sequence {en}n∈N. Each en is a polynomial, which is easy to see
because we took linear combinations of the xi’s.

Proposition 3.3. {en}n∈N is total in L2 [−1,1].

Proof. By the Weierstrass approximation theorem, every continuous function on [−1,1]
can be uniformly approximated by polynomials. Since the space C1 [−1,1] of continuous
functions is dense in L2 [−1,1] (by compactness of [−1,1]), it follows that the set of all
polynomials is dense in L2 [−1,1].

The sequence {en}n∈N is obtained by applying the Gram-Schmidt process to the lin-
early independent set of polynomials

{
1, t, t2, . . .

}
. Since the Gram-Schmidt process only

forms linear combinations of these polynomials, the span of the en’s is exactly the same as
the span of the set of all polynomials. Hence, the closure of span{en} is all of L2 [−1,1],
i.e. any function in L2 [−1,1] can be approximated arbitrarily well in the L2 norm by finite
linear combinations of the en’s. The result follows.

We now give the formula for the Legendre polynomials.
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Theorem 3.15 (Rodrigues’ formula). We have

Pn (t) =
1

2nn!
dn

dtn

[(
t2 −1

)n
]
.

We apply the binomial theorem to
(
t2 −1

)n in Rodrigues’ formula (Theorem 3.15).
Differentiating the result n times, we obtain

Pn (t) =
N

∑
j=1

(−1) j · (2n−2 j)!
2n j!(n− j)!(n−2 j)!

· tn−2 j.

In the above formula, N = n/2 if n is even and N = 1
2 (n−1) if n is odd. We define the

first six Legendre polynomials as follows (please refer to the graphs of P0 (t) , . . . ,P4 (t) in
Figure 3.1):

P0 (t) = 1

P1 (t) = t

P2 (t) =
1
2
(
3t2 −1

)
P3 (t) =

1
2
(
5t3 −3t

)
P4 (t) =

1
8
(
35t4 −30t2 +3

)
P5 (t) =

1
8

(
63t5 −70t3 +15t

)

xy
O

y = P0 (t)y = P1(t)2/2−1/2node[pos = 0.15,anchor = southwest]2(t)3/2−3∗ x/2node[pos = 0.65,anchor = north]3(t)4/8−30∗ x2/8+3/8node[pos = 0.8,anchor = southwest]4(t)

Figure 3.1: The graphs of the first five Legendre polynomials Pn (t) where 0 ≤ n ≤ 4

The Legendre polynomials are solutions of the Legendre differential equation

(
1− t2) d2Pn

dt2 −2t
dPn

dt
+n(n+1)Pn = 0.

We then introduce the Hermite polynomials. Consider the real space L2 (−∞,∞), for
which the inner product is given by

⟨x,y⟩=
∫

∞

−∞

x(t)y(t) dt.

We apply the Gram-Schmidt process to the sequence of functions w(t) , tw(t) , t2w(t),
and so on, where w(t) = e−t2/2. The factor 1/2 in the exponent is purely conventional
and has no deeper meaning. These functions are elements of L2 (−∞,∞). In fact, they are
bounded on R, i.e. there exists kn such that |tnw(t)| ≤ kn for all t. Hence,∣∣∣∣∫ ∞

−∞

tme−t2/2tne−t2/2 dt
∣∣∣∣≤ km+n

∫
∞

−∞

e−t2/2 dt = km+n
√

2π,
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where the last equality invokes the use of the Gaussian integral∫
∞

−∞

e−t2
dt =

√
π.

The Gram-Schmidt process gives the orthonormal sequence {en}n∈N, where

en (t) =
1(

2nn!
√

π
)1/2 · e

−t2/2Hn (t) ,

where
H0 (t) = 1 and Hn (t) = (−1)n et2 dn

dtn

(
e−t2

)
.

We say that Hn is the Hermite polynomial of order n. Similar to the Legendre polynomi-
als, by performing successive differentiations on e−t2

, we obtain

Hn (t) = n!
N

∑
j=0

(−1) j · 2n−2 j

j!(n−2 j)!
· tn−2 j,

here N = n/2 if n is even and N = 1
2 (n−1) if n is odd. Alternatively, we can also write

Hn (t) =
N

∑
j=0

(−1) j

j!
n(n−1) . . .(n−2 j+1)(2t)n−2 j .

As such,

H0 (t) = 1

H1 (t) = 2t

H2 (t) = 4t2 −2

H3 (t) = 8t3 −12t

H4 (t) = 16t4 −48t2 +12

H5 (t) = 32t5 −160t3 +120t

Proposition 3.4. The Hermite polynomials satisfy

∫
∞

−∞

e−t2
Hm (t)Hn (t) dt =

0 if m ̸= n;

2nn!
√

π if m = n.

One notes that the Hermite polynomials Hn satisfy the Hermite differential equation

d2Hn

dt2 −2t
dHn

dt
+2nHn = 0.

Lastly, we discuss the Lagruerre polynomials. Consider the space L2 [0,∞). Applying the
Gram-Schmidt process to the sequence defined by e−t/2, te−t/2, t2e−t/2, . . ., we obtain an
orthonormal sequence {en}n∈N. It can be shown that {en}n∈N is total in L2 [0,∞) and is
given by

en (t) = e−t/2Ln (t) ,
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where the Laguerre polynomial of order n is defined by

L0 (t) = 1 and Ln (t) =
et

n!
dn

dtn

(
tne−t) .

In other words,

Ln (t) =
n

∑
j=0

(−1) j

j!

(
n
j

)
t j.

Explicit expressions for the first few Laguerre polynomials are

L0 (t) = 1

L1 (t) = 1− t

L2 (t) = 1−2t +
1
2

t2

L3 (t) = 1−3t +
3
2

t2 − 1
6

t3

L4 (t) = 1−4t +3t2 − 2
3

t3 +
1

24
t4

The Laguerre polynomials Ln are solutions of the differential equation

t
d2Ln

dt2 +(1− t)
dLn

dt
+nLn = 0.

3.4 Representation of Functionals on Hilbert Spaces
It is of practical importance to know the general form of bounded linear functionals on
various spaces. For general Banach spaces, such formulae and their derivation can some-
times be complicated. However, for Hilbert spaces, the situation is simple.

Theorem 3.16 (Riesz’s theorem). Every bounded linear functional f on a Hilbert
space H can be represented in terms of the inner product, namely

f (x) = ⟨x,z⟩ ,

where z depends on f , is uniquely determined by f and has norm ∥z∥= ∥ f∥.

Proof. First, we prove that f has the representation f (x) = ⟨x,z⟩ and that the z given is
unique. If f = 0, then the result holds trivially if we take z = 0. Suppose f ̸= 0. Note
that z ̸= 0, otherwise f = 0. Next, ⟨x,z⟩= 0 for all x for which f (x) = 0, i.e. for all x in
the null space of f . Hence, z is orthogonal to the null space of f , denoted by N ( f ). This
suggests we can consider N ( f ) and its orthogonal complement N ( f )⊥.

Note that N ( f ) is a vector space3 and it is closed. Furthermore, f ̸= 0 implies N ( f ) ̸=H
so that N ( f )⊥ ̸= {0}. Hence, N ( f )⊥ contains some z0 ̸= 0. Set

v = f (x)z0 − f (z0)x where x ∈H is arbitrary.
3Simple result from MA2001.
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Applying f to both sides, we obtain

f (v) = f (x) f (z0)− f (z0) f (x) = 0.

This shows that v ∈N ( f ). Since z0 ⊥N ( f ), then

0 = ⟨v,z0⟩= ⟨ f (x)z0 − f (z0)x,z0⟩= f (x)⟨z0,z0⟩− f (z0)⟨x,z0⟩ .

We note that ⟨z0,z0⟩= ∥z0∥2 ̸= 0 so we can solve for f (x). As such,

f (x) =
f (z0)

∥z0∥2 ⟨x,z0⟩ which implies z =
f (z0)

∥z0∥2 z0.

Since x ∈H was arbitrary, then the existence claim follows.

We then prove the uniqueness claim, i.e. z is unique. Suppose for all x ∈H, we have

f (x) = ⟨x,z1⟩= ⟨x,z2⟩ .

Then, for all x, we have ⟨x,z1 − z2⟩= 0. Choosing x = z1 − z2, it follows that

⟨x,z1 − z2⟩= ⟨z1 − z2,z1 − z2⟩= ∥z1 − z2∥2 = 0.

This implies that z1 − z2 = 0, so z1 = z2. The uniqueness claim follows.

Lastly, we prove that ∥z∥ = ∥ f∥. If f = 0, then z = 0 and the equation holds trivially.
Suppose f ̸= 0. Then, z ̸= 0. Then, setting x = z, it follows that

∥z∥2 = ⟨z,z⟩= f (z)≤ ∥ f∥∥z∥ .

We can divide both sides by ∥z∥ (permitted because ∥z∥ ̸= 0) which yields ∥z∥ ≤ ∥ f∥.
It remains to show that ∥ f∥ ≤ ∥z∥. Using the first part of this theorem and the Cauchy-
Schwarz inequality, it follows that

| f (x)|= |⟨x,z⟩| ≤ ∥x∥∥z∥ .

This implies that
∥ f∥= sup

∥x∥=1
|⟨x,z⟩| ≤ ∥z∥

so the result follows.

Lemma 3.3. If

⟨v1,w⟩= ⟨v2,w⟩ for all w in an inner product space X then v1 = v2.

In particular, ⟨v1,w⟩= 0 for all w ∈ X implies v1 = 0.

Proof. By assumption, for all w, we have

⟨v1 − v2,w⟩= ⟨v1,w⟩−⟨v2,w⟩= 0.

For w = v1 − v2, this gives ∥v1 − v2∥2 = 0. Hence, v1 − v2 = 0, so v1 = v2. In particular,
⟨v1,w⟩= 0 with w = v1 gives ∥v1∥2 = 0 so v1 = 0.
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Definition 3.8 (sesquilinear form). Let X and Y be vector spaces over the same field
F (where F is either R or C). Then, a sesquilinear form (or sesquilinear functional)
h on X ×Y is a mapping

h : X ×Y → K

such that for all x,x1,x2 ∈ X and y,y1,y2 ∈ Y and all scalars α,β , the following
hold:

(a) h(x1 + x2,y) = h(x1,y)+h(x2,y)

(b) h(x,y1 + y2) = h(x,y1)+h(x,y2)

(c) h(αx,y) = αh(x,y)

(d) h(x,βy) = βh(x,y)

We infer that h is linear in the first argument and conjugate linear in the second one.

Of course, if X and Y are real vector spaces in Definition 3.8, then (d) would imply
that h(x,βy) = βh(x,y). Thus, we say that h is a bilinear form since it is linear in both
arguments.

Definition 3.9. If X and Y are normed spaces and if there exists c ∈R such that for
all x,y,

|h(x,y)| ≤ c∥x∥∥y∥ ,

then h is said to be bounded, and the number

∥h∥= sup
x ∈ X \{0}
y ∈ Y \{0}

|h(x,y)|
∥x∥∥y∥

= sup
∥x∥,∥y∥=1

|h(x,y)| is called the norm of h.

Example 3.8. The inner product is sesquilinear and bounded.

Proposition 3.5. Let X and Y be real vector spaces. Then,

|h(x,y)| ≤ ∥h∥∥x∥∥y∥ .

Proof. Use Definition 3.9.

Theorem 3.17 (Riesz representation theorem). Let H1 and H2 be Hilbert spaces
and

h : H1 ×H2 → K be a bounded sesquilinear form.

Then, h has a representation h(x,y) = ⟨Sx,y⟩, where S : H1 →H2 is a bounded linear
operator. S is uniquely determined by h and has norm ∥S∥= ∥h∥.
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3.5 Hilbert-Adjoint Operator
We are now able to introduce the Hilbert-adjoint operator of a bounded linear operator
on a Hilbert space. This operator was suggested by problems in matrices and linear
differential and integral equations. We will see that it also helps to define three important
classes of operators (called self-adjoint, unitary, and normal operators) which have been
extensively studied as they play a key role in various applications.

Definition 3.10 (Hilbert-adjoint operator T ∗). Let T :H1 →H2 be a bounded linear
operator, where H1 and H2 are Hilbert spaces. Then, the Hilbert-adjoint operator
T ∗ of T is the operator

T ∗ : H2 →H1 such that for all x ∈H1,y ∈H2 we have ⟨T x,y⟩= ⟨x,T ∗y⟩ .

One should really justify that Definition 3.10 makes sense — we shall prove that for
a given bounded linear operator T , such a T ∗ indeed exists (Theorem 3.18).

Theorem 3.18. The Hilbert-adjoint operator T ∗ of T in Definition 3.18 exists, is
unique and is a bounded linear operator with norm

∥T ∗∥= ∥T∥ .

Proof. Note that the formula h(y,x) = ⟨y,T x⟩ defines a sesquilinear form on H2 ×H1

because the inner product is sesquilinear and T is linear. In fact, conjugate linearity of the
form is seen from

h(y,αx1 +βy2) = ⟨y,T (αx1 +βx2⟩)
= ⟨y,αT (x1)+βT (x2)⟩
= α ⟨y,T (x1)⟩+β ⟨y,T (x2)⟩
= αh(y,x1)+βh(y,x2)

Next, we claim that h is bounded, which is clear by the Cauchy-Schwarz inequality, i.e.

|h(y,x)|= |⟨y,T (x)⟩| ≤ ∥y∥∥T x∥ ≤ ∥T∥∥x∥∥y∥ .

This also implies that ∥h∥ ≤ ∥T∥. Moreover, we have ∥h∥ ≥ ∥T∥ from

∥h∥= sup
x,y̸=0

|⟨y,T x⟩|
∥y∥∥x∥

≥ sup
x,T x ̸=0

|⟨T x,T x⟩|
∥T x∥∥x∥

= ∥T | .

Together, we have ∥h∥= ∥T∥. By the Riesz representation theorem (Theorem 3.17), we
obtain a Riesz representation for h; writing T ∗ for S, we have h(y,x) = ⟨T ∗y,x⟩, and
we know from that theorem that T ∗ : H2 →H1 is a uniquely determined bounded linear
operator with norm

∥T ∗∥= ∥h∥= ∥T∥ .

The result pretty much follows from here.
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Example 3.9 (MA4211 AY24/25 Sem 2 Tutorial 6). Let T : ℓ2 → ℓ2 be defined by

T (x1,x2, . . .) = (0,x1,x2, . . .) .

T is called the right shift operator. Prove the following:

(a) T is an isometry, but not invertible.

(b) The hermitian adjoint of T is defined by

T ∗ (x1,x2, . . .) = (x2,x3, . . .) .

(c) How does this situation differ from what happens with operators on finite-dimensional
spaces?

Solution.

(a) Let
x = (x1,x2, . . .) and y = (y1,y2, . . .) .

Then,

dℓ2 (x,y) =
√
(x1 − y1)

2 +(x2 − y2)
2 + . . ..

Also,
T (x) = (0,x1,x2, . . .) and T (y) = (0,y1,y2, . . .) .

Again, it is clear that

dℓ2 (T (x) ,T (y)) =
√
(x1 − y1)

2 +(x2 − y2)
2 + . . .

so T is an isometry. It is clear that T is not invertible because it is not surjective.
To see why, for T to be surjective, every (y1,y2, . . .) ∈ ℓ2 must have a pre-image
such that T ((x1,x2, . . .)) = (y1,y2, . . .). However, T ((x1,x2, . . .)) = (0,x1,x2, . . .),
for which the first element in the output is always zero. Hence, T is not surjective.

(b) By Definition 3.10, we say that the Hermitian adjoint of T has the property that

⟨T (x) ,y⟩= ⟨x,T ∗ (y)⟩ for all x,y ∈ ℓ2.

Note that

⟨T (x) ,y⟩=
∞

∑
n=1

[T (x)]n yn = 0 · y1 + x1 · y2 + x2 · y3 + . . .=
∞

∑
n=1

xnyn+1.

We then consider

⟨x,T ∗ (y)⟩=
∞

∑
n=1

xn[T ∗ (y)]n.

Since equality holds for all sequences {xn}n∈N, i.e.

∞

∑
n=1

xnyn+1 =
∞

∑
n=1

xn[T ∗ (y)]n then yn+1 = [T ∗ (y)]n.

Hence, yn+1 = [T ∗ (y)]n. In other words, T ∗ ((x1,x2, . . .)) = (x2,x3, . . .).
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(c) In finite-dimensional Hilbert spaces, any isometry (i.e. a linear map that preserves
the norm) is invertible. This is because in finite dimensions, an isometry is neces-
sarily injective. By the rank–nullity theorem, injectivity implies surjectivity when
the domain and codomain have the same finite dimension. So, an isometry is uni-
tary, meaning that not only does it preserve norms, but it also has a well-defined
inverse that is equal to its adjoint.

Lemma 3.4 (zero operator). Let X and Y be inner product spaces and Q : X → Y
be a bounded linear operator. Then, the following hold:

(a) Q = 0 if and only if ⟨Qx,y⟩= 0 for all x ∈ x and y ∈ Y

(b) If Q : X → X , where X is complex, and ⟨Qx,x⟩= 0 for all x ∈ X , then Q = 0

Proof. For (a), we first prove the forward direction. Q = 0 implies Qx = 0 for all x, so
⟨Qx,y⟩ = ⟨0,y⟩ = 0. Conversely, ⟨Qx,y⟩ = 0 for all x and y implies Qx = 0 for all x so
Q = 0.

For (b), we have
⟨Qv,v⟩= 0 for every v = αx+ y ∈ X .

Hence,

0 = ⟨Q(αx+ y) ,αx+ y⟩= |α|2 ⟨Qx,x⟩+ ⟨Qy,y⟩+α ⟨Qx,y⟩+α ⟨Qy,x⟩ .

By assumption, we have ⟨Qx,x⟩= 0 and ⟨Qy,y⟩= 0. Setting α = 1 yields

⟨Qx,y⟩+ ⟨Qy,x⟩= 0.

On the other hand, setting α = i gives α =−i and

⟨Qx,y⟩−⟨Qy,x⟩= 0.

By addition, ⟨Qx,y⟩= 0, and Q = 0 follows from (a).

In (b) of Lemma 3.4, we mentioned that X must be a complex inner product space. In-
deed, the conclusion may not hold if X is real. A standard counterexample can be ob-
tained by letting Q be an anticlockwise rotation of R2 through a right angle In general,
the rotation matrix is given by

T : R2 → R2 where (x,y) 7→ (xcosθ − ysinθ ,xsinθ + ycosθ) .

Setting θ = π

2 , it follows that (x,y) 7→ (−y,x). Hence, the rotation matrix representing Q
is [

0 −1
1 0

]
where one checks that

[
0 −1
1 0

][
x
y

]
=

[
−y
x

]
.

Q is a bounded linear operator, and Qx ⊥ x, hence ⟨Qx,x⟩ = 0 for all x ∈ R2. However,
Q ̸= 0.
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We then list some general properties of Hilbert-adjoint operators which one uses quite
frequently in applying these operators.

Theorem 3.19 (Hilbert-adjoint operators). Let H1,H2 be Hilbert operators and
let S,T : H1 → H2 be bounded linear operators and α be any scalar. Then, the
following hold for all x ∈H1 and y ∈H2:

(a) ⟨T ∗y,x⟩= ⟨y,T x⟩

(b) (S+T )∗ = S∗+T ∗

(c) (αT )∗ = αT ∗

(d) (T ∗)∗ = T

(e) ∥T ∗T∥= ∥T T ∗∥= ∥T∥2

(f) T ∗T = 0 if and only if T = 0

(g) (ST )∗ = T ∗S∗ assuming that H1 =H2

Proof. (a) follows from

⟨T ∗y,x⟩= ⟨x,T ∗y⟩= ⟨T x,y⟩= ⟨y,T x⟩ .

To prove (b), we have〈
x,(S+T )∗ y

〉
= ⟨(S+T )x,y⟩= ⟨Sx,y⟩+ ⟨T x,y⟩= ⟨x,S∗y⟩+ ⟨x,T ∗y⟩= ⟨x,(S∗+T ∗)y⟩

which implies that (S+T )∗ y = (S∗+T ∗)y for all y.

To prove (c), we have〈
(αT )∗ y,x

〉
= ⟨y,(αT )x⟩= ⟨y,α (T x)⟩= α ⟨y,T x⟩= α ⟨T ∗y,x⟩= ⟨αT ∗y,x⟩ .

To prove (d), we have 〈
(T ∗)∗ x,y

〉
= ⟨x,T ∗y⟩= ⟨T x,y⟩ .

By Lemma 3.4 with Q = (T ∗)∗−T , the result follows.

For (e), note that

T ∗T : H1 →H1 but T T ∗ : H2 →H2.

By the Cauchy-Schwarz inequality, we have

∥T x∥2 = ⟨T x,T x⟩= ⟨T ∗T x,x⟩ ≤ ∥T ∗T x∥∥x∥ ≤ ∥T ∗T∥∥x∥2 .

Taking the supremum over all x of norm 1, we obtain ∥T∥2 ≤ ∥T ∗T∥. It follows that

∥T∥2 ≤ ∥T ∗T∥ ≤ ∥T ∗∥∥T∥= ∥T∥2 which implies ∥T ∗T∥= ∥T∥2 .
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Replacing T with T ∗, it follows that

∥T ∗∗T ∗∥= ∥T ∗∥2 = ∥T∥2 .

The result follows from (d). (f) can be seen as a consequence of (e). Lastly, to prove (g),
we have 〈

x,(ST )∗ y
〉
= ⟨(ST )x,y⟩= ⟨T x,S∗y⟩= ⟨x,T ∗S∗y⟩

so it follows that (ST )∗ = T ∗S∗.

3.6 Self-Adjoint, Unitary and Normal Operators

Definition 3.11 (self-adjoint, unitary and normal operators). A bounded linear op-
erator T : H→H on a Hilbert space H is said to be

self adjoint or Hermitian if T ∗ = T

unitary if T is bijective and T ∗ = T−1

normal if T T ∗ = T ∗T

Recall the Hilbert-adjoint operator T ∗ of T mentioned in Definition 3.18, which is
⟨T x,y⟩ = ⟨x,T ∗y⟩. If T is self-adjoint, then the formula becomes ⟨T x,y⟩ = ⟨x,Ty⟩. If T
is self-adjoint or unitary, then T is normal. This can be easily seen from the definition.
Also, note that

a normal operator need not be self-adjoint or unitary.

For example, we can consider the identity operator I : H → H, then T = 2iI is normal
since T ∗ = −2iI which implies T T ∗ = T ∗T = 4I but T ∗ = T and T ∗ ̸= T−1 (where
T−1 =−1

2 iI.

Example 3.10 (matrices). We can consider Cn with the inner product defined by

⟨x,y⟩= xTy,

where x and y are written as column vectors, and the superscript T denotes matrix trans-
position.

Let T : Cn → Cn be a linear operator (which is bounded). A basis for Cn being given, we
can represent T and Hilbert-adjoint operator T ∗ by two n-rowed square matrices, say A
and B respectively. By the familiar rule (Bx)T = xTBT, it follows that

⟨T (x) ,y⟩= (Ax)T y = xTATy and ⟨x,T ∗ (y)⟩= xTBy.

As ⟨T (x) ,y⟩ = ⟨x,T ∗ (y)⟩, it follows that AT = B. Consequently, B = AT. As such, we
obtain Proposition 3.6.
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Example 3.11 (derivatives). Let

X = { f ∈ C∞ [0,1] : f (0) = f (1) = 0} and D : X →C∞ [0,1] denote the differentiation operator.

We claim that D satisfies D∗ =−D, where D∗ denotes the adjoint of D. We have

⟨D f ,g⟩=
∫ 1

0
f ′ (x)g(x) dx =−

∫ 1

0
f (x)g′ (x) dx using integration by parts and f (0) = f (1) = 0

which is ⟨ f ,−Dg⟩. It follows that D∗D =−D2. In one dimension, the Laplacian is given
by the second derivative. However, sign conventions matter. Since D∗D =−D2, we have
D∗D f =− f ′′. This operator − f ′′ with Dirichlet boundary conditions (i.e. f (0) = f (1) =
0) is exactly what is often called the Dirichlet Laplacian.

Example 3.12 (MA4211 AY24/25 Sem 2 Tutorial 7). Let K : [a,b]× [a,b]→ R be con-
tinuous. Assume that K (x,y) = K (y,x). Define the operator T on L2 [a,b] by

(T f )(x) =
∫ b

a
K (x,y) f (y) dy.

Show that T is self-adjoint.

Solution. Recall that

⟨ f ,g⟩=
∫ b

a
f (y)g(y) dy so ⟨T f ,g⟩=

∫ b

a
(T f )(x)g(x) dx.

This implies that

⟨T f ,g⟩=
∫ b

a

∫ b

a
K (x,y) f (y)g(x) dydx

By definition, T being an adjoint operator implies that ⟨T f ,g⟩ = ⟨ f ,T ∗g⟩. We wish to
prove that T is self-adjoint, i.e. ⟨T f ,g⟩= ⟨ f ,T g⟩. Here, we note that

⟨ f ,T g⟩=
∫ b

a
f (x)(T g)(x) dx =

∫ b

a
f (x)

∫ b

a
K (x,y)g(y) dydx =

∫ b

a
f (x)

∫ b

a
K (x,y) ·g(y) dydx.

Since the kernel function K satisfies K (x,y)=K (y,x) and also using the fact that K (y,x)=
K (x,y), then∫ b

a
f (x)

∫ b

a
K (x,y) ·g(y) dydx =

∫ b

a

∫ b

a
f (x)K (x,y)g(y) dydx.

The result follows from here. □

Proposition 3.6. If a basis for Cn is given and a linear operator on Cn is represented
by a certain matrix, then its Hilbert-adjoint operator is represented by the complex
conjugate transpose of that matrix.

From Proposition 3.18, we can represent matrices as follows:

a matrix is Hermitian if T is self-adjoint or Hermitian

a matrix is unitary if T is unitary

a matrix is normal if T is normal
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Similarly, for a linear operator T : Rn → Rn,

a matrix is real symmetric if T is self-adjoint

a matrix is orthogonal if T is unitary

Definition 3.12. A square matrix A =
(
α jk
)

is said to be

Hermitian if AT
= A

skew-Hermitian if AT
=−A

unitary if AT
= A−1

normal if AAT
= ATA

Definition 3.13. A real square matrix A =
(
α jk
)

is said to be

real symmetric if AT = A

real skew-symmetric if AT =−A

orthogonal if AT = A−1

Hence, a real Hermitian matrix is a real symmetric matrix, a real skew-Hermitian ma-
trix is a (real) skew-symmetric matrix, and a real unitary matrix is an orthogonal matrix.

Theorem 3.20. Let T : H→H be a bounded linear operator on a Hilbert space H.
Then, the following hold:

(a) If T is self-adjoint, then ⟨T x,x⟩ is real for all x ∈H

(b) If H is complex and ⟨T x,x⟩ is real for all x ∈ H, then the operator T is self-
adjoint

Proof. For (a), since T is self-adjoint, then for all x, we have

⟨T x,x⟩= ⟨x,T x⟩= ⟨T x,x⟩ .

As ⟨T x,x⟩ is equal to its complex conjugate, then it is real.

We then prove (b). Since ⟨T x,x⟩ is real for all x, then

⟨T x,x⟩= ⟨T x,x⟩= ⟨x,T ∗x⟩= ⟨T ∗x,x⟩

which implies

0 = ⟨T x,x⟩−⟨T ∗x,x⟩= ⟨(T −T ∗)x,x⟩ .

As such, T −T ∗ = 0 since H is complex.
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Theorem 3.21 (self-adjointness of product). The product of two bounded self-
adjoint linear operators S and T on a Hilbert space H is self-adjoint if and only
if the opeerators commute, i.e. ST = T S.

Proof. This follows from the fact that (ST )∗ = T ∗S∗ = T S so ST = (ST )∗ if and only if
ST = T S.

Theorem 3.22 (sequences of self-adjoint operators). Let {Tn}n∈N be a sequence of
bounded self-adjoint linear operators Tn : H → H on a Hilbert space H. Suppose
{Tn}n∈N converges, say

Tn → T i.e. ∥Tn −T∥→ 0.

Here, ∥·∥ is a norm on the space B(H,H). Then, the limit operator T is a bounded
self-adjoint linear operator on H.

Proof. We must show that T ∗ = T , which follows from ∥T −T ∗∥= 0. As such, it suffices
to prove the latter. We use the fact hat

∥T ∗
n −T ∗∥=

∥∥(Tn −T )∗
∥∥= ∥Tn −T∥

and obtain the triangle inequality in B(H,H) the following:

∥T −T ∗∥ ≤ ∥T −Tn∥+∥Tn −T ∗
n ∥+∥T ∗

n −T ∗∥
≤ ∥T −Tn∥+0+∥Tn −T∥
= 2∥Tn −T∥

which goes to 0 as n goes to infinity. We conclude that T ∗ = T .

Theorem 3.23 (unitary operator). Let H be a Hilbert space. Let the operators

U : H→H and V : H→H be unitary.

Then, the following hold:

(a) U is isometric, so ∥Ux∥= ∥x∥ for all x ∈H

(b) For H ≠ {0}, then ∥U∥= 1

(c) U−1 is unitary

(d) UV is unitary

(e) U is normal

(f) A bounded linear operator T on a complex Hilbert space H is unitary if and
only if T is isometric and surjective
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Note that an isometric operator need not be unitary as it may not be surjective. A
classic counterexample is the right shift operator

T : ℓ2 → ℓ2 where (ξ1,ξ2,ξ3, . . .) 7→ (0,ξ1,ξ2,ξ3, . . .)

where x = (ξi) ∈ ℓ2.





Chapter 4
Fundamental Theorems for Normed

and Banach Spaces

4.1 A Survey of the Four Classic Theorems

Definition 4.1 (sublinear functional). A real-valued functional p : X →R on a vec-
tor space X is said to be sublinear if it is subadditive and homogeneous, i.e.

(i) for all x,y ∈ X , we have p(x+ y)≤ p(x)+ p(y)

(ii) for all x ∈ X and α ≥ 0, we have p(αx) = α p(x)

Definition 4.2 (seminorm). Let X be a vector space over F, where F = R or C. A
real-valued function p : X →R is a seminorm if it satisfies the following conditions:

(i) Subadditivity: for all x,y ∈ X , we have p(x+ y)≤ p(x)+ p(y)

(ii) Absolute homogeneity: for all x ∈ X and s ∈ F, we have p(sx) = |s| p(x)

(iii) Non-negativity: for all x ∈ X , we have p(x)≥ 0

Example 4.1 (MA4211 AY24/25 Sem 2 Tutorial 6). Let X be a vector space and ϕ :
X ×X → F be a sesquilinear form that satisfies

ϕ (x,y) = ϕ (y,x) and ϕ (x,x)≥ 0 for all x,y ∈ X .

(a) Show that ϕ satisfies
|ϕ (x,y)|2 ≤ ϕ (x,x) ·ϕ (y,y) .

(b) Show that ρ (x) =
√

ϕ (x,x) defines a seminorm on X .

Solution.

(a) This is essentially the Cauchy-Schwarz inequality for a positive definite sesquilin-
ear form. If y= 0, then the result holds trivially. If y ̸= 0, then let λ ∈ F be arbitrary.

75
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By the assumption that ϕ (z,z) ≥ 00 for z ∈ X , consider the vector x+λy so that
we have

ϕ (x+λy,x+λy)≥ 0.

Upon expansion, we have

ϕ (x+λy,x+λy) = ϕ (x,x)+λϕ (y,x)+λϕ (x,y)+ |λ |2 ϕ (y,y)≥ 0.

Choose

λ =−ϕ (x,y)
ϕ (y,y)

so the above inequality becomes

ϕ (x,x)− ϕ (x,y)
ϕ (y,y)

ϕ (y,x)− ϕ (x,y)
ϕ (y,y)

ϕ (x,y)+ |λ |2 ϕ (y,y)≥ 0.

Since ϕ (y,x) = ϕ (x,y), then

ϕ (x,x)−2
ϕ (x,y)
ϕ (y,y)

ϕ (x,y)+ |λ |2 ϕ (y,y)≥ 0

ϕ (x,x)−2
ϕ (x,y)
ϕ (y,y)

ϕ (x,y)+
(ϕ (x,y))2

ϕ (y,y)
≥ 0

ϕ (x,x)ϕ (y,y)−2ϕ (x,y)ϕ (x,y)+(ϕ (x,y))2 ≥ 0

Since ϕ (x,y)ϕ (x,y) = (ϕ (x,y))2, then the result follows.

(b) Absolute homogeneity and non-negativity are clear. As such, we will only prove
that ρ satisfies the triangle inequality. We have

ρ (x+ y) =
√

ϕ (x+ y,x+ y)

=
√

ϕ (x,x)+ϕ (x,y)+ϕ (y,x)+ϕ (y,y)

≤
√

ϕ (x,x)+
√

ϕ (y,y)

= ρ (x)+ρ (y)

Here, we used the fact that√
ϕ (x,x)+ϕ (x,y)+ϕ (y,x)+ϕ (y,y)≤

√
ϕ (x,x)+

√
ϕ (y,y),

which is equivalent to

ϕ (x,x)+ϕ (x,y)+ϕ (y,x)+ϕ (y,y)≤ ϕ (x,x)+ϕ (y,y)+2
√

ϕ (x,x)ϕ (y,y)

ϕ (x,y)+ϕ (y,x)≤ 2
√

ϕ (x,x)ϕ (y,y)

and this follows from (a). Hence, ρ is a seminorm on X .

Starting from the next section, we will introduce the four fundamental theorems of Func-
tional Analysis () — namely the Hanh-Banach theorem (Theorem 4.1), the uniform bound-
edness principle (Theorem 4.5), the open mapping theorem (Theorem 4.8), and the closed
graph theorem (Theorem 4.9).

4.2 Hanh-Banach Theorem
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Theorem 4.1 (Hanh-Banach theorem). Let Y be a subspace of X and

ϕ : Y → F such that |ϕ (y)| ≤ ∥y∥ for all y ∈ Y.

Then, there exists

ϕ̂ : X → F such that ϕ̂ (y) = ϕ (y) for all y ∈ Y and |ϕ̂ (x)| ≤ ∥x∥ for all x ∈ X .

Here is a special case of the Hanh-Banach theorem.

Corollary 4.1 (Hanh-Banach theorem on normed spaces). Let ϕ be a bounded
linear functional on a subspace Z of a normed space X . Then, there exists a bounded
linear functional ϕ̃ on X which is an extension of ϕ to X and has the same norm
∥ϕ̃∥= ∥ϕ∥.

A useful case of Corollary 4.1 is when Z is a one-dimensional subspace of X . Suppose
Z = span{x0}. Then, over either R or C, there exists a unique ϕ ∈ Z′ such that ϕ (x0) =

∥x0∥, and we have ∥ϕ∥ = 1. As such, we have the following theorem on bounded linear
functionals (Theorem 4.2).

Theorem 4.2 (bounded linear functionals). Let X be a normed space and let x0 ̸= 0
be an element of X . Then, there exists

a bounded linear functional ϕ̃ such that ∥ϕ̃∥= 1 and ϕ̃ (x0) = ∥x0∥ .

Example 4.2 (MA4211 AY24/25 Sem 2 Tutorial 7). In this exercise, we establish the
ingredients needed to prove the complex Hahn-Banach theorem from the real version.

(a) Show that for any complex number z, we have

z = ℜz− iℜ(iz) .

(b) Let X be a complex vector space and ϕ a linear functional on X . Define

ψ (x) = ℜ(ϕ (x)) .

Show that
ϕ (x) = ψ (x)− iψ (ix) for all x ∈ X .

(c) Let X be a complex vector space and suppose ψ is a functional on X that is linear
over the real numbers. Define

ϕ (x) = ψ (x)− iψ (ix) .

Show that ϕ is linear over the complex numbers.

(d) Let X be a normed space. Show that, using the definitions above,

∥ϕ∥= ∥ψ∥ .
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Solution.

(a) Note that z = x+ iy, where x,y ∈ R. So, iz =−y+ ix. The result follows.

(b) This is similar to (a) so we omit the proof.

(c) For any x,y ∈ X and a,b ∈ R, we have

ψ (ax+by) = aψ (x)+bψ (y) .

We wish to prove that ϕ is linear over C, i.e. for any λ ,µ ∈ C, we have

ϕ (λx+µy) = λϕ (x)+µϕ (y) .

To see why this holds, let λ = a+bi, where a,b ∈ R. Then,

ϕ (λx) = ϕ ((a+bi)x) = ψ (ax+bix)− iψ (i(a+bi)x) .

Applying real linearity to the first term yields

ψ (ax+bix) = aψ (x)+bψ (ix) .

Applying real linearity to the second term yields

ψ (i(a+bi)x) = aψ (ix)−bψ (x) .

As such,

ψ (ax+bix)− iψ (i(a+bi)x) = (a+bi)ψ (x)− i(a+bi)ψ (ix) = (a+bi)ϕ (x) = λϕ (x)

It is then easy to prove that for any x,y ∈ C, we have ϕ (x+ y) = ϕ (x)+ϕ (y).

(d) We want to show that

∥ϕ∥= sup
∥x∥≤1

|ϕ (x)|= ∥ψ∥= sup
∥x∥≤1

|ψ(x)| .

We first prove that ∥ψ∥ ≤ ∥ϕ∥. For any x ∈ X , we have ψ (x) = Reϕ , so |ψ (x)|=
|Re(ϕ (x))| ≤ |ϕ (x)|. Taking the supremum over all x with ∥x∥ ≤ 1 yields

∥ψ∥= sup
∥x∥≤1

|ψ (x)| ≤ sup
∥x∥≤1

|ϕ (x)|= ∥ϕ∥ .

Next, we prove that ∥ϕ∥ ≤ ∥ψ∥. For any fixed x ∈ X , consider the complex num-
ber ϕ (x). Then, there exists θ ∈ R such that e−iθ ϕ (x) = |ϕ (x)| ≥ 0. Since ϕ is
complex-linear and ψ (x) = Re(ϕ (x)), we have

Re
(

e−iθ
ϕ (x)

)
= ψ

(
e−iθ x

)
.

Since
e−iθ

ϕ (x) = |ϕ (x)| ,

we obtain |ϕ(x)|= ψ
(
e−iθ x

)
. Because

∥∥e−iθ x
∥∥= ∥x∥, it follows that

|ϕ(x)|= |ψ(e−iθ x)| ≤ ∥ψ∥∥e−iθ x∥= ∥ψ∥∥x∥.

Taking the supremum over all x with ∥x∥ ≤ 1, we deduce that ∥ϕ∥ ≤ ∥ψ∥, and the
result follows.

An important application of the Hanh-Banach theorem is on the norm of an adjoint oper-
ator.
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Definition 4.3 (adjoint operator). Let X and Y be two normed spaces and T : X →Y
be a bounded linear operator. The adjoint operator T× of T is a mapping

T× : Y ′ → X ′ such that for any f ∈ Y ′ we have
(
T× f

)
(x) = f (T x) .

Theorem 4.3. The adjoint operator T× of a bounded linear operator T : X → Y is
also a bounded operator, and ∥T×∥= ∥T∥.

Example 4.3 (adjoint operator). Let H1 and H2 be Hilbert spaces and T : H1 →H2 be
a bounded linear operator. Then, there exist maps A1 : H′

1 →H1 and A2 : H′
2 →H2 such

that any f ∈ H′
i can be represented as f (x) = ⟨x,Ai ( f )⟩, where i = 1,2. Tus, for any

x ∈H1 and f ∈H′
2, the adjoint operator T× satisfies(

T× f
)
(x) = f (T x) = ⟨T x,A2 f ⟩= ⟨x,T ∗A2 f ⟩ .

Hence, the adjoint operator is related to the Hilbert-adjoint operator via

A1T× = T ∗A2 or T× = A−1
1 T ∗A2.

4.3 Uniform Boundedness Principle

Definition 4.4 (category). Let X be a metric space. A subset M of X is said to be

(i) rare (or nowhere dense) in X if M has no interior points

(ii) meager (or of the first category) in X if M is the union of countably many
sets, each of which is rare in X

(iii) non-meager (or of the second category) in X if M is not meager in X

Theorem 4.4 (Baire category theorem). Let X ̸= /0 be a complete metric space.
Then, it is non-meager in itself. Hence, if X ̸= /0 is complete and

X =
∞⋃

k=1

Ak then at least one Ak contains a non-empty open subset.

Simply said, the Baire category theorem stated that any complete metric space cannot
be expressed as the union of countably many nowhere dense subsets, where a subset is
nowhere dense if its closure does not contain any open set. We then introduce the uni-
form boundedness principle (Theorem 4.5), which is also known as the Banach-Steinhaus
theorem.

Theorem 4.5 (uniform boundedness principle). Pointwise boundedness is equiva-
lent to boundedness in the operator norm. More formally, let X be a Banach space
and Y a normed linear space. Consider a family F of bounded linear operators
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T : X → Y . Then the following statements are equivalent:

(i) Pointwise boundedness: For every x ∈ X , the set

{T (x) : T ∈ F} is bounded in Y,

that is, for every x ∈ X there exists a constant M (x)< ∞ such that

sup
T∈F

∥T (x)∥ ≤ M (x) .

(ii) Uniform boundedness in the operator norm: F is bounded in the operator
norm, i.e.,

sup
T∈F

∥T∥< ∞ where ∥T∥= sup
∥x∥≤1

∥T (x)∥ .

With the Hahn-Banach theorem and uniform boundedness theorem at our disposal,
we can discuss the concept of weak convergence of a sequence. This is different from the
usual strong convergence if the normed space is infinite-dimensional.

Definition 4.5 (weak and strong convergence). Let X be a normed space. A se-
quence {xn}n∈N in X is weakly convergent if there exists x ∈ X (called the weak
limit) such that for every f ∈ X ′, we have

lim
n→∞

f (xn) = f (x) for which we write xn ⇀ x.

In contrast, {xn}n∈N is strongly convergent to the limit x, if

lim
n→∞

∥xn − x∥= 0 for which we write lim
n→∞

xn = x.

Example 4.4. Let x = (0,0, . . . ,0) ∈ Rd and define the sequence

xn =

(
1
n
,
1
n
, . . . ,

1
n

)
for n ∈ N.

The ℓ1-norm in Rd is given by

∥y∥1 =
d

∑
i=1

|yi| .

Thus, for the difference xn − x = xn, we have

∥xn − x∥1 = ∥xn∥1 =
d

∑
i=1

∣∣∣∣1n
∣∣∣∣= d

n
.

Since
lim
n→∞

d
n
= 0,

we conclude that
lim
n→∞

∥xn − x∥1 = 0.
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Therefore, the sequence {xn}n∈N converges strongly to x in Rd with respect to the ℓ1-
norm.

Lemma 4.1. Let {xn}n∈N be a sequence in a normed space X . Then, the following
hold:

(i) If xn → x, then xn ⇀ x

(ii) If X is finite-dimensional and xn ⇀ x, then xn → x

Example 4.5. Consider the space ℓ2. In this space, let

xn =

0, . . . ,0︸ ︷︷ ︸
n copies

,1,0, . . .

 .

We claim that this sequence converges weakly to x = (0,0, . . .). To see why, repre-
sent a linear functional f by the inner product to a vector z f , and we have for any
z f = (ζ1,ζ2, . . .) ∈ ℓ2, we have

lim
n→∞

f (xn) = lim
n→∞

〈
xn,z f

〉
= lim

n→∞
ζn = 0.

However, clearly xn does not converge to x since for any n ∈ N, we have ∥xn − x∥= 1 for
all xn, so the strong limit of xn is not x.

Lemma 4.2. Let {xn}n∈N be a weakly convergent sequence with weak limit x in a
normed space X . Then, the following hold:

(i) The weak limit x is unique

(ii) Every subsequence of xn converges to x weakly

(iii) The sequence {∥xn∥}n∈N is bounded

Proof. We first prove (i). Suppose on the contrary that the weak limits are distinct,
i.e. xn ⇀ x and xn ⇀ y. Then, ϕ (xn) → ϕ (x) and ϕ (xn) → ϕ (y), which implies that
ϕ (x) = ϕ (y). By the Hanh-Banach theorem (Corollary 4.1), we conclude that the weak
limit x is unique.

To prove (ii), suppose ϕ (xn) → ϕ (x). Since every subsequence of ϕ (xn) converges,
then the result follows. We leave the proof of (iii) as an exercise for the reader, which can
be proven using the uniform boundedness principle (Theorem 4.5).

Lemma 4.3. In a normed space X and a total set M of X , we have

xn ⇀ x if and only if {∥xn∥}n∈N is bounded and for any f ∈M we have lim
n→∞

f (x−n)= f (x) .
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If we consider the convergence in the space B(X ,Y ) (recall that this is the space of
bounded linear maps from X to Y ), we have more refined definitions of convergence
(Definition 4.6).

Definition 4.6 (uniform, strong, and weak operator convergence). Let X and Y be
normed spaces. A sequence of operators {Tn}n∈N ⊆ B(X ,Y ) is said to be

(i) uniformly operator convergent to T ∈ B(X ,Y ) if ∥Tn → T∥→ 0

(ii) strongly operator convergent to T ∈ B(X ,Y ) if for any x ∈ X , we have
∥Tn (x)−T (x)∥→ 0

(iii) weakly operator convergent to T ∈ B(X ,Y ) if

for any x ∈ X and f ∈ Y ′ we have | f (Tn (x))− f (T (x))| → 0

T is called the uniform, strong, and weak operator limit of Tn respectively.

By Definition 4.6, the uniform operator limit T has to be a bounded linear operator.
The strong and weak operator limits however, may not be bounded by definition although
it is not difficult to show that they are linear operators. We have the following chain of
implications:

uniform operator limit implies strong operator limit implies weak operator limit

The converse to each statement is generally not true (Example 4.6).

Example 4.6. In ℓ2, define the sequence of operators
{

Tn : ℓ2 → ℓ2}
n∈N by

Tn (ξ1,ξ2, . . .) =

0, . . . ,0︸ ︷︷ ︸
n copies

,ξn+1,ξn+2, . . .

 .

Each term is strongly operator convergent to the zero operator since for any x=(ξ1,ξ2, . . .)∈
ℓ2, we have

lim
n→∞

∥Tn (x)−0∥= lim
n→∞

(
∞

∑
i=n+1

|ξi|2
)1/2

= 0.

Since ∥Tn∥= 1 for all n ∈ N, they are not uniformly operator convergent to 0.

We then consider another sequence of operators
{

Sn : ℓ2 → ℓ2}
n∈N defined by

Sn (ξ1,ξ2, . . .) =

0, . . . ,0︸ ︷︷ ︸
n copies

,ξ1,ξ2, . . .

 .

They are weakly operator convergent to the zero operator since for any x = (ξ1,ξ2, . . .) ∈
ℓ2 and any bounded linear functional f : ℓ2 → K such that f (x) =

〈
x,z f

〉
, where z f =



4.3. UNIFORM BOUNDEDNESS PRINCIPLE 83

(α1,α2, . . .), we have

lim
n→∞

| f (Sn (x))−0|= lim
n→∞

|αn+1ξ1 +αn+2ξ2 + . . .| ≤ lim
n→∞

(
∞

∑
i=n+1

|αi|2
)1/2

∥x∥= 0.

Since for all x ̸= 0, we have ∥Sn (x)∥ = ∥x∥ ̸= 0, then the Sn’s are not strongly operator
convergent to 0.

We then introduce Lemma 4.4, which states that the limit of a strongly operator con-
vergent sequence is a bounded linear operator if the domain is a Banach space.

Lemma 4.4. Let X be a Banach space and Y be a normed space. If

{Tn}n∈N⊆B(X ,Y ) is strongly operator convergent with limit T then T ∈B(X ,Y ) .

Theorem 4.6. Let X and Y be Banach spaces and M be a total set of X . A se-
quence {Tn}n∈N ∈ B(X ,Y ) is strongly operator convergent if and only if the se-
quence {∥Tn∥}n∈N is bounded and for every x ∈ M, the sequence {Tn (x)}n∈N is a
Cauchy sequence.

Since bounded linear functionals are special bounded linear operators, we can define
the uniform, strong, and weak operator convergence on them. However, in this special
case, strong and weak operator convergence are equivalent. To see why, note that the only
bounded linear operators on K, the 1-dimensional normed space, are the scalar multipli-
cation maps x 7→ αx. Hence, the weak operator convergence of { fn}n∈N ⊆ X ′ to a linear
operator f : X → K implies that for any α ∈ K and any x ∈ X , we have

lim
n→∞

|α fn (x)−α f (x)|= 0.

This implies that | fn (x)− f (x)| → 0 and then { fn}n∈N are strongly operator convergent
to F . Thus, for bounded linear functionals, we can change the terminologies

uniform operator convergence into strong convergence and

strong/weak operator convergence into weak∗ convergence

Definition 4.7. Let { fn}n∈N ⊆ X ′ be a sequence of bounded linear functionals on a
normed space X . Then, the strong convergence of { fn}n∈N implies that there exists
f ∈ X ′ such that

∥ fn − f∥→ 0 for which we write fn → f .

The weak∗ convergence of { fn}n∈N means that there exists f ∈ X ′ such that

fn (x)→ f (x) for all x ∈ X for whichwe write fn
w∗
−→ f .
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Corollary 4.2. Let X be a Banach space and M be total set of X . A sequence
{ fn}n∈N ⊆ X ′ is weak∗ convergent with the limit being a bounded linear functional
if and only if the sequence {∥ fn∥}n∈N is bounded and the sequence { fn (x)}n∈N is
Cauchy for all x ∈ M.

To end our discussion on the uniform boundedness principle, we give an application
of weak∗ convergence in numerical integration. To evaluate the integral

f (x) =
∫ b

a
x(t) dt

numerically for any continuous function x(t) on [a,b], software usually first decide a
number n, and then choose n+ 1 nodes a ≤ t(n)1 < t(n)2 < .. . < t(n)n ≤ b and n+ 1 real
coefficients α

(n)
0 ,α

(n)
1 , . . . ,α

(n)
n and compute

fn (x) =
n

∑
k=0

α
(n)
k x

(
t(n)k

)
.

In the hope that if n is large enough, then fn (x) is close to f (x). The question is for a
certain way of choosing t(n)k and α

(n)
k for all n, to tell if

fn (x)→ f (x) for all x(t) continuous on [a,b] .

This is difficult to check, but the following is easier:

fn (x)→ f (x) for all polynomials x(t) .

Theorem 4.7. Let the numerical integrations fn on [a,b] be defined by

fn (x) =
n

∑
k=0

α
(n)
k x

(
t(n)k

)
where t(n)k and α

(n)
k are chosen for any n ∈ N.

Then, the convergence fn (x)→ f (x) for x(t) continuous on [a,b] holds if and only
if the convergence fn (x)→ f (x) for x(t) continuous on [a,b] holds, and there exists
c > 0 such that

∞

∑
k=0

∣∣∣α(n)
k

∣∣∣< c for all n ∈ N.

4.4 Open Mapping Theorem
Recall that a linear operator between two normed spaces is bounded if and only if it is
continuous, i.e. the preimage of an open set is open. Given two metric spaces X and Y ,
we say that a mapping f : X → Y is an open mapping if for any open set U ⊆ X , f (U) is
an open set in Y .

Perhaps the open mapping theorem (Theorem 4.8) would make sense if we first intro-
duce the following lemma (Lemma 4.5):
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Lemma 4.5. Let X and Y be Banach spaces. A surjective bounded linear operator
T : X →Y has the property that T (B(0,1)) contains an open ball centered at 0 ∈Y .

Theorem 4.8 (open mapping theorem). Let X and Y be Banach spaces and T ∈
B (X ,Y ). If

U ⊆ X is open then T (U)⊆ Y is open.

That is, if T is bijective, then T−1 is continuous or bounded.

Remark 4.1. Note the stark difference between the open mapping theorem in Func-
tional Analysis (Theorem 4.8) and the one in Complex Analysis.

4.5 Closed Graph Theorem
Here, we consider closed linear operators. Given two normed spaces X and Y , we define
the product space X ×Y as the normed space with point set {(x,y) : x ∈ X ,y ∈ Y} and the
norm ∥(x,y)∥= ∥x∥+∥y∥.

Definition 4.8 (graph). If X and Y are normed spaces and T ∈L(X ,Y ) (set of linear
maps from X to Y ), define

Γ(T ) = {(x,T (x)) : x ∈ X} .

Definition 4.9 (closed linear operator). Let X and Y be normed spaces and T : X →
Y be a linear operator. T is said to be a closed linear operator if its graph

Γ(T ) is closed in the normed space X ×Y.

Example 4.7. Consider the subspace

C1 [a,b] =
{

x(t) ∈ C [a,b] : x′ (t) exists and x′ (t) ∈ C [a,b]
}
.

Here, C [a,b] is the obvious normed space consisting of continuous functions on [a,b]
equipped with the norm

∥x(t)∥= max
t∈[a,b]

|x(t)| .

Then, the linear operator

T : C1 [a,b]→C [a,b] such that T (x(t)) = x′ (t) is unbounded.

Note that T (xn) = nxn−1 denotes the obvious differentiation operator. However, T is a
closed operator. To see why, let {xn (t) ,x′n (t)}n∈N ⊆ Γ(T ) be any convergent sequence
with limit (x(t) ,y(t)). That is, x(t) ∈ C1 [a,b] and y(t) ∈ C [a,b], and

lim
n→∞

∥xn − x∥+
∥∥x′n − y

∥∥= 0.



86
CHAPTER 4. FUNDAMENTAL THEOREMS FOR NORMED AND BANACH

SPACES

This is equivalent to saying that

lim
n→∞

∥xn − x∥= 0 and lim
n→∞

∥∥x′n − y
∥∥= 0.

It is equivalent to say that {xn (t)}n∈N is a sequence of functions which converges uni-
formly to x(t) on [a,b], they are differentiable with continuous derivatives, and {x′n (t)}n∈N
converges uniformly to y(t) on [a,b]. It follows that (x(t) ,y(t)) ∈ Γ(T ), which implies
that x′ (t) = y(t). We conclude that T is a closed operator.

Theorem 4.9 (closed graph theorem). Let X and Y be Banach spaces, and let T :
D (T )→ Y be a closed linear operator. If the domain D (T ) is closed in X , then T
is bounded. Consequently, if

D (T ) is dense in X then T has a unique bounded extension to all of X .

Corollary 4.3. Let X and Y be normed spaces. If T ∈ L(D(T ) ,Y ), then

T is closed if and only if xn → x and T (xn)→ y.

Lemma 4.6. Let T : X →Y be a bounded linear operator. Then, T is a closed linear
operator.
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