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Chapter 1
Introduction to Groups

1.1 Basic Axioms and Examples

Definition 1.1 (group axioms). A group consists of an underlying set G, equipped
with a multiplication map ·, where

· : G×G → G such that (a,b) 7→ a ·b or ab,

the identity element e ∈ G (usually the identity e is 1), and an inversion map, where

( )−1 : G → G such that a 7→ a−1.

Moreover, the following group axioms must be satisfied:

(i) Associativity of ·: for all a,b,c ∈ G, we have (a ·b) · c = a · (b · c)

(ii) Existence of identity element: for all a ∈ G, there exists e ∈ G such that
a · e = e ·a = a

(iii) Existence of inverse element: for all a ∈ G, we have a ·a−1 = a−1 ·a = e

Definition 1.2 (Abelian group). A group G is Abelian or commutative if the ele-
ments commute, i.e.

for all a,b ∈ G, we have a ·b = b ·a.

Example 1.1 (Dummit and Foote p. 21 Question 7). Let G = {x ∈ R : 0 ≤ x < 1} and
for x,y ∈ G, let x∗ y be the fractional part of x+ y, i.e. x∗ y = x+ y− [x+ y], where [a] is
the greatest integer less than or equal to a. Prove that ∗ is a well-defined binary operation
on G and that G is an Abelian group under ∗ (called the real numbers mod 1).

Solution. To show that ∗ is a binary operation, we need to show that

for any 0 ≤ x,y < 1 we have 0 ≤ x+ y− [x+ y]< 1.

1
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Since 0 ≤ x+ y < 2 and [x+ y] ∈ {0,1}, it follows that 0 ≤ x+ y− [x+ y] < 1, so ∗ is a
binary operation. Well-definedness of ∗ follows from here too.

We then prove that (G,∗) forms a group. Closure was already established; the existence
of the identity element 0 ∈ G, and for every x ∈ G, 1− x ∈ G is an inverse because

x∗ (1− x) = x+(1− x)− [x+1− x] = 0.

Proving associativity is slightly tedious. Suppose x,y,z ∈ G. Then,

(x∗ y)∗ z = (x+ y− [x+ y])∗ z = x+ y+ z− [x+ y]− [x+ y+ z− [x+ y]]

and

x∗ (y∗ z) = x∗ (y+ z− [y+ z]) = x+ y+ z− [y+ z]− [x+ y+ z− [y+ z]]

Hence, it suffices to show that

[x+ y]+ [x+ y+ z− [x+ y]] = [y+ z]+ [x+ y+ z− [y+ z]] .

There are four cases to consider, which are as follows:

(i) [x+ y] = 0 and [y+ z] = 0

(ii) [x+ y] = 1 and [y+ z] = 1

(iii) [x+ y] = 0 and [y+ z] = 1

(iv) [x+ y] = 1 and [y+ z] = 0

Cases (i) and (ii) are obvious. Since (iii) and (iv) are symmetric, we will only prove for
Case (iii). We have

[x+ y]+ [x+ y+ z− [x+ y]] = [x+ y+ z]

and

[y+ z]+ [x+ y+ z− [y+ z]] = 1+[x+ y+ z−1] .

Using the substitution t = x+y+ z, where we note that 0 ≤ t < 3, it suffices to prove that
[t] = 1+ [t −1], which is obviously true. We conclude that G is a group equipped with
the binary operation ∗.

Lastly, we need to show that G is Abelian. Suppose g1,g2 ∈ G. Then,

g1 ∗g2 = g1 +g2 − [g1 +g2] = g2 +g1 − [g2 +g1] = g2 ∗g1,

so G is Abelian. □

Example 1.2 (Dummit and Foote p. 22 Question 25). Prove that if x2 = 1 for all x ∈ G,
then G is Abelian.

Solution. Suppose x,y ∈ G. Then, (xy)2 = 1, which implies xyxy = 1. Hence, xy =

y−1x−1. Since x2 = 1, then x = x−1, so it follows that xy = yx. As such, G is Abelian. □
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In Example 1.2, such elements x ∈ G are said to be idempotent. There is an analogous
concept in Linear Algebra, i.e. a square matrix A is idempotent if and only if A2 = I.

Example 1.3 (Dummit and Foote p. 22 Question 24). If a and b are commuting elements
of G, prove that (ab)n = anbn for all n ∈ Z. (Hint: Do this by induction for positive n
first.)

Solution. We will only prove the inductive step. Given that a,b ∈ G are commuting
elements such that (ab)k = akbk, then

(ab)k+1 = (ab)(ab)k = abakbk = baakbk = bak+1bk = ak+1bbk = ak+1bk+1.

So, (ab)n = anbn for all n ∈ Z+ by induction. The proof for negative integers is similar
by replacing n with −n. Also, the proof for the case when n = 0 is trivial. □

Proposition 1.1. Let G be a group. Then, the following hold:

(i) The identity element e of G is uniquely determined by ·

(ii) For any a ∈ G, the inverse a−1 of a is uniquely determined by a, · and e

(iii) Idempotence of inverse operation: For any a ∈ G,
(
a−1)−1

= a

(iv) Shoe-socks property: For any a,b ∈ G, (a ·b)−1 =
(
b−1) · (a−1)

(v) Generalised associativity law: For any n ∈ N and for any a1, . . . ,an ∈ G,

the value of a1 · . . . ·an ∈ G is independent of how the expression is bracketed

Proof. We will only prove (i) and (ii). The proofs of (iii) and (iv) are quite straightfor-
ward. Lastly, (v) can be proven using strong induction but it is rather tedious.

We first prove (i). Assume f ∈ G is also an identity element. Then, by (ii) of Defini-
tion 1.1, we have a · f = f ·a = a. Replacing a with e, we have f = f · e = e, where the
first equality f = f ·e follows because e∈G is an identity element. As e= f , we conclude
that the identity element is uniquely determined by ·.

We then prove that (ii) holds. Assume b ∈ G is also an inverse element. Then, by (iii) of
Definition 1.1, b also satisfies a ·b = b ·a = e. As such,

b = b · e = b ·
(
a ·a−1)= (b ·a) ·a−1 = e ·a−1 = a−1

so b = a−1, implying that the inverse of a is unique.

As such, by (i) and (ii) of Proposition 1.1, it is common to specify a group simply
by giving the underlying set G and the multiplication map · : G×G → G. The identity
element e ∈ G and the inversion map are then understood implicitly.
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Corollary 1.1 (generalised shoe-socks property). The shoe-socks property in (iv) of
Proposition 1.1 can be generalised as follows:

(a1a2 . . .an)
−1 = a−1

n a−1
n−1 . . .a

−1
1 for all a1,a2, . . . ,an ∈ G.

Corollary 1.1 is presented as a question on p. 22 Question 15 of the Dummit and
Foote textbook.

Example 1.4 (trivial group). Any singleton {e} is a group. This is known as the trivial
group.

Example 1.5 (additive groups). Under +, Z,Q,R,C are groups. However, N under +
is not a group since it does not have an identity element. Although obvious, to deduce
rigorously, suppose on the contrary that e is the additive identity of N. Then,

for any a ∈ N, there exists e ∈ N such that a+ e = a.

This means that e = 0, but 0 ̸∈ N. Moreover, one recalls the subset inclusion

N⊆ Z⊆Q⊆ R⊆ C so because Z is a group, then Q,R,C are groups.

Example 1.6 (multiplicative groups). Under × (or ·), the following sets are groups:

Q× =Q\{0} and R× = R\{0} and C× = C\{0}

These are known as multiplicative groups. Also, although × and · practically denote the
same thing, we use the superscript × instead of · when denoting the respective multiplica-
tive groups, i.e. we write Q× instead of Q·.

To get a sense of what is going on in these groups, we take R× as an example. By the
closure property of groups as mentioned at the start of Definition 1.1, for any x,y ∈ R×,
we must have xy ∈ R×. To put it in plain English, this means that

the product of two non-zero real numbers is also a non-zero real number.

This is obviously true.

Having said all these, Z \ {0} under × does not form a group. This is because (iii) of
Definition 1.1 is not satisfied, i.e. there does not exist an inverse element in this set. To
see why, say we have

a ∈ Z\{0}, and suppose there exists b ∈ Z\{0} such that ab = 1.

Say a = 2, then b = 1/2 ̸∈ Z, so Z\{0} does not form a group under multiplication.

Example 1.7 (multiplicative group of Z). Although Z\{0} under × is not a multiplicative
group (Example 1.6), we see that Z× = {±1} under × is a group. One can easily verify
this property using the group axioms in Definition 1.1.
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Here is a brief taster on rings, although we will introduce them formally in MA3201.
Anyway, we say that a set R is a ring if the following properties are satisfied:

(i) R is a group under +, which is known as the additive group of R

(ii) A∗ = {a ∈ A : there exists b ∈ A such that ab = 1R = ba} is a group under ×, which
is known as the multiplicative group of R

Example 1.8 (integers modulo n). For any n ∈ Z+, define Z/nZ= {0,1,2, . . . ,n−1} to
be the set of integers modulo n, i.e. this set comprises the remainders when any integer is
divided by n.

Under +, Z/nZ is an additive group. Moreover, it is said to be a cyclic group of or-
der n. To those who wish to jump the gun, the concepts of cyclic subgroups of a group
and the order of a group will be discussed in Definitions 1.3 and 2.10 respectively.

Example 1.9 (group of roots of unity in C). Let

G =
{

z ∈ C : zn = 1 for some n ∈ Z+
}
.

Then, G is a group under multiplication, known as the group of roots of unity in C. For
those who have prior knowledge in H2 Further Mathematics, you would know that the
elements of the group G are z = e2kπi/n, where 0 ≤ k ≤ n− 1 is an integer. Having said
all these, note that G is not a group under addition.

Example 1.9 appears as an exercise question (p. 22 Question 8) of the Dummit and Foote
textbook. One can attempt to verify that (G, ·) is indeed a group.

Example 1.10 (Gallian p. 92 Question 16). Let

G =
{

a+b
√

2 : a,b ∈Q and a,b are both non-zero
}
.

Prove that G is a group under ordinary multiplication.

Solution. We first prove that the closure property is satisfied. Let a1,a2,b1,b2 ∈Q, with
a1,b1 both non-zero and a2,b2 both non-zero. Then, given that a1+b1

√
2,a2+b2

√
2∈G,

we have (
a1 +b1

√
2
)(

a2 +b2
√

2
)
= a1a2 +2b1b2 +(a1b2 +a2b1)

√
2 ∈ G.

Although tedious, one is able to deduce that associativity of · holds in G, so (i) of Def-
inition 1.1 is satisfied. The identity element in the set G is 1, so (ii) of Definition 1.1 is
satisfied. Lastly, we construct the multiplicative inverse of a+b

√
2 ∈ G.

Suppose there exists c ∈ G such that
(

a+b
√

2
)

c = 1. Then, by conjugation, we have

c =
1

a+b
√

2
=

a−b
√

2
a2 −2b2 .

which is defined since a,b both non-zero implies a2−2b2 ̸= 0. As such, (iii) of Definition
1.1 is satisfied. □
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Example 1.11 (Dummit and Foote p. 22 Question 18). Let x and y be elements of G.
Then,

xy = yx if and only if y−1xy = x if and only if x−1y−1xy = 1.

Solution. We have

xy = yx if and only if y−1xy = y−1yx = x

if and only if x−1y−1xy = x−1x = 1

and the result follows. □

Definition 1.3 (finite group and its order). A finite group is a group whose under-
lying set is a finite set. The order of a finite group G is the cardinality |G| of the set
G.

Definition 1.4 (Cayley table). Let G = {g1, . . . ,gn} be a finite group with g1 = 1.
The Cayley table of G is the n×n matrix whose i, j-entry is gig j.

Other than the term ‘Cayley table’, one can also refer to it as a multiplication table
or a group table. As inferred from its name, a Cayley table describes the structure of a
finite group by arranging all the possible products of all the group’s elements in a square
table which is reminiscent of an addition or a multiplication table. Many properties of a
group (i.e. whether it is Abelian, identifying which elements are inverses of another) can
be deduced from its Cayley table.

We shall construct Cayley tables for some groups of small order.

Example 1.12 (Cayley table of G, where |G|= 1). Let G be a group such that G = {e},
where e is the identity element of G. Then, the following is the Cayley table of G:

· e
e e

Table 1.1: Cayley table of G, where |G|= 1

Example 1.13 (Cayley table of G, where |G|= 2). Let G be a group such that G = {e,a},
where a ̸= e and e is the identity element of G. Then, the following is the Cayley table of
G:

· e a
e e a
a a e

Table 1.2: Cayley table of G, where |G|= 2
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Example 1.14 (Cayley table of G, where |G| = 3). Let G be a group such that G =

{e,a,b}, where e,a,b are distinct and e is the identity element of G. Then, the following
is a Cayley table of G (try to spot a couple of nice features):

· e a b
e e a b
a a b e
b b e a

Table 1.3: Cayley table of G, where |G|= 3

Note that we used the article ‘a’ to describe the Cayley table, which shows that the Cayley
table of a group G, where |G| = 3, is not unique. It is easy to see that Table 1.4 is also a
Cayley table of G:

· e a b
e e a b
a a e b
b b a e

Table 1.4: Cayley table of G, where |G|= 3

What is the difference between the two Cayley tables?

Example 1.15 (Dummit and Foote p. 22 Question 10). Prove that a finite group is
Abelian if and only if its group table is a symmetric matrix.

Solution. We first prove the forward direction. Suppose G is a finite group, say |G| = n.
Then, G = {1G,g1,g2, . . . ,gn−1}, where gi are distinct and neither is the identity element
for all 1 ≤ i ≤ n−1.

Suppose the group table is some n× n array, with the (1,1)-entry being at the top left
and the (n,n)-entry being at the bottom right. For i ̸= j, the (i, j)-entry is aia j, whereas
the ( j, i)-entry is a jai. Since G is Abelian, then gig j = g jgi for all distinct i, j. We con-
clude that the group table is symmetric.

In fact, proving the reverse direction is simple — just work out the steps in reverse. □

Proposition 1.2. Let G be a group. For any a,b ∈ G,

there exist unique x,y ∈ G such that ax = b and ya = b.
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Proof. We first prove the existence claim. Set x = a−1b. Then, ax = b. Similarly, by
setting y = ba−1, we have ya = b. We then prove the uniqueness claim. Here, we will
only prove that x ∈ G such that ax = b is unique. Suppose there exist x,x′ ∈ G such that
ax = b = ax′. It follows that x = a−1b = x′.

Corollary 1.2 (cancellation laws). Let G be a group. Then, the following hold:

(i) For any a,u,v ∈ G, if au = av, then u = v

(ii) For any b,u,v ∈ G, if ub = vb, then u = v

Proof. We will only prove (i) as (ii) can be proven similar. Given that au = av, then
multiplying both sides on the left by a−1, it follows that u = v.

Corollary 1.3. For any a ∈ G, the maps

G → G where x 7→ ax and G → G where x 7→ xa are bijective.

Definition 1.5 (direct product). Let (A, ·) and (B,∗) be groups, where · and ∗ are
the operations on A and B respectively. The direct product of A and B is the group
A×B with an underlying set

A×B = {(a,b) : a ∈ A,b ∈ B} ,

equipped with a multiplication map

(A×B)× (A×B)→ A×B where ((a1,b1),(a2,b2)) 7→ (a1 ·a2,b1 ∗b2),

the identity element 1A×B = (1A,1B), and an inversion map

A×B → A×B where (a,b) 7→ (a,b)−1 =
(
a−1,b−1) .

Example 1.16. Take A = G to be any group and B = {1} be the trivial group (B = {e}
works too). Then,

A×B = G×{1}= {(g,1) : g ∈ G}

with multiplication for the left component be given by that in G.

Example 1.17. Let A = B = S2 be the symmetric group on 2 elements. In fact, since
|S2|= 2, we can also consider A and B to be any group of 2 elements (in fact, 2 is a nice
number since it is prime and groups of order prime p, in general, have similar structure
— we say that the groups are isomorphic and we will learn this in due course).

As G = {1,x}, then

G×G = {(1,1),(1,x),(x,1),(x,x)} which is a group with 4 elements.
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Letting e = (1,1), a = (1,x), b = (x,1), c = (x,x), we can construct a Cayley table for
G×G as follows:

· e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 1.5: Group table for G×G

Example 1.18 (Dummit and Foote p. 22 Question 28). Let (A,⋆) and (B,⋄) be groups
and let A×B be their direct product. Verify all the group axioms for A×B:

(a) Prove that the associative law holds: for all (ai,bi) ∈ A×B, i = 1,2,3,

(a1,b1) [(a2,b2)(a3,b3)] = [(a1,b1)(a2,b2)] (a3,b3).

(b) Prove that (1,1) is the identity of A×B.

(c) Prove that the inverse of (a,b) is (a−1,b−1).

Solution.

(a) We have

(a1,b1) [(a2,b2)(a3,b3)] = (a1,b1)(a2 ⋆a3,b2 ⋄b3)

= (a1 ∗ (a2 ∗a3) ,b1 ⋄ (b2 ⋄b3))

= ((a1 ⋆a2)⋆a3,(b1 ⋄b2)⋄b3) by associativity of ⋆ and ⋄

where we used the associativity of ⋆ and ⋄. This is equal to

[(a1 ⋆a2) ,(b1 ⋄b2)] (a3,b3) = [(a1,b1)(a2,b2)] (a3,b3) ,

which completes the proof.

(b) Suppose (a0,b0) is the identity of A×B. Then, for any (a,b)∈ A×B, we must have

(a0,b0)(a,b) = (a,b)(a0,b0) = (a,b) .

This yields

a0 ⋆a = a⋆a0 = a and b0 ⋄b = b⋄b0 = b so a

Since A and B are groups, by the cancellation law (Corollary 1.2), we have a0 =

b0 = 1, so (1,1) is indeed the identity of A×B.
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(c) Let (a,b) ∈ A×B. Suppose the inverse of (a,b) is (c,d). Then,

(a,b)(c,d) = (1,1) so (a⋆ c,b⋄d) = (1,1) .

We must have a⋆ c = 1 and b⋄d = 1. Since A and B are groups, the inverses of a
and b exist, which are a−1 and b−1 respectively.

Example 1.19 (Dummit and Foote p. 23 Question 29). Prove that

A×B is an Abelian group if and only if both A and B are Abelian.

Solution. We first prove the forward direction. Suppose A×B is an Abelian group, i.e.

for any (a1,b1) ,(a2,b2) ∈ A×B we have (a1a2,b1b2) = (a2a1,b2b1)

So, a1a2 = a2a1 and b1b2 = b2b1. We conclude that both A and B are Abelian.

We then prove the reverse direction. Suppose A and B are Abelian groups. Then, for
any a1,a2 ∈ A and b1,b2 ∈ B, we have

a1a2 = a2a1 and b1b2 = b2b1.

It follows that

for any (a1,b1) ,(a2,b2) ∈ A×B we have (a1a2,b1b2) = (a2a1,b2b1) ,

which concludes that A×B is Abelian. □

Definition 1.6. For any x ∈ G, define

x0 = 1 to be the identity of G

and for any n ∈ Z≥0, we define

xn+1 = xn · x and x−n = (xn)−1 recursively.

Definition 1.6 provides a formal way of recursively defining exponentiation — the infor-
mal way is as follows: for any n ∈ Z+, we define

xn = x · x · . . . · x and x−n = (xn)−1 = x−1 · x−1 · . . . · x−1

Definition 1.7 (order of group). Let x ∈ G. If

there exists n ∈ Z+ such that xn = 1, then x is of finite order

and the order of x is the smallest n ∈ Z+ such that xn = 1. We denote this by |x| or
ord(x).
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Otherwise, if

for any n ∈ Z+ we have xn ̸= 1, then x is of infinite order

as no positive power of x is the identity.

Remark 1.1. One should not

confuse the notion of the order of an element x ∈ G with the

the notion of the order of a finite group G

We return to Examples 1.12, 1.13, and 1.14.

Example 1.20 (Cayley table of G, where |G| = 1,2,3). We first consider the case when
|G|= 1. Then, G has a single element e. It is of order 1 since e1 = 1.

· e
e e

Table 1.6: Cayley table of G, where |G|= 1

Next, we consider the case when |G| = 2. Then, G has two distinct elements e and a.
Again, the identity element e is of order 1, whereas a is of order 2 since a2 = e.

· e a
e e a
a a e

Table 1.7: Cayley table of G, where |G|= 2

When |G|= 3, G has three distinct elements e, a, and b. Again, the identity element e is
of order 1, whereas a and b are of order 3.

· e a b
e e a b
a a b e
b b e a

Table 1.8: Cayley table of G, where |G|= 3

Example 1.21 (Dummit and Foote p. 22 Question 16). Let x be an element of G. Prove
that x2 = 1 if and only if |x| is either 1 or 2.
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Solution. We only prove the forward direction as the proof of the reverse direction is
trivial. Suppose x2 = 1G. Then, |x| ≤ 2. By definition, |x| ≥ 1. Hence, |x| is either 1 or
2. □

Example 1.22 (Dummit and Foote p. 22 Question 17). Let x be an element of G. Prove
that if |x|= n for some positive integer n, then x−1 = xn−1.

Solution. Given that |x| = n, then there exists n ∈ Z+ such that xn = 1G. Since x ∈ G,
then its inverse x−1 ∈ G exists, i.e. x · x−1 = 1G. Left multiplying both sides by xn−1, we
obtain

xn−1 · x · x−1 = xn−1 ·1G(
xn−1 · x

)
· x−1 = xn−1 by associativity

Since xn−1 · x = 1G, it follows that xn−1 = x−1. □

Example 1.23 (Dummit and Foote p. 22 Question 21). Let G be a finite group and let x
be an element of order n. Prove that if n is odd, then x =

(
x2)k for some k.

Solution. Since n is odd, there exists k ∈Z such that n= 2k−1. As xn = 1, then x2k−1 = 1,
so x = x2k. □

Example 1.24 (Dummit and Foote p. 22 Question 22). If x and g are elements of the
group G, prove that |x|=

∣∣g−1xg
∣∣. Deduce that |ab|= |ba| for all a,b ∈ G.

Solution. Suppose |x|= n. Then, there exists n ∈ Z+ such that xn = 1. So,(
g−1xg

)n
=
(
g−1xg

)
·
(
g−1xg

)
· . . . ·

(
g−1xg

)
= g−1gxng = g−1g = 1.

So,
∣∣gxg−1

∣∣≥ n.

Next, suppose
∣∣gxg−1

∣∣ = n. Then, there exists n ∈ Z+ such that
(
gxg−1)n

= 1. So,
xn = 1. It follows that |x| ≥ n. As such, |x|=

∣∣gxg−1
∣∣.

If |x| or
∣∣gxg−1

∣∣ is infinite, the statement is trivial. Lastly, replace x with ab. Then,
suppose g−1xg = ba, i.e. g−1abg = ba. We can set g = a, so it follows that |ab| = |ba|
for all a,b ∈ G. □

Example 1.25 (Dummit and Foote p. 22 Question 23). Suppose x ∈ G and |x|= n < ∞.
If

n = st for some positive integers s and t, prove that |xs|= t.

Solution. Say |x|= n = st for some positive integers s and t. Then, xst = 1, i.e. (xs)t = 1.
The result follows. □

Example 1.26 (Dummit and Foote p. 22 Question 20). For x an element in G, show that
x and x−1 have the same order.
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Solution. We shall consider two cases — if |x| is finite and if |x| is infinite.

If |x| is finite, i.e. |x|= n, then we have xn = 1G. So,

xn ·
(
x−1)n

= 1G ·
(
x−1)n

which implies xn · x−n =
(
x−1)n

.

As such,
(
x−1)n

= 1G, which implies x−1 is also of finite order.

For the second case, if |x| is infinite, we shall prove by contradiction that
∣∣x−1

∣∣ is also
infinite. Suppose on the contrary that

∣∣x−1
∣∣ is finite. Then, there exists k ∈ Z+ such that(

x−1)k
= 1G. So,

(
xk)−1

= 1G. This implies xk = 1G as the only element in a group which
has the inverse as its identity is the identity element 1G, leading to a contradiction! □

Example 1.27 (Dummit and Foote p. 60 Question 20). Let p be a prime and n ∈ Z+.
Show that if x is an element of the group G such that xpn

= 1, then

|x|= pm for some m ≤ n.

Solution. We know that |x| ≤ pn, so either |x|= pm or |x|= pn−m. Note that n≥m implies
n−m ≥ 0, so the latter is valid too. As such, the order of x is either pm or pn−m. Since
n−m is arbitrary, it can be replaced by m̃, where m̃ ≤ n. □

Lemma 1.1. Let G be a group. Suppose x ∈ G has infinite order. For distinct
j,k ∈ Z, we have x j ̸= xk.

Corollary 1.4. Every element of a finite group G has finite order.

The converse of Corollary 1.4 is not true. That is, if every element of G has finite
order, it is possible for G to be an infinite group. For example, consider the infinite group
G = (Q/Z,+). The elements are of the form Z+ p/q, where p,q ∈ Z but q ̸= 0. The
order of each element in G is at most q since

q
(
Z+

p
q

)
= qZ+ p which is an integer.

However, there are infinitely many numbers which are in {Z+ p/q}.

Example 1.28 (Dummit and Foote p. 23 Question 30). Prove that the elements (a,1) and
(1,b) of A×B commute and deduce that the order of (a,b) is the least common multiple
of |a| and |b|.

Solution. Suppose (A,⋆) and (B,⋄) are groups. Then,

(a,1)(1,b) = (a⋆1,1⋄b) = (a,b) = (1⋆a)(b⋄1) = (1,b)(a,1)

so (a,1) and (1,b) commute. For the second part, we note that a|a| = 1A and b|b| = 1B.
Suppose the order of (a,b) is n. Then, (a,b)n = 1A×B, i.e. (an,bn) = (1A,1B). It follows
that n = lcm(|a| , |b|). □
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Example 1.29 (Dummit and Foote p. 23 Question 31). Prove that any finite group G of
even order contains an element of order 2.

Hint: Let t(G) be the set {g ∈ G : g ̸= g−1}. Show that t(G) has an even number of
elements and every non-identity element of G\ t(G) has order 2.

Solution. As mentioned, let t (G) =
{

g ∈ G : g ̸= g−1}. Then, t (G) must have an even
number of elements since

g ∈ t (G) if and only if g−1 ∈ t (G)

where g,g−1 are distinct. Since G has an even number of elements, then G\ t (G) also has
an even number of elements. Since e ̸∈ t (G), then G\ t (G) is non-empty, i.e. there exists
a non-identity element a ∈ G\ t (G), so a = a−1. Hence, a2 = e. □

Example 1.30 (Dummit and Foote p. 23 Question 32). If x is an element of finite order
n in G, prove that the elements 1,x,x2, . . . ,xn−1 are all distinct. Deduce that |x| ≤ |G|.

Solution. Let x ∈ G be such that |x| = n. Suppose on the contrary that 1,x,x2, . . . ,xn−1

are not all distinct. Then, there exist distinct i, j ∈ {1, . . . ,n−1} such that xi = x j. So,
xi− j = 1G. However, i− j ≤ n− 1, which is a contradiction. Thus, the elements are all
distinct. Since G is a group and it must contain all powers of x (by closure property), it
follows that |x| ≤ |G|. □

Example 1.31 (Dummit and Foote p. 23 Question 33). Let x be an element of finite
order n in G.

(a) Prove that if n is odd, then xi ̸= x−i for all i = 1,2, . . . ,n−1.

(b) Prove that if n = 2k and 1 ≤ i < n, then xi = x−i if and only if i = k.

Solution.

(a) Suppose on the contrary that there exists 1 ≤ i ≤ n− 1 such that xi = x−i. So,
x2 = 1G. If 2i > n, then there exists k ∈ Z such that 2i = n+ k. So, xn+k = 1G,
which implies xk = 1G. As

n = 2i− k ≤ 2(n−1)− k = 2n−2− k < 2n− k,

then n > k. As such, the order of x is at most k, where k < n. This leads to a
contradiction.

(b) We first prove the forward direction. Suppose xi = x−i, which implies x2i = 1G.
Since xn = x2k = 1G, then 2i = 2k, so i = k.

For the reverse direction, suppose n = 2k, 1 ≤ i < n and i = k. Then, xi · xi =

x2i = x2k = xn = 1G.

Example 1.32 (Dummit and Foote p. 23 Question 34). If x is an element of infinite
order in G, prove that the elements xn, n ∈ Z, are all distinct.
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Solution. Suppose on the contrary that there exists a pair of identical elements, i.e. dis-
tinct i, j ∈ Z such that xi = x j. Then, xi− j = 1G, which contradicts the fact that x ∈ G is
finite. □

Example 1.33 (Dummit and Foote p. 23 Question 35). If x is an element of finite order
n in G, use the division algorithm to show that any integral power of x equals one of the
elements in the set {1,x,x2, . . . ,xn−1} (so these are all the distinct elements of the cyclic
subgroup of G generated by x).

Solution. Let k ∈ Z be arbitrary. By the division algorithm, there exist q,r ∈ Z, where
0 ≤ r < n, such that k = qn+ r. So,

xk = xqn+r = (xn)q · xr = xr.

Since 0 ≤ r < n, then xr ∈
{

1,x,x2, . . . ,xn−1}. □

Example 1.34 (Dummit and Foote p. 23 Question 36). Assume G = {1,a,b,c} is a
group of order 4 with identity 1. Assume also that G has no elements of order 4 (so by
Example 1.30, every element has order ≤ 3). Use the cancellation laws to show that there
is a unique group table for G. Deduce that G is abelian.

Solution. The non-identity elements of G are either of order 2 or 3. In Example 1.29, we
mentioned that every finite group of even order contains an element of order 2. Without
loss of generality, suppose this element is a. Then, a2 = 1. Note that ab ̸= 1, otherwise
it would imply that b = a−1 = a. In a similar fashion, ab ̸= b, otherwise a = 1. Hence, it
forces ab = c.

In a similar fashion, one can deduce that ba = c and ac = ca = b. We now obtain an alter-
native expression for b2. It can either be 1 or a. If it is a, then it implies b4 = 1, which is a
contradiction since every element must have order at most 3. So, b2 = 1 (c2 = 1 similarly).

As such, the group table is unique. We are now in position to construct the group/Cayley
table for G.

· e a b c
e e a b c
a a e c b
b b c e a
c e b a e

Table 1.9: Cayley table of G

Since the group table is symmetric about the main diagonal, we infer that G is Abelian.
□
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1.2 Dihedral Groups

Definition 1.8 (dihedral group). Let n ∈ Z+. The dihedral group of order 2n is the
group D2n (some authors would write Dn) with underlying set D2n as follows which
has 2n pairwise distinct elements:

D2n =
{

1,r,r2, . . . ,rn−1,s,sr,sr2, . . . ,srn−1}
So, every element of D2n can be uniquely written as

skri with k = 0 or 1 and 0 ≤ i ≤ n−1

with product determined by the following relations:

rn = s2 = 1 and rs = sr−1

For n ≥ 3, we have a nice geometric interpretation of the dihedral group D2n. D2n

is the group of rigid motions (or symmetries) of a regular n-gon. On a plane, we fix a
regular n-gon centred at the origin. Label the vertices consecutively from 1 to n clock-
wise/anticlockwise. Then, r and s denote the following:

r = rotation clockwise/anticlockwise respectively about the origin through 2π/n radians

s = reflection about the fixed line through a vertex and the origin

Figure 1.1 depicts rotation and reflection in a regular pentagon, D10.

1

2

3 4

5

1

2

3

4

5

Figure 1.1: Rotation and reflection in a regular pentagon, D10

For those who have difficult remembering the relation rs = srn−1 in the dihedral group
D2n, try to think of either rs = srn−1 or sr = rsn−1 first. So, each expression contains an
rs, an sr (commute the elements informally), and an exponent of n− 1 somewhere. The
question is where do we insert this exponent? If we consider the latter, then it definitely
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leads to a problem because if let’s say n = 5, then n− 1 = 4 so sn−1 = s4 =
(
s2)2

= e.
However, when we write the relations of the group, they must be simplified, i.e. instead
of writing s4 = e, having s2 = e is sufficient1!

Proposition 1.3. In D2n, the following properties hold:

(i) 1,r,r2, . . . ,rn−1,s,sr,sr2, . . . ,srn−1 are pairwise distinct

(ii) rn = s2 = 1

(iii) rs = sr−1

Example 1.35 (dihedral group of an equilateral triangle D6). The dihedral group D6

represents the symmetries of an equilateral triangle. This group has six elements: three
rotations e,r,r2 and three reflections s,sr,sr2. Here,

r denotes a clockwise rotation about the origin through an angle of 120◦ and

s denotes a reflection across a vertical axis

Two obvious ways in which the elements interact are r3 = e and s2 = e. Moreover, one
should verify that sr and sr2 are indeed reflections.

· e r r2 s sr sr2

e e r r2 s sr sr2

r r r2 e sr2 s sr
r2 r2 e r sr sr2 s
s s sr sr2 e r2 r
sr sr sr2 s r e r2

sr2 sr2 s sr r2 r e

Table 1.10: Cayley table of D6

On page 27 of the Dummit and Foote textbook, Question 1(a) asks the reader to compute
the order of each element in D6. It is obvious that we have the following:

|e|= 1 |r|= 3
∣∣r2∣∣= 3 |s|= 2 |sr|= 2

∣∣sr2∣∣= 2

Example 1.36 (Dummit and Foote p. 27 Question 2). Show that if x is any element of
D2n which is not a power of r, then rx = xr−1.

Solution. Since x is not a power of r, then we can write x = srq. Note that we do not have
to attach any exponent to s since the exponent can either take the value 0 or 1. So,

rx = rsrq = (rs)rq =
(
sr−1)rq = srq−1 = (srq)r−1 = xr−1

so it follows that rx = xr−1. □
1Geometrically, this just means reflecting about the same axis two times yields the original figure.
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Example 1.37 (Dummit and Foote p. 27 Question 3). Show that every element of D2n

which is not a power of r has order 2. Deduce that D2n is generated by the two elements
s and sr, both of which have order 2.

Solution. By Example 1.36, we can write such an element x ∈ D2n as x = srq. One can
use induction to deduce the first claim, i.e. |x|= 2. Alternatively, observe that

(srq)(srq) =
(
srq−1)(rsrq) =

(
srq−1)(srq−1)= . . .= s2 = 1.

Now, the elements of D2n are

1,r,r2, . . . ,rn−1,s,sr,sr2, . . . ,srn−1.

Each rq can be written as (s(sr))q. Also, each srq can be written as (s(sr))q. Since
|s|= 2, it follows that |sr|= 2 as well. □

Example 1.38 (Dummit and Foote p. 28 Question 6). Let x and y be elements of order
2 in any group G. Prove that if t = xy, then tx = xt−1 (so that if n = |xy|< ∞, then x and
t satisfy the same relations in G as s and r do in D2n).

Solution. Since x and y are elements of order 2, then x2 = y2 = 1G. As such, x = x−1 and
y = y−1. Given that t = xy, then

tx = xyx = x(yx) = x
(
y−1x−1)= x(xy)−1 = xt−1

and the result follows. □

1.3 Symmetric Groups
Recall from MA1100 the following definitions (Definitions 1.9 and 1.10):

Definition 1.9 (bijective map). Let X and Y be sets. A map σ : X → Y is bijective
if and only if it is injective and surjective.

Definition 1.10 (invertible map). Let X and Y be sets. A map σ : X →Y is invertible
if and only if

there exists a map τ : Y → X such that τ ◦σ = idX and σ ◦ τ = idY

in which case τ is uniquely determined by σ , called the inverse of σ and denoted
by σ−1. Thus,

σ
−1 ◦σ = idX and σ ◦σ

−1 = idY .

We have the following theorem based on Definitions 1.9 and 1.10:
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Theorem 1.1. For any sets X and Y and any σ ∈ Maps(X ,Y ), we have

σ is invertible if and only if σ is bijective.

Definition 1.11 (permutation group Perm(Ω)). Let Ω be any set. Define

Perm(Ω) = SΩ = {σ ∈ Maps(Ω,Ω) : σ is bijective}

to be the set of bijections from Ω to itself. The elements of Perm(Ω) are called the
permutations of Ω.

Proposition 1.4 (permutation group Perm(Ω)). Under the composition of maps,
Perm(Ω) is a group, which forms a group. This is known as the composition of the
set Ω.

Proof. We verify (i), (ii), and (iii) of Definition 1.1. Firstly, composition ◦ is associative
so (i) is satisfied. Next, idΩ, which is the identity map on Ω, is the identity element of the
permutation group so (ii) is satisfied. Lastly, σ 7→ σ−1 is the inverse operation, so (iii) is
satisfied.

Definition 1.12 (symmetric group Sn). For any positive integer n, define

Sn = Perm({1, . . . ,n}) to be the symmetric group of degree n.

By Definition 1.11, Sn is the set of all bijections from {1, . . . ,n} to itself.

Definition 1.13 (Cauchy’s two-line notation). For any permutation σ ∈ Sn, we write

σ =

(
1 . . . n

σ (1) . . . σ (n)

)

so under σ , we have 1 7→ σ (1), and so on, up to and including the relationship
between the entries in the last column, where n 7→ σ (n) . This way of representing
any permutation σ is known as Cauchy’s two-line notation.

Example 1.39. The matrix(
1 . . . n
a1 . . . an

)
denotes the permutations of {1, . . . ,n} where i 7→ ai.

As an exercise, one can construct the Cayley tables for the symmetric groups S1,S2,S3.
In relation to Definition 1.3, one notes that

|S1|= 1 and |S2|= 2 and |S3|= 6

since Sn denotes the set of permutations of {1, . . . ,n}. As each Cayley table of a finite
group with n elements is an n×n square (Definition 1.4), then we would expect the table
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to have

n2 elements other than the row and column headers.

We now introduce the notion of the cycle decomposition of a permutation.

Definition 1.14 (cycle decomposition). Let a1, . . . ,am be an ordered list of pairwise
distinct elements of {1, . . . ,n}, where m ≤ n. The cycle (a1 a2 . . . am) ∈ Sn is the
permutation which sends

ai to ai+1 for 1 ≤ i ≤ m−1 and am to a1

and fixes all other integers in {1, . . . ,n} \ {a1, . . . ,am}. This can be represented
visually as follows:

a1 a2 am· · ·

Example 1.40. (2 1 3)∈ S3 can be described as follows using Cauchy’s two-line notation:(
1 2 3
3 1 2

)
where 2 7→ 1 1 7→ 3 3 7→ 2

It is important that we mention that (2 1 3) ∈ S3. If suppose (2 1 3) ∈ S4, then it would
imply that the element 4 is fixed, i.e. 4 7→ 4. Here is the Cauchy two-line notation denoting
the permutation. (

1 2 3 4
3 1 2 4

)
where 2 7→ 1 1 7→ 3 3 7→ 2

The composition of permutations in Sn is carried out from right to left.

Example 1.41 (composition of permutations). Consider the permutations (1 2) ,(1 3) ∈
S3. Then, for the permutation (1 2)◦ (1 3), we have the following sequence of maps:

1 7→ 3 and 3 7→ 1 7→ 2 and 2 7→ 1

so using Cauchy’s two-line notation, the permutation can be written as(
1 2 3
3 1 2

)
= (1 3 2) .

In fact, the symbol ◦ can be omitted, i.e. we can write

(1 2)(1 3) in place of (1 2)◦ (1 3) .

Similarly, we have

(1 3)◦ (1 2) = (1 3)(1 2) =

(
1 2 3
2 3 1

)
= (1 2 3) .

So, we see that (1 2) ,(1 3) ∈ S3 do not commute. In general, Theorem 1.2 mentions a
generalisation of this result, where the subscript 3 can be replaced with some arbitrary
positive integer n ≥ 3.
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Theorem 1.2. For all n ≥ 3, Sn is a non-Abelian group.

Note that the numbers in a cycle can be cyclically permuted without altering the per-
mutation, i.e.

(a1 a2 . . . am) = (a2 a3 . . . am a1)

= (a3 a4 . . . am a1 a2)

= . . .

= (am a1 a2 . . . am−1)

for which the above expressions hold in Sn, where m ≤ n. By convention, the smallest
number in the cycle is usually written first.

Example 1.42. It is preferred to write (1 3 2) instead of (3 2 1) or (2 1 3).

Definition 1.15 (length of cycle). The length of a cycle is the number of integers
that appear in it. We say that

an l-cycle is a cycle of length l.

By convention, the identity permutation of Sn, is written simply as id or ε . Moreover,
1-cycles such as (1) ,(2) , . . .(n) are not written.

Example 1.43 (Dummit and Foote p. 33 Question 10). Prove that if σ is the m-cycle
(a1 a2 . . . am), then for all i ∈ {1,2, . . . ,m}, σ i (ak) = ak+i, where k+ i is replaced by its
least residue mod m when k+ i > m. Deduce that |σ |= m.

Solution. To prove the first claim that σ i (ak) = ak+i, we shall use induction. When i = 1,
it is clear that σ (ak) = ak+1 since σ cyclically permutes a1, . . . ,am. So, the base case
is true. Now, suppose that the proposition holds for some positive integer i = r, i.e.
σ r = (ak) = ak+r. We wish to prove that σ r+1 (ak) = ak+r+1.

So,

σ
r+1 (ak) = σ (σ r (ak)) = σ (ak+r) = ak+r+1,

where we have used the subtle yet important fact that k+ r and k+ r+1 are replaced by
their least residues modulo m. So, the statement is proven by induction.

We then justify that |σ | = m. Note that for 1 ≤ i < m, we have σ i (ak) = ak+i ̸= ak,
so σ i is not equal to the identity permutation. However, σm (ak) = ak since the index
k+m is replaced by its least residue modulo m, which is k. It follows that |σ |= m. □

Example 1.44 (Dummit and Foote p. 33 Question 11). Let σ be the m-cycle (12 . . . m).
Show that

σ
i is also an m-cycle if and only if i is relatively prime to m.
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Solution. For the forward direction, suppose σ i is an m-cycle. Note that σ i (1) = i+ 1,
σ i (2) = i+2 and so on. Moreover, σ i (m− i) = m, so σ i (m+1− i) = 1. Hence, for any
1 ≤ k ≤ m,

σ
i : Sm → Sm where k 7→ k+ i (modm)

These elements are distinct if and only if k+ ia and k+ ib are distinct for any distinct a
and b, i.e. if and only if k+ ia is not congruent to k+ ib modulo m for any 1 ≤ a,b ≤ m.
Hence, m does not divide i(a−b). This is equivalent to saying that gcd(i,m) = 1. □

Definition 1.16 (transposition). A transposition is a 2-cycle.

Example 1.45 (Dummit and Foote p. 33 Question 16). Show that if n ≥ m, then the
number of m-cycles in Sn is given by

n(n−1)(n−2) . . .(n−m+1)
m

.

Hint: Count the number of ways of forming an m-cycle and divide by the number of
representations of a particular m-cycle.

Solution. By Definition 1.15, an m-cycle is defined to be a cycle of length m, i.e.

(a1 . . . am) where a1, . . . ,am ∈ {1, . . . ,n} which are all distinct.

There are n choices for a1. Consequently, there are n−1 choices for a2. Repeating this,
there are n−m+ 1 choices for am. By the multiplication principle, the number of ways
to form an m-cycle is

n(n−1)(n−2) . . .(n−m+1) ,

which is precisely the numerator of the expression we wish to deduce. Now, it suffices to
show that the number of representations of a particular m-cycle is m. It is not difficult to
see that the m-cycles

(a1 a2 . . . am−1 am) ,(a2 a3 . . . am−1 am a1) , . . .(am a1 a2 . . . am−2 am−1) are the identical,

and there are m of them. Hence, dividing the earlier expression by m, the result follows.
□

Definition 1.17 (disjoint cycles). Two cycles are disjoint if and only if they have no
numbers in common.

Example 1.46. In S4, the transpositions (1 2) and (3 4) are disjoint.

Proposition 1.5 (disjoint cycles commute). Let σ and τ be two disjoint cycles of
Sn. Then, σ and τ commute. To put it explicitly, if a1, . . . ,am1,am1+1, . . . ,am2 ∈
{1, . . . ,n} are pairwise distinct, then

(a1 . . . am1)(am1+1 . . . am2) = (am1+1 . . . am2)(a1 . . . am1) ,
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where we can let σ = (a1 . . . am1) and τ = (am1+1 . . . am2).

Example 1.47 (Dummit and Foote p. 33 Question 14). Let p be a prime. Show that an
element has order p in Sn if and only if its cycle decomposition is a product of commuting
p-cycles. Show by an explicit example that this need not be the case if p is not prime.

Solution. We first prove the forward direction. Suppose σ ∈ Sn is of order p. Consider
the cycle decomposition of σ , say there exist τ1, . . . ,τm ∈ Sn such that

σ = τ1 . . .τm where the τi’s are disjoint.

By Proposition 1.5, we know that disjoint cycles commute. So,

σ
2 = (τ1 . . .τm)

2 = τ
2
1 . . .τ

2
m so in general σ

p = τ
p
1 . . .τ

p
m.

Since |σ |= p, then σ p is the identity permutation of Sn, i.e. τ
p
i is the identity permutation

on Sn for all 1 ≤ i ≤ n. So, the length of each cycle τi divides p, which means each τi is
either the identity permutation or of order p. The forward direction follows.

As for the reverse direction, suppose the cycle decomposition of σ is a product of com-
muting p-cycles, where p is prime, i.e.

σ = τ1 . . .τm where the τi’s are disjoint.

So, σ p = τ
p
1 . . .τ

p
m since the p-cycles commute. As each τi is a p-cycle, it follows that τi

is the identity permutation on Sn. Hence, |σ | ≤ p. However, τ
j

i is not the identity permu-
tation for all j < p, so |σ | ≥ p. It follows that |σ |= p.

We then prove that the original statement may not hold if p is not prime. Choose p = 6
and n = 6. Then, σ = (12)(345) is of order 6 in S6. However, (12)(345) cannot be
written as a product of commuting 6-cycles since each 6-cycle must utilise all 6 elements
of {1, . . . ,6}, however 6 does not appear in the permutation (12)(345). □

Example 1.47 is a generalisation of Question 13 of the exercise set in the Dummit and
Foote textbook as the case where p = 2 is discussed. Since 2 is a prime, both implications
hold.

Example 1.48 (Dummit and Foote p. 34 Question 17). Show that if n ≥ 4, then the
number of permutations in Sn which are the product of two disjoint 2-cycles is

n(n−1)(n−2)(n−3)
8

.

Solution. Let (ar as) ,
(
ai a j

)
∈ Sn be two disjoint 2-cycles. Their product is (ar as)

(
ai a j

)
.

All other elements are fixed under the permutation. Note the following sequence of
events:

there are n choices for r so there are n−1 choices for s

there are n−2 choices for i so there are n−3 choices for j
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Note that the choice of the pair (r,s) is independent of (i, j) but the choice of each element
in the pair is dependent on the choice of the other element.

Since each pair (r,s) and (i, j) can be arranged in 2 ways each (divide by a factor of
2× 2) and the order of the 2-cycles does not matter, we divide by another factor of 2.
Hence, the total quantity that we divide by is 2×2×2 = 8. The result follows. □

Theorem 1.3 (cycle decomposition). Every element σ ∈ Sn can be written as a
product of pairwise disjoint cycles (called a cycle decomposition of σ ) which is
unique up to the following properties:

(i) Cyclic permutation of the numbers in each cycle

(ii) Rearranging the cycles in the product

How do we determine the cycle decomposition of σ−1? Recall that σ ◦ σ−1 = ε ,
where ε denotes the identity permutation. Then, the cycle decomposition of σ−1 is ob-
tained by writing the numbers in each cycle in the reverse order.

Example 1.49. Consider σ = (1 3 2) ∈ S3. Then, in σ−1, we must have the following:

3 7→ 1 and 2 7→ 3 and 1 7→ 2.

Hence, σ−1 = (2 3 1).

We now introduce the cycle decomposition algorithm. Although it seems somewhat
complicated, we will provide an example so knowing the abstract details of the algorithm
is not necessary.

Algorithm 1.1 (cycle decomposition algorithm). The steps are as follows:

1. Pick the smallest element of {1,2, . . . ,n} which has not yet appeared in a
previous cycle. Begin the new cycle: (a

2. Read off σ(a) from the given description of σ — call it b.

• If b = a, close the cycle without writing b down, return to Step 1.

• If b ̸= a, write b next to a in this cycle, i.e. (a b.

3. Read off σ(b) from the given description of σ — call it c.

• If c = a, close the cycle without writing c down, return to Step 1.

• If c ̸= a, write c next to b in this cycle, i.e. (a b c. Repeat this step using
the number c as the new value for b until the cycle closes.

4. Remove all cycles of length 1.
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Example 1.50. Consider the permutation σ ∈ S13 defined as follows:

σ =

(
1 2 3 4 5 6 7 8 9 10 11 12 13

12 13 3 1 11 9 5 10 6 4 7 8 2

)

We wish to decompose σ into a product of cycles. The idea here is as follows. We see
that 1 7→ 12 7→ 8 7→ 10 7→ 4 7→ 1, so one of the cycles is (1 12 8 10 4). We see that 2 is
not in this cycle, and 2 7→ 13 7→ 2, so we obtain the transposition (2 13). Since 3 is fixed
under σ , then we have the 1-cycle (3), which we would omit when we are done with the
decomposition.

We see that 4 was previously in a cycle, so we move on to 5. As 5 7→ 7 7→ 7 7→ 5,
then we obtain our fourth cycle (5 11 7). It is then easy to deduce that the last cycle is the
transposition (6 9). Hence, σ can be written as

σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9) .

By Proposition 1.5, we know that disjoint cycles commute, so it is valid to write

σ = (2 13)(6 9)(1 12 8 10 4)(5 11 7) .

However, the former approach is preferred since, when denoting the decomposition of a
permutation, we prioritize smaller numbers from left to right. It is then easy to deduce
that

σ
−1 = (1 4 10 8 12)(2 13)(5 7 11)(6 9) .

We pose the following question: what is the largest order of an element in Sn? When
I first learnt Group Theory, I jumped to a conclusion too quickly and claimed that the
largest order is n. Clearly it is not! In fact, in S5, the largest order of an element is
actually 6, and not 5. Consider the permutation σ = (13)(254) ∈ S5. Then,

σ
2 = (245)

σ
3 = (13)

σ
4 = (254)

σ
5 = (13)(245)

and σ6 is the identity permutation. As such, |σ | = 6. If we let g(n) (universally known
notation) denote the largest order of permutation of n elements, one can deduce that

g(1) = 1 g(2) = 2 g(3) = 3 g(4) = 4 g(5) = 6 g(6) = 6 g(7) = 12.

Also, g(40) = 27720. This is known as Landau’s function.

When we write a permutation as a product of disjoint cycles, the important consequence
is that these cycles act independently on disjoint subsets of {1, . . . ,n}. The order of a
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permutation (the number of times you must apply it to get back to the identity arrange-
ment) is precisely the lcm of the lengths of its disjoint cycles. Thus, to find the maximum
possible order of any permutation on n elements, we seek a way to split {1, . . . ,n} into
cycles of lengths that give us the largest lcm.

A closed formula for Landau’s function g(n) is

g(n) = ∏
p≤n

p⌊logp n⌋ where the product is taken over all primes p ≤ n.

This happens to coincide with the maximal lcm one can arrange via cycle decompositions.
Clearly, this topic deals with Partition Theory. The interested reader can search this topic
for more information.

1.4 Matrix Groups
Let F be a field, such as the real numbers R or the complex numbers C. A field can be
regarded as a ring such that every non-zero element x ∈ F has a multiplicative inverse,
i.e.

for every x ∈ F \{0}, there exists y ∈ F such that xy = 1F .

Definition 1.18 (general linear group). For any n ∈ N, define the general linear
group of n×n invertible matrices over F (also known as the general linear group of
degree n) as follows:

GLn (F) = {A ∈Mn×n (F) : det(A) ̸= 0}

Here, Mn×n (F) denotes the set of n×n matrices with entries in F .

Proposition 1.6. GLn (F) is a group under multiplication.

Proof. Recall that matrix multiplication is associative. The identity element in the group
is the identity matrix of order n, denoted by In. Lastly, A 7→ A−1 is the inverse operation.
Hence, the three axioms of Definition 1.1 are satisfied.

Definition 1.19 (special linear group). For any n∈N, define the special linear group
of n×n invertible matrices over F as follows:

SLn (F) = {A ∈ GLn (F) : det(A) = 1} .

In Question 9 of Page 48 of the Dummit and Foote textbook, the reader is asked
to prove that SLn (F) ≤ GLn (F). In other words, SLn (F) is a subgroup of GLn (F).
Although subgroups will be covered in Definition 2.1, and proving that a group is a sub-
group is taught in Proposition 2.1, we will briefly state what the question means here.
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Intuitively, any matrix A in the special linear group must also be in the general linear
group as a matrix of determinant 1 is invertible. In order to verify the subgroup criteria,
one first needs to show that SLn (F) is non-empty, for which we can take the n×n identity
matrix In, where the elements of the matrix are the identity elements of the field F , i.e.
ai j = 1F for all 1 ≤ i, j ≤ n. We then need to show that

for any A,B ∈ SLn (F) we have AB−1 ∈ SLn (F) .

This is obvious because AB−1 is of determinant 1! Hence, SLn (F)≤ GLn (F).

Definition 1.20 (Heisenberg group). Let F be a field. Let

H (F) =


1 a b

0 1 c
0 0 1

 : a,b,c ∈ F

 denote the Heisenberg group over F.

After introducing the Heisenberg group over an arbitrary field F (Definition 1.20),
Example 1.51 develops some of its basic properties. As mentioned in the Dummit and
Foote textbook, when F = R, this group plays an important role in Quantum Mechanics
and signal theory by giving a group theoretic interpretation (due to Hermann Weyl) of
Heisenberg’s uncertainty principle. Note that Z is not a field (as not every element has
a multiplicative inverse) but the Heisenberg group may be defined more generally — for
example, with entries in Z2.

Example 1.51 (Dummit and Foote p. 35 Question 11). Let

X =

1 a b
0 1 c
0 0 1

 and Y =

1 d e
0 1 f
0 0 1

 be elements of H (F) .

(a) Compute the matrix product XY and deduce that H (F) is closed under matrix mul-
tiplication. Exhibit explicit matrices such that XY ̸= YX (so that H (F) is always
non-abelian).

(b) Find an explicit formula for the matrix inverse X−1 and deduce that H (F) is closed
under inverses.

(c) Prove the associative law for H (F) and deduce that H (F) is a group of order |F |3.
(Do not assume that matrix multiplication is associative.)

(d) Find the order of each element of the finite group H (Z/2Z).

(e) Prove that every non-identity element of the group H (R) has infinite order.

Solution.

2The Heisenberg group H (Z) is known as the discrete Heisenberg group.
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(a) We have

XY =

1 a b
0 1 c
0 0 1


1 d e

0 1 f
0 0 1

=

1 a+d b+a f + e
0 1 e+ f
0 0 1

 ∈ H (F) .

So, H (F) is closed under matrix multiplication.

For the next part, we can take

X=

1 1 0
0 1 1
0 0 1

 and Y=

1 0 1
0 1 1
0 0 1

 so XY=

1 1 2
0 1 2
0 0 1

 but YX=

1 1 1
0 1 2
0 0 1


As such, XY ̸= YX.

(b) This is a very simple exercise using techniques taught in MA2001. We have

X−1 =

1 −a ac−b
0 1 −c
0 0 1

 ∈ H (F) .

This shows that H (F) is closed under inverses.

(c) The first part on proving associativity in H (F) is easy but tedious so we omit the
solution. As for the second part, suppose |H (F)| is finite. Consider X ∈ H (F).
Since each of the a,b,c that appears as an entry in X has |F | possible choices (as
a,b,c ∈ F), then |H (F)|= |F |3.

(d) Suppose a,b,c ∈ Z/2Z. Note that

X2 =

1 2a 2b+ac
0 1 2c
0 0 1

=

1 0 ac
0 1 0
0 0 1

 .
We shall consider three cases.

• Case 1: Suppose a = c = 0. Then, X2 = I, so |X|= 2.

• Case 2: Without loss of generality, suppose a = 0 and c = 1 (the case where
a = 1 and c = 0 is symmetric). Then, X2 = I, so |X|= 2.

• Case 3: Suppose a = c = 1. Then,

X2 =

1 0 1
0 1 0
0 0 1

 which implies X4 = I.

As such, |X|= 4.

(e) From (d), we have

X2 =

1 2a 2b+ac
0 1 2c
0 0 1

 so X4 =

1 4a 4b+6ac
0 1 4c
0 0 1

 .
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Also, one can compute

X3 =

1 3a 3b+3ac
0 1 3c
0 0 1

 .
It is clear that for any n ∈ N,

Xn =

1 an bn+unac
0 1 cn
0 0 1

 ,
where un is a sequence of numbers whose general term is to be determined. We
know that the first few terms of un are 0,1,3,6, . . . which is precisely the sequence
of triangular numbers (but translated)! Recall that

Tn is a triangular number if and only if Tn = 1+2+ . . .+n =
n(n+1)

2
.

As such,

un =
n(n−1)

2
which implies

Xn =

1 an bn+ n(n−1)
2 ac

0 1 cn
0 0 1

 .
Suppose Xn = I. Then, this would force an = 0, cn = 0 and nb+n(n−1)ac/2 = 0.
This forces a = b = c = 0 since n ≥ 1. As such, we see that every non-identity
element of H (R) has infinite order.

1.5 The Quaternion Group

Definition 1.21 (quaternion group Q8). The quaternion group is the group Q8 with
underlying set

Q8 = {1,−1, i,−i, j,− j,k,−k} which are pairwise distinct.

The product · is computed as follows:

(1) 1 ·a = a ·1 = a for all a ∈ Q8

(2) (−1) · (−1) = 1

(3) (−1) ·a = a · (−1) =−a for all a ∈ Q8

The elements of Q8 satisfy the following properties:

(i) i · i = j · j = k · k =−1 (i.e. i, j,k are square roots of −1)

(ii) i · j = k and j · i =−k
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(iii) j · k = i and k · j =−i

(iv) k · i = j and i · k =− j

Other than Q8, the set of quaternions is often denoted by H, which is named after
the Irish mathematician William Roman Hamilton. Quaternions were first described by
Hamilton in 1843 and he applied them to mechanics in three-dimensional space. Recall
that we had the inclusion

R⊆ C and we can now extend it to R⊆ C⊆H,

i.e. the complex numbers are a subset of the quaternions. Although we mentioned that
R and C are rings (or rather, groups under both addition and multiplication), we see that
the nice property of multiplication being commutative is gone when we go from C to H!
In fact, H cannot be referred to as a field since multiplication is non-commutative so one
would refer to it as a division algebra.

· 1 −1 i −i j − j k −k
1 1 −1 i −i j − j k −k
−1 −1 1 −i i − j j −k k
i i −i −1 1 k −k − j j
−i −i i 1 −1 −k k j − j
j j − j −k k −1 1 i −i

− j − j j k −k 1 −1 −i i
k k −k j − j −i i −1 1
−k −k k − j j i −i 1 −1

Table 1.11: Cayley table for the quaternion group Q8

Example 1.52. The order of −1 ∈ Q8 is 2 since (−1) · (−1) = 1.

Example 1.53. The order of k ∈ Q8 is 4. To see why, recall that k · k = −1. Hence, the
order of k, assuming it exists, is at least 2. From Example 1.52, we know that the order of
−1 is 2, so we can conclude that k4 = 1.

We can interpret the elements of Q8 as matrices, i.e.

1 =

[
1 0
0 1

]
and i =

[
i 0
0 i

]
and j =

[
0 −1
1 0

]
and k =

[
0 −i
i 0

]

One checks that (i), (ii), (iii), and (iv) of Definition 1.21 are satisfied. It follows that the
associativity of multiplication in Q8 follows from the associativity of matrix multiplica-
tion.
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1.6 Generators and Relations

Definition 1.22 (generators). Let G be a group. A set of generators of G is a subset
S of G such that every element of G can be written as

a finite product of elements of S and their inverses.

When this holds, we say that

G is generated by S or S generates G and we write G = ⟨S⟩ .

Example 1.54 (trivial example). Any group G is generated by the subset G of G.

Example 1.55. The trivial group S1 = {1} is generated by {1} and also by /0.

Example 1.56 (S2). S2 = {1,(1 2)} is generated by {1,(1 2)} and {(1 2)}. It is clear that
the first set {1,(1 2)} generates S2; to see why {(1 2)} generates S2 as well, note that
(1 2)(1 2) is the identity permutation ε on S2!

Example 1.57 (S3). S3 is generated by {(1 2) ,(1 2 3)}. To reiterate, any permutation of
S3 can be written as the finite product of these permutations in the set.

Example 1.58. By cycle decomposition, Sn is generated by the set of all cycles in Sn.

Example 1.59 (Z under addition). The additive group Z under + is generated by {+1}.
This means that starting from 0, we can obtain any integer n by adding or subtracting 1
finitely many times.

Example 1.60 (R+ under addition). The additive group of the positive real numbers R+

under addition is generated by (0,1].

Example 1.61 (Q8). The quaternion group Q8 is generated by

{i, j} or { j,k} or {k, i}

Example 1.62 (D2n). The dihedral group D2n is generated by {r,s}.

Definition 1.23 (relation). A relation in G with respect to a set of generators S is
an equation in the elements of S∪{1} which is satisfied in G.

Example 1.63 (D2n). Recall Definition 1.8, where we mentioned that rn = s2 = 1 and
rs = sr−1, which are relations with respect to {r,s}.

Example 1.64 (Q8). Recall Definition 1.21, where we mentioned that i · i=−1 and j · j =
−1, so it follows that i4 = j4 = 1. Moreover, one checks that i j = i2 ji = j3i.

Definition 1.24 (presentation). A presentation of G, written as

G = ⟨S | R1,R2, . . .⟩

consists of

a set S of generators of G and a set {R1,R2, . . .} of relations with respect to S
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such that any other relation among the elements of S can be deduced from
{R1,R2, . . .}.

Example 1.65 (D2n). We have

D2n =
〈
r,s | rn = s2 = 1,rs = sr−1〉

However, it may be difficult (or even impossible) to tell the following: when two
elements of the group (which are expressed in terms of the given generators) are equal,
whether the group is finite or infinite, and whether the group is trivial. This is known as
the Adian-Rabin theorem (Theorem 1.4).

Theorem 1.4 (Adian-Rabin theorem). Most reasonable properties of finitely pre-
sentable groups are algorithmically undecidable.

Example 1.66 (finite group; Klein four-group). The group with presentation〈
x1,y1 | x2

1 = y2
1 = (x1y1)

2 = 1
〉

is of order 4.

One would eventually know that this is the group representation of the Klein four-group
(the group is denoted by V ). We will mention in Definition 2.3 that V is an Abelian
group with four elements e,a,b,c, in which each element is involutory/self-inverse, i.e.
composing it with itself produces the identity. Moreover, composing any two of the three
non-identity elements produces the third one.

Example 1.67 (infinite group). The group with presentation〈
x2,y2 | x3

2 = y3
2 = (x2y2)

3 = 1
〉

is an infinite group!

We call this the von Dyck group D(3,3,3)3. In fact, if we consider a general case where
we have a group with the following presentation〈

x2,y2 | xp
2 = yp

2 = (x2y2)
p = 1

〉
,

where p is an odd prime, then the group is infinite!

Example 1.68. There may be hidden or implicit relations, which are consequences of the
specified ones. Say we consider the group with presentation

X2n =
〈
x,y | xn = y2 = 1,xy = yx2〉 .

Then, albeit not obvious, one can deduce that x = x4, which consequently implies x3 = 1.
Such a property is non-trivial. Moreover, we see that the order of x ∈ X2n is 3.

Example 1.69 (trivial group). The group with presentation〈
u,v | u4 = v3 = 1,uv = v2u2〉 is trivial.

In Example 1.71, we will deduce that this group is indeed trivial.
3The interested reader can look up ‘wallpaper groups’ to see some nice visual applications of von Dyck

groups.
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Example 1.70 (Q8; Dummit and Foote p. 36 Question 3). In Examples 1.61 and 1.64,
we discussed the generators and relations of the quaternion group Q8. Now, we deduce
with justification that Q8 admits the following group presentation:

Q8 =
〈
i, j,k | i2 = j2 = k2 = i jk

〉
Recall Definition 1.21, where we mentioned that

Q8 = {1,−1, i,−i, j,− j,k,−k} .

Also, it is known that the elements of Q8 satisfy the following properties:

(i) i · i = j · j = k · k =−1 (i.e. i, j,k are square roots of −1)

(ii) i · j = k and j · i =−k

(iii) j · k = i and k · j =−i

(iv) k · i = j and i · k =− j

Clearly, Q8 has 3 generators. In order to deduce the most compact-looking relation, recall
from (i) that i2 = j2 = k2 =−1. By (i), we have

(i · j) · ( j · i) = k · (−k) so i · j2 · i =−k2 = 1.

As such, i j (− ji)=−1. By (ii) again, we see that j · i=−k so − ji= k. As such, i jk =−1.
One should see that given the relation i2 = j2 = k2 = i jk, we can deduce (iii) and (iv).

Example 1.71 (Dummit and Foote p. 28 Question 18). Let Y be the group with presen-
tation 〈

u,v | u4 = v3 = 1,uv = v2u2〉 .
(a) Show that v2 = v−1.

Hint: Use the relation v3 = 1.

(b) Show that v commutes with u3.
Hint: Show that v2u3v = u3 by writing the LHS as

(
v2u2)(uv) and using the rela-

tions to reduce this to the RHS. Then, use (a).

(c) Show that v commutes with u.
Hint: Show that u9 = u and then use (b).

(d) Show that uv = 1.
Hint: Use (c) and the last relation.

(e) Show that u = 1, deduce that v = 1, and conclude that Y = 1.
Hint: Use (d) and the equation u4v3 = 1.

Solution.

(a) This is trivial as v3 = 1 implies v · v2 = 1. Hence, v2 = v−1.
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(b) We first prove the hint. Note that

v2u3v = v
(
vu2)(uv) = v

(
vu2)(v2u2)= v2u2v2u−1u3 = uv3u−1u3 = u3.

Hence, v−1u3v = u3, which implies u3v = vu3.

(c) The hint is obvious. So,

uv = u9v since u8 = 1

= u3u3 (u3v
)

= u3vu3u3 by (b)

= vu9 by (b)

= vu since u8 = 1

(d) We have

uv = vu by (c)

v2u2 = vu by the last relation uv = v2u2

So, vuvu = vu, which implies vu = 1. Since u and v commute, the result follows.

(e) By (d), we have u = v−1. As uv = v2u2, then e = v−1u2, where we used (a) on the
RHS. So, u2 = v. Since u = v−1 and u2 = v, then u3 = 1. However, we know that
u4 = 1 by the group presentation, so u = 1. Consequently, v = 1. As such, uv = 1
as well. This implies 1 is the only element of Y , so we conclude that Y is the trivial
group.

1.7 Homomorphisms and Isomorphisms
Someone ever asked what a homomorphism is in MA5204.

Definition 1.25 (group homomorphism). Let G and H be groups. A group homo-
morphism (or homomorphism if it is explicitly known that the map is between two
groups) from (G, ·) to (H,∗) is a map ϕ : G → H such that the following properties
are satisfied:

(i) ϕ respects multiplication: for all x,y ∈ G, we have ϕ (x · y) = ϕ (x) ∗ϕ (y)
and note that x · y involves the operation in G whereas ϕ (x) ∗ϕ (y) involves
the operation in H

(ii) ϕ respects identity: one has ϕ (1G) = 1H

(iii) ϕrespects inversion: for all x ∈ G, we have ϕ
(
x−1)= (ϕ (x))−1

Proposition 1.7. Let ϕ : G → H be a map. Then,

ϕ is a homomorphism if and only if ϕ respects multiplication.
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Proposition 1.8. For any group G, the identity map idG : G → G is a homomor-
phism.

Example 1.72 (Dummit and Foote p. 39 Question 1). Let ϕ : G → H be a homomor-
phism.

(a) Prove that ϕ (xn) = [ϕ (x)]n for all n ∈ Z+.

(b) Do part (a) for n =−1 and deduce that ϕ (xn) = [ϕ (x)]n for all n ∈ Z.

Solution.

(a) We will prove this by induction. For any n ∈ Z+, let the proposition P(n) de-
note ϕ (xn) = [ϕ (x)]n. We will first prove that P(1) is true, which is obvious as
ϕ
(
x1)= ϕ (x) = [ϕ (x)]1.

Suppose P(k) is true for some k ∈ Z+. Notice that ϕ
(
xk+1) = ϕ (x · . . . · x), where

there are k+1 x’s on the RHS. Since ϕ is a homomorphism, we can write

ϕ

(
xk+1

)
= ϕ

(
xk · x

)
= [ϕ (x)]k ϕ (x) = [ϕ (x)]k+1 .

It follows that P(n) is true for any n ∈ Z+.

(b) Suppose n = −1, we have ϕ (xn) = ϕ
(
x−1). Since ϕ is a homomorphism, by (iii)

of Definition 1.25, we have

ϕ
(
x−1)= [ϕ (x)]−1 .

It now suffices to prove the result in (a) for n = 0 and n ∈Z−. When n = 0, we have

ϕ
(
x0)= ϕ (1G) = 1H = [ϕ (x)]0 .

So, the statement holds for n = 0.

ϕ(x−1) = ϕ(x)−1

We have considered the case where n ∈ Z+ in (a), so now we will consider n = 0
and n ∈ Z−. When n = 0, we have

ϕ(x0) = ϕ(1) = 1G = 1 = ϕ(x)0

As such the statement holds true for n = 0. For n ∈ Z−, similar to how we proved
for the case when n = −1, as ϕ is a homomorphism, we shall set n = −k where
k ∈ Z+. Then,

ϕ

(
x−k
)
= ϕ

[(
xk
)−1

]
=
[
ϕ

(
xk
)]−1

= [ϕ (x)]−k .

so the statement holds for all n ∈ Z.
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Proposition 1.9. Let G,H,K be groups. If

ϕ : G → H and ψ : H → K are homomorphisms,

then

the composite map ψ ◦ϕ : G → K is a homomorphism.

Proof. Let x,y ∈ G. Then,

idG (xy) = xy = idG (x) idG (y) so idG respects multiplication.

We then show that ψ ◦ϕ respects multiplication. We have

(ψ ◦ϕ)(xy) = ψ (ϕ (xy))

= ψ (ϕ (x)ϕ (y)) since ϕ respects multiplication

= ψ (ϕ (x))ψ (ϕ (y)) since ψ respects multiplication

= (ψ ◦ϕ)(x)(ψ ◦ϕ)(y)

so we see that ψ ◦ϕ respects multiplication.

In the proof of Proposition 1.9, we did not explicitly state the operations in the respective
groups G,H,K. For example, say the operations on G and H are · and ∗ respectively.
These can actually be omitted.

At this juncture, it appears that the concept of a group homomorphism may seem ab-
stract, but we have actually been encountering them for quite some time. Here is an
example to make the concept more concrete.

Example 1.73. Let

G = H = K = R be additive groups.

In the context of additive groups, we would expect f and g to be linear if they are group
homomorphisms, i.e. they satisfy

f (x+ y) = f (x)+ f (y) and g(x+ y) = g(x)+g(y) for all x,y ∈ R.

For those who have prior experience in Olympiads, you would know that the only solution
to the functional equation f (x+ y) = f (x)+ f (y), where x,y ∈ R is f (x) = ax, where
a ∈ R. In fact, this functional equation is known as Cauchy’s functional equation.

By Proposition 1.9, we recall that the composition of group homomorphism is also a
group homomorphism, i.e.

( f ◦g)(x) = (g◦ f ) = abx preserves the additive structure.

This is indeed not surprising! Moreover, non-linear functions such as
√

x and cosx do not
satisfy the requirements of an additive group homomorphism in R.



1.7. HOMOMORPHISMS AND ISOMORPHISMS 37

Example 1.74. Let G be a group. Then, the following hold:

1 → G where 1 7→ 1G is a homomorphism and

G → 1 where G ∋ x 7→ 1 is a homomorphism

and they are the unique homomorphisms from 1 to G and G to 1 respectively.

Example 1.75. The exponential map

exp : R→ R+ where exp(x) =
∞

∑
n=0

xn

n!
is a homomorphism from (R,+) to

(
R+,×

)
.

Try to see how this result is analogous to the following law of indices:

ex+y = ex · ey or exp(x+ y) = exp(x) · exp(y) ,

where addition is taking place in exp(x+ y) and multiplication is taking place in exp(x) ·
exp(y).

Next, consider the natural logarithm

loge : R+ → R where loge (x) =
∫ x

1

1
t

dt is a homomorphism from
(
R+,×

)
to (R,+) .

Again, try to see how this result is analogous to the following law of indices:

loge (xy) = loge (x)+ loge (y)

where multiplication is taking place in loge (xy) and addition is taking place in loge (x)+
loge (y).

Hence,

loge ◦exp = idR as for all x ∈ R, we have loge (e
x) = x and

exp◦ loge = idR+ as for all x ∈ R>0, we have eloge(x) = x

Example 1.76 (Dummit and Foote p. 40 Question 17). Let G be any group. Prove
that the map from G to itself defined by g 7→ g−1 is a homomorphism if and only if G is
Abelian.

Solution. We first prove the forward direction. Suppose

ϕ : G → G where ϕ (g) = g−1 is a homomorphism.

Then,

ϕ (g1g2) = ϕ (g1)ϕ (g2) which implies (g1g2)
−1 = g−1

1 g−1
2 .

Hence, g−1
2 g−1

1 = g−1
1 g−1

2 . Taking inverses on both sides, we have g1g2 = g2g1, which
shows that any two elements of G commute, i.e. G is Abelian. In fact, the proof of the
reverse direction follows by performing all the steps in reverse. □
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Example 1.77 (Dummit and Foote p. 40 Question 18). Let G be any group. Prove
that the map from G to itself defined by g 7→ g2 is a homomorphism if and only if G is
Abelian.

Solution. Similar to the nature of Example 1.76, we will only prove the forward direc-
tion as the proof of the reverse direction follows by performing all the steps in reverse.
Suppose

ϕ : G → G where ϕ (g) = g2 is a homomorphism.

Then,

ϕ (g1g2) = ϕ (g1)ϕ (g2) which implies (g1g2)
2 = g2

1g2
2.

Hence, g1g2g1g2 = g1g1g2g2. Since G is group, for any g1,g2 ∈ G, their respective in-
verses exist, i.e. there exist g−1

1 ,g−1
2 ∈ G such that g1 ·g−1

1 = 1G and g2 ·g−1
2 = 1G. Hence,

g2g1 = g1g2, for which similar to Example 1.76, shows that G is Abelian. □

Example 1.78 (Dummit and Foote p. 41 Question 25). Let n ∈ Z+ and let r and s be
the usual generators of D2n, and let θ = 2π/n.

(a) Prove that the matrix [
cosθ −sinθ

sinθ cosθ

]
is the matrix of the linear transformation which rotates the xy-plane about the origin
in a counterclockwise direction by θ radians.

(b) Prove that the map ϕ : D2n → GL2 (R) defined on generators by

ϕ (r) =

[
cosθ −sinθ

sinθ cosθ

]
and ϕ (s) =

[
0 1
1 0

]
extends to a homomorphism of D2n into GL2 (R).

(c) Prove that the homomorphism ϕ in (b) is injective.

Solution.

(a) This is a simple exercise involving polar coordinates. We omit the solution.

(b) Geometrically, ϕ (s) represents a reflection across the line y = x, so [ϕ (s)]2 = I.
Since the rotation matrix in (a) denotes a rotation about the origin in a counter-
clockwise direction by θ radians, then applying the map n times yields the identity
map, or rather I. That is, [ϕ (r)]n = I.

Lastly, we shall justify that

ϕ (r)ϕ (s) = ϕ (s) [ϕ (r)]−1 .

ϕ (r)ϕ (s) means that we reflect across the line y = x first, then rotate by θ radians
counterclockwise. This is the same as a rotation of θ radians clockwise first, then a
reflection across the line y = x, which is represented by ϕ (s) [ϕ (r)]−1.
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(c) Let H denote the subgroup of GL2 (R) generated by ϕ (r) and ϕ (s). Then, the map
ψ : D2n → H defined by restricting the codomain of ϕ is surjective. Since |H| =
2n = |D2n|, then ψ must be injective. Consequently, ϕ must also be injective.

Definition 1.26 (group isomorphism). Let ϕ : G → H be a bijective group homo-
morphism. Then,

ϕ is an isomorphism and G and H are isomorphic, where we write G ∼= H.

Hence, an isomorphism from G to H is

a homomorphism ϕ : G → H such that there exists a homomorphism ψ : H → G

such that

ψ ◦ϕ = idG and ϕ ◦ψ = idH .

Proposition 1.10. A homomorphism ϕ : G → H is an isomorphism if and only if ϕ

is bijective.

Definition 1.27 (group isomorphism). We say that

G ∼= H if and only if there exists an isomorphism from G to H.

Note that the isomorphism is usually not unique.

Remark 1.2. Saying that two groups G and H are isomorphic is generally quite
useless — it is better if we can state what the isomorphism ϕ : G → H is.

Example 1.79 (Dummit and Foote p. 40 Question 5). Prove that the additive groups R
and Q are not isomorphic.

Solution. Suppose on the contrary that R and Q are isomorphic, with the group operation
being +. Recall from MA1100 that Q is countable and R is uncountable so there does not
exist a bijective function from R to Q. By Proposition 1.10, the additive groups (R,+)

and (Q,+) are not isomorphic. □

Example 1.80 (Dummit and Foote p. 40 Question 7). Prove that D8 and Q8 are not
isomorphic4.

Solution. Based on the mentioned links in the footnote, we see that Q8 has only 1 element
of order 2, whereas D8 has 5 elements of order 2. By (b) of Proposition 1.14, D8 and Q8

4I looked at the element structure of Q8 and the element structure of D8.

https://groupprops.subwiki.org/wiki/Element_structure_of_quaternion_group
https://groupprops.subwiki.org/wiki/Element_structure_of_dihedral_group:D8
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are not isomorphic. One checks the following:

the element of order 2 in Q8 is −1 and

the elements of order 2 in D8 are r2,s,rs,r2s,r3s

so indeed, D8 and Q8 are not isomorphic. □

Example 1.81 (Dummit and Foote p. 40 Question 8). Prove that if n ̸= m, then Sn and
Sm are not isomorphic.

Solution. |Sn|= n! and |Sm|= m! which are not equal. □

Example 1.82 (Dummit and Foote p. 40 Question 9). Prove that D24 and S4 are not
isomorphic.

Solution. Note that r ∈ D24 which is of order 12, but there does not exist any element of
order 12 in S4. □

Proposition 1.11. ∼= is an equivalence relation. That is,

∼= is reflexive, symmetric, transitive.

Proof. We first prove that ∼= is reflexive. Let G be a group. Then,

the identity map idG : G → G defined by idG (g) = g for all g ∈ G

is a bijective homomorphism. To see why idG is a homomorphism, we have for any
g1,g2 ∈ G,

idG (g1 ·g2) = g1 ·g2 = idG (g1) · idG (g2) .

Also, idG is clearly bijective since every element in G maps uniquely to itself. As such,
G ∼= G.

We then prove that ∼= is symmetric. Suppose G ∼= H, where H is also a group. Then,

there exists a group isomorphism ϕ : G → H.

Since ϕ is bijective, it is invertible by Theorem 1.1, ϕ−1 exists. As such,

there exists a group isomorphism ϕ
−1 : H → G which implies H ∼= G.

As such, ∼= is symmetric. Lastly, we prove that ∼= is transitive. Suppose G ∼= H and
H ∼= K, where K is also a group. Then,

there exist group isomorphisms ϕ : G → H and ψ : H → K.

We need to show that ψ ◦ϕ : G → K is an isomorphism, so two properties need to be
established — ψ ◦ϕ is a homomorphism (follows from Proposition 1.9) and ψ ◦ϕ is a
bijective map. The latter is a simple result from MA1100, where it is known that the
composition of bijective maps is also bijective. So, G ∼= K, implying that ∼= is transitive.
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Example 1.83. Recall Example 1.75, where we mentioned the exponential map and the
natural logarithm as group homomorphisms. One would know from MA1100 Basic Dis-
crete Mathematics that these functions are injective and surjective, hence bijective, which
shows that we can construct the following group isomorphisms:

(R,+)∼=
(
R+,×

)
and

(
R+,×

)∼= (R,+)

which correspond to the exponential function and the natural logarithm respectively.

Example 1.84. We have the isomorphism

D6 ∼= S3.

Although |D6|= |S3|= 6, we cannot use this fact to conclude that the groups are isomor-
phic. Instead, the only way out is by constructing a group homomorphism ϕ : S3 → D6

and checking that it is indeed an isomorphism. We omit the details.

Example 1.85 (Dummit and Foote p. 40 Question 3). If ϕ : G → H is an isomorphism,
prove that

G is Abelian if and only if H is Abelian.

If ϕ : G → H is a homomorphism, what additional conditions on ϕ (if any) are sufficient
to ensure G is abelian, then so is H?

Solution. We first prove the first result. Starting with the forward direction, assume that
G is Abelian. Take two elements h1,h2 ∈ H. Then, there exist g1,g2 ∈ G (this follows as
ϕ is bijective, hence surjective) such that

ϕ (g1) = h1 and ϕ (g2) = h2.

Then,

h1h2 = ϕ (g1)ϕ (g2)

= ϕ (g1g2) since ϕ is a homomorphism

= ϕ (g2g1) since G is Abelian

= ϕ (g2)ϕ (g1) since ϕ is a homomorphism

= h2h1

so H is Abelian.

We then prove the reverse direction. Suppose g1,g2 ∈ G. Then,

ϕ (g1g2) = ϕ (g1)ϕ (g2) since ϕ is a homomorphism

= ϕ (g2)ϕ (g1) since H is Abelian

= ϕ (g2g1) since ϕ is a homomorphism

Since ϕ is bijective, it is injective so g1g2 = g2g1. So, G is Abelian.
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We proceed with the second result. Suppose ϕ : G → H is a homomorphism. Say G
is Abelian. As mentioned in the forward direction of the proof of the first result, if ϕ is
surjective, then H is Abelian. □

Proposition 1.12 (Dummit and Foote p. 40 Question 11). Let A and B be groups.
Prove that

A×B ∼= B×A.

Proof. Define
ϕ : A×B → B×A where ϕ : (a,b) 7→ (b,a) .

Here, note that (A, ·) and (B,∗) are groups. We first show that ϕ is a homomorphism.
Suppose we have (a1,b1) ,(a2,b2) ∈ A×B such that

ϕ ((a1,b1)) = (b1,a1) and ϕ ((a2,b2)) = (b2,a2) .

Then,

ϕ ((a1,b1)(a2,b2)) = ϕ ((a1a2,b1b2))

= (b1b2,a1a2)

= (b1,a1)(b2,a2)

= ϕ (a1,b1)ϕ (a2,b2)

So, ϕ is indeed a homomorphism.

We then prove that ϕ is bijective. Suppose we have ϕ ((a1,b1)) = ϕ ((a2,b2)). Then,
(b1,a1) = (b2,a2), so by equality of ordered pairs ,we have a1 = a2 and b1 = b2. This
implies ϕ is injective.

Then, note that for every (b,a)∈B×A, we can choose (a,b)∈A×B such that ϕ ((a,b))=
(b,a), which implies ϕ is surjective. It follows that ϕ is a bijective homomorphism so ϕ

is an isomorphism.

Example 1.86 (Dummit and Foote p. 40 Question 12). Let A, B, and C be groups and
let

G = A×B and H = B×C.

Prove that G×C ∼= A×H.

Solution. Define

ϕ : G×C → A×H where ϕ : (g,c) 7→ (a,h)

Let g = (a,b) and h = (b,c), where a ∈ A,b ∈ B,c ∈C, so ϕ : ((a,b) ,c) 7→ (a,(b,c)). The
proof that ϕ is a homomorphism is similar to that in Example 1.12.

We then prove that ϕ is injective. Suppose (a1,(b1,c1)) = (a2,(b2,c2)) in A×H. Then,
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a1 = a2 and (b1,c1) = (b2 = c2). The latter implies b1 = b2 and c1 = c2, so ϕ is in-
jective. Also, it is clear that ϕ is surjective because for every (a,(b,c)) ∈ A×H, there
exists ((a,b) ,c) ∈ G×C such that ϕ ((a,b) ,c) = (a,(b,c)). We conclude that ϕ is an
isomorphism. □

Example 1.87 (Dummit and Foote p. 40 Question 19). Let

G =
{

z ∈ C : zn = 1 for some n ∈ Z+
}
.

Prove that for any fixed integer k > 1, the map from G to itself defined by z 7→ zk is a
surjective homomorphism but is not an isomorphism.

Solution. Let the map be

ϕ : G → G where z 7→ zk.

We first prove that ϕ is a homomorphism. Let x,y ∈ G (referring to the domain). Then,

ϕ (xy) = (xy)k = xkyk = ϕ (x)ϕ (y) ,

so ϕ is a homomorphism. To see why ϕ is surjective, let a,n ∈ Z+, and choose

zk = e2aπi/n in G,

where G here refers to the codomain. One checks that(
zk
)n

= e2aπi =
(
e2πi)a

= 1.

The preimage of e2aπi/n in G is e2aπi/nk. Again, one checks that
(

e2aπi/nk
)nk

= 1, so
indeed, this element is in G. So, ϕ is surjective.

However, ϕ is not an isomorphism because it is not injective. To see why, let ζ1,ζ2 ∈ C
such that |ζ1| = |ζ2| = 1. Consider ϕ (ζ1) = ϕ (ζ2). Say we define ζ1 = e2aπi/k and
ζ2 = e2bπi/k, where a,b ∈ Z+. Then, the equation ϕ (ζ1) = ϕ (ζ2) holds but ζ1 may not
be equal to ζ2. In particular, we can simply choose distinct a and b. □

Proposition 1.13. For any sets ∆ and Ω,

if |∆|= |Ω| then S∆
∼= SΩ.

Proof. Suppose |∆| = |Ω|. Then, by definition, there exists a bijective (or equivalently,
invertible) map

θ : ∆ → Ω with inverse map θ
−1 : Ω → ∆.

We define the map ϕ : S∆ → SΩ as follows:

for any σ ∈ S∆, set ϕ (σ) = θ ◦σ ◦θ
−1 which is known as the conjugation map.
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We will discuss more about conjugation in due course (Definition 2.6), particularly when
we talk about normal subgroups. Note that ϕ (σ) is a permutation of Ω since it is a map
from Ω to Ω and it is the composition of invertible maps, which implies it is also invert-
ible. So, we have shown that ϕ is bijective.

We then show that ϕ : S∆ → SΩ is a homomorphism. Let τ,σ ∈ S∆. Then,

ϕ (σ ◦ τ) = θ ◦ (τ ◦σ)◦θ
−1

= θ ◦ τ ◦ id∆ ◦σ ◦θ
−1

= θ ◦ τ ◦θ
−1 ◦θ ◦σ ◦θ

−1

=
(
θ ◦ τ ◦θ

−1)◦ (θ ◦σ ◦θ
−1)

= ϕ (τ)◦ϕ (σ)

Similarly, one can deduce that

ψ : SΩ → S∆ defined by ψ (α) = θ
−1 ◦α ◦θ for any α ∈ SΩ

is a homomorphism. As such,

ψ ◦ϕ = idS∆
and ϕ ◦ψ = idSΩ

,

implying that ϕ is an isomorphism with inverse ϕ−1 = ψ .

Proposition 1.14. Let ϕ : G → H be an isomorphism. Then, the following hold:

(a) |G|= |H|

(b) for all x ∈ G, we have |x|= |ϕ (x)|

Proof. By Proposition 1.10, ϕ is bijective, so (a) follows.

For (b), the result holds if G is an infinite group (consequently, H is an infinite group). So,
consider the case when G is a finite group, say of order n. As any isomorphism is a homo-
morphism, then ϕ (1G) = 1H . Since G is finite, then there exists n ∈ N such that xn = 1G.
Hence, ϕ (xn) = (ϕ (x))n, which implies (ϕ (x))n = 1H . This shows that |ϕ (x)| | n.

Conversely, if (ϕ (x))m = 1H for some m ∈ N, then taking ϕ−1 on both sides, we have
xm = 1G. By the minimality of |x| = n, we have m ≥ n, so we conclude that |x| =
|ϕ (x)|.

Example 1.88 (Dummit and Foote p. 40 Question 4). Prove that the multiplicative
groups

R\{0} and C\{0} are not isomorphic.

Solution. Recall (b) of Proposition 1.14, which mentions that if there really exists an iso-
morphism ϕ : R\{0}→C\{0}, then for all x ∈R\{0}, we have |x|= |ϕ (x)|. Note that
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i ∈C\{0} is of order 4. However, there does not exist any element in R\{0} of order 4.
We shall argue this rigorously.

Let x ∈ R\{0}. Then, either x =±1 or x ̸=±1. For the former, if x = 1, then |x|= 1; if
x = −1, then |x| = 2 since (−1)2 = 1. For the latter, as x ̸= ±1 but |x| = 1, then x must
be a root of unity, i.e. there exists n ≥ 3 such that x = e2πi/n, but these elements are not
purely real. As such, if such an isomorphism ϕ were to really exist, it has to preserve the
order of the element under ϕ , but it does not. So, R\{0} C\{0} are not isomorphic. □

Example 1.89 (Dummit and Foote p. 41 Question 24). Let G be a finite group and let
x and y be distinct elements of order 2 in G that generate G. Prove that G ∼= D2n, where
n = |xy|.

Solution. Recall Example 1.38, which mentions that if x and y are elements of order 2 in
a group G,

t = xy implies tx = xt−1.

Let t = r and x = s so that y = tx−1 = rs−1. Here, r and s denote the usual rotation and
reflection as mentioned in Definition 1.8 on the dihedral group D2n. So,

x2 = s2 = e and y2 = rs−1rs−1 = rsrs = sr−1rs = s2 = e.

We have shown that x and y are of order 2. Lastly, we will prove that x and y are distinct.
Suppose on the contrary that they denote the same transformation, i.e. x = y, or equiva-
lently s = rs−1. Then, s2 = r, which implies r = e, which is a contradiction.

We conclude that G and D2n are isomorphic. □

Definition 1.28 (automorphism group). Let G be a group and let Aut(G) be the set
of all isomorphisms from G onto G.

Proposition 1.15 (Dummit and Foote p. 41 Question 20). Aut(G) is a group under
function composition.

In Proposition 1.15, the elements of Aut(G) are automorphisms of G. We now prove
this result.

Proof. Suppose there exist maps ϕ,ψ ∈ (G). Then,

ϕ,ψ : G → G are isomorphisms.

We will first prove that Aut(G) satisfies the closure property. Take any x,y ∈ G. Then,

(ϕ ◦ψ)(xy) = ϕ (ψ (xy))

= ϕ (ψ (x)ψ (y)) since ψ is a homomorphism

= ϕ (ψ (x))ϕ (ψ (y)) since ϕ is a homomorphism

= ((ϕ ◦ψ)(x))((ϕ ◦ψ)(y))
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As such ϕ ◦ψ is a homomorphism. From MA1100 Basic Discrete Mathematics, we know
that the composition of bijective functions ϕ and ψ , denoted by ϕ ◦ψ , is also bijective.
So, ϕ ◦ψ : G → G is an isomorphism, which implies ϕ ◦ψ ∈ Aut(G).

Note that the composition of maps satisfies associativity, reason being if we have ϕ,ψ,ω ∈
Aut(G), then

ϕ ◦ (ψ ◦Ω) = (ϕ ◦ψ)◦Ω.

The identity element of Aut(G) is clearly idG.

Lastly, given ϕ ∈ Aut(G), as ϕ is bijective, it is invertible so ϕ−1 : G → G exists and it
is also bijective. Take any a,b ∈ G. Then, ϕ−1 (ab) = ϕ−1 (a)ϕ−1 (b) which shows that
ϕ−1 is a homomorphism. As such, ϕ−1 ∈ Aut(G). To conclude, Aut(G) is a group.

Example 1.90 (Dummit and Foote p. 41 Question 21). Prove that for each fixed non-zero
k ∈Q, the map

from Q to itself defined by q 7→ kq is an automorphism of Q.

Solution. We have ϕ (q) = kq. Consider q1,q2 ∈ Q such that ϕ (q1) = kq1 and ϕ (q2) =

kq2. Then,
ϕ (q1 +q2) = k (q1 +q2) = kq1 + kq2 = ϕ (q1)+ϕ (q2) .

As such, ϕ is a homomorphism. Next, we ill show that ϕ is bijective. We first prove
that ϕ is injective. Consider ϕ (q1) = ϕ (q2), which implies kq1 = kq2. Since k ̸= 0, then
q1 = q2, so ϕ is injective. Next, we prove that ϕ is surjective. For any y ∈ Q, we can
choose x = y/k such that ϕ (x) = k (y/k) = y, which implies ϕ is surjective. The result
follows. □

Example 1.91 (Dummit and Foote p. 41 Question 22). Let A be an Abelian group and
fix some k ∈Z. Prove that the map a 7→ ak is a homomorphism from A to itself. If k =−1
prove that this homomorphism is an isomorphism (i.e. is an automorphism of A).

Solution. Define ϕ : A → A, where ϕ (a) = ak for some k ∈ Z. So, for any a,b ∈ A

ϕ (ab) = (ab)k = akbk = ϕ (a)ϕ (b) ,

where the second equality uses the fact that A is Abelian (see Example 1.3). Hence, ϕ is
a homomorphism.

When k = −1, we have the homomorphism ϕ (a) = a−1. Since ϕ is its own inverse
function, then ϕ is bijective so it is an isomorphism. □

Example 1.92 (Dummit and Foote p. 41 Question 23). Let G be a finite group which
possesses an automorphism σ such that

σ (g) = g if and only if g = 1.
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If σ2 is the identity map from G to G, prove that G is Abelian. Such an automorphism σ

is called fixed-point free of order 2.
Hint: Show that every element of G can be written in the form x−1σ (x) and apply σ to
such an expression.

Solution. Define a map

ϕ : G → G where ϕ (x) = x−1
σ (x) .

We first prove that ϕ is injective. Suppose ϕ (x) = ϕ (y). Then,

x−1
σ (x) = y−1

σ (y)

σ (y) = yx−1
σ (x)

Hence,
y = σ (σ (y)) = σ

(
yx−1)x which implies yx−1 = σ

(
yx−1) .

Since σ is fixed-point free, then yx−1 = 1, so x = y. Hence, ϕ is injective. Since G (refer-
ring to the domain) is a finite set, then ϕ is surjective. So, ϕ is bijective. From here, we
deduce the hint — let g ∈ G, where G here refers to the codomain. As such, g = x−1σ (x),
so for any g ∈ G, we can write it as x−1σ (x).

Let g1,g2 ∈ G be arbitrary. Then, there exist x1,x2 ∈ G such that g1 = x−1
1 σ (x1) and

g2 = x−1
2 σ (x2). Hence,

σ (g1) = σ
(
x−1

1
)

σ
2 (x1) = σ

(
x−1

1
)

x1 = g−1
1 .

As such,

g1g2 = σ
(
g−1

1
)

σ
(
g−1

2
)
= σ

(
g−1

1 g−1
2
)
= σ

(
(g2g1)

−1
)
= σ (σ (g2g1)) = g2g1,

so we conclude that G is Abelian. □





Chapter 2
Subgroups

2.1 Definition and Examples

Definition 2.1 (subgroup). Let G be a group. A subgroup of G is a subset H of G
(i.e. H ⊆ G) such that the following properties are satisfied:

(i) Closure under multiplication: for all x,y ∈ H, we have xy ∈ H

(ii) Closure under identity: 1G ∈ H

(iii) Closure under inversion: for all x ∈ H, we have x−1 ∈ H

We write

H ≤ G if and only if H is a subgroup of G.

When H ≤ G, the multiplication map

∗ : G×G → G of G restricts to a map ∗ : H ×H → H

known as the multiplication map of H. We say that 1H = 1G ∈ H is the identity of H.

Also, the inversion map

( )−1 : G → G of G restricts to a map ( )−1 : H → H

known as the inversion map of H.

Moreover, the following properties continue to satisfy the axioms for H to be a group
(recall Definition 1.1):

(i) Associativity of ∗: for all a,b,c ∈ H, we have (a∗b)∗ c = a∗ (b∗ c)

(ii) Existence of identity element: a∗1H = 1H ∗a = a

(iii) Existence of inverse element: for all a ∈ H, there exists a−1 ∈ H such that a ∗
a−1 = a−1 ∗a = 1H

49
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Hence, we can conclude that H is also a group, where

the canonical inclusion map ι : H ↪→ G with ι (h) = h is a homomorphism.

The hook in H ↪→ G means that ι is an injective map. To put things abstractly,

any injective homomorphism is known as a monomorphism.

Example 2.1 (canonical examples). For any group G,

H = {1} ≤ G and H is known as the trivial subgroup of G.

Also,

H = G ≤ G and H is known as the improper subgroup of G.

Definition 2.2 (proper subgroup). We say that H is a proper subgroup of G and

we write H < G if and only if H ≤ G and H ̸= G.

Proposition 2.1 (subgroup criterion). A subset H of G is a subgroup if and only if
the following properties are satisfied:

(i) H ̸= /0

(ii) for all x,y ∈ H, one has xy−1 ∈ H

Proof. We first prove the forward direction. Suppose H ≤G. Then, because 1H = 1g ∈H,
then H ̸= /0 so (i) holds. Also, (ii) holds because for all x,y ∈ H, we have

y−1 ∈ H as H is closed under inversion so xy−1 ∈ H as H is closed under multiplication.

We now prove the reverse direction. Suppose H satisfies (i) and (ii). Since H ̸= /0 by (i),
then there exists b ∈ H. Letting x = y = b, we obtain

1G = bb−1 ∈ H so H is closed under identity.

Next, for any a ∈ H, letting x = 1G and y = a, we obtain

a−1 = 1G ·a−1 ∈ H so H is closed under inversion.

Lastly, for any a,b ∈ H, letting x = a and y = b−1, we have

ab = a ·
(
b−1)−1 ∈ H so H is closed under multiplication.

It follows that H ≤ G.
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Proposition 2.2 (finite subgroup criterion). A finite subset H of G is a subgroup if
and only if the following properties are satisfied:

(i) H ̸= /0

(ii) for all x,y ∈ H, one has xy ∈ H

Proof. The proof is similar to that of the forward direction of Proposition 2.1. We only
prove the reverse direction. Let x ∈ H. By setting x = y, we have x2 ∈ H. As such,

by an inductive argument, for any a ∈ N we have xa ∈ H.

Set n = |H|+1. By the pigeonhole principle,

the map {1, . . . ,n}→ H where a 7→ xa is not injective.

Hence, there exist distinct positive integers a and b such that xb = xa. Without loss of
generality, suppose a < b. Applying (ii) again, it follows that xb−a = 1G ∈ H, so H is
closed under identity.

Lastly, we verify that H is closed under inversion. To see why this is true, for any a ∈Z≥0

(the subscript can include 0 since we previously established that H is closed under iden-
tity), we have xa ∈ H, so xb−a−1 ∈ H. It follows that

x · xb−a−1 = xb−a = 1G so x−1 = xb−a−1 ∈ H,

which implies H is closed under inversion. Hence, H ≤ G.

Example 2.2. We have Z≤Q≤ R≤ C under addition.

Example 2.3. We have Z× ≤Q× ≤ R× ≤ C× under multiplication.

Having said all these, note that Q× and R× are not subgroups of R even though these
sets are subsets of R. For example, to see why, we see that R× =R\{0} so R× excludes
the additive identity of R which is 0. Moreover, R× is not closed under addition, so it
does not satisfy the subgroup criterion (Proposition 2.1).

Moreover, Z+ is not a subgroup of Z under addition even though Z+ is closed under
addition. This is because Z+ does not contain the additive identity of Z which is 0.

Example 2.4 (subgroups of Z). We shall discuss some subgroups of Z. For any n ∈ Z≥0,
define the subset

nZ to be the set of integer multiples of n.

Equivalently, we have

nZ= {nk ∈ Z : k ∈ Z}
= {a ∈ Z : there exists k ∈ Z such that a = nk}
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We shall verify that that nZ ≤ Z using the subgroup criterion (Proposition 2.1). Firstly,
note that 0 ∈ nZ which follows by setting k = 0, so nZ is non-empty. Then, let x,y ∈ nZ,
i.e.

there exist k1,k2 ∈ Z such that x = nk1 and y = nk2.

Note that y−1 =−nk2, which is the additive inverse of y in Z. Hence,

x∗ y−1 = nk1 +(−nk2) = n(k1 − k2 ∈ nZ since k1 − k2 ∈ Z.

Here, our choice of the symbol ∗ is apt since it is arbitrary, but keep in mind that the group
operation is addition.

For example,

0Z= {0} 1Z= Z 2Z= {all even integers} .

Theorem 2.1. For any H ≤ Z,

there exists a unique n ∈ Z≥0 such that H = nZ.

Proof. Let H ≤ Z. Then, by Proposition 2.1, H ̸= /0. Hence, 0 ∈ H. If H = {0}, then we
are done since H = 0Z.

On the other hand, if H ̸= {0}, by the well-ordering principle, H contains a least ele-
ment, say n. We claim that H = nZ, starting by proving the reverse inclusion nZ ⊆ H.
Since n ∈ H and H is closed under addition and inverses, then any integer multiple of n,
say kn for k ∈ Z, is also contained in H. So, the reverse inclusion follows.

We then prove the forward inclusion H ⊆ nZ. Suppose x ∈ H. By the division algo-
rithm, there exist q,r ∈ Z such that

x = qn+ r where 0 ≤ r < n.

Since n∈H, then as H is closed under multiplication, we have qn∈H. So, r = x−qn∈H
as H is closed under subtraction (combination of closure under addition and inverse). By
the minimality of n, we have r = 0, otherwise r would be a smaller positive element in H.
Hence, x = qn ∈ nZ, proving that H ⊆ nZ.

Example 2.5 (subgroups of groups of small order). Let G be a group of small order.

(i) If |G|= 1, then the only subgroup of G is the trivial group {e}.

(ii) If |G| = 2, say G = {e,a}, then the only subgroups of G are the trivial group {e}
and {e,a}.

(iii) If |G|= 3, say G = {e,a,b}, then the only subgroups of G are the trivial group {e}
and {e,a,b}.
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(iv) We give a glimpse of groups of order 4, and in fact, there are two possibilities up to
isomorphism. Say G = {e,a,b,c}.

In Table 2.1, we have the Cayley table for G = Z/4Z (we will explain what this
means in a moment; as of now, appreciate the structure of the group table). Just
to recap, we see that a and c are generators, but b is not (because we can neither
obtain a nor c from b).

We see that the subgroups of G = Z/4Z are

{1} ,G,{1,a} ,{1,b} ,{1,c} .

· e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Table 2.1: Cayley table for Z/4Z (cyclic group of order 4)

We mentioned that Table 2.1 is the Cayley table for G = Z/4Z. This is known
as the quotient group Z modulo 4Z (will be covered in Definition 3.12), but this
simply means the set of possible remainders when an integer is divided by 4, so

Z/4Z=
{

0,1,2,3
}

The bar notation represents the equivalence classes of integers modulo 4. Specifi-
cally, a = {. . . ,−2a,−a,0,a,2a, . . .} denotes the set of integers that have the same
remainder as a when divided by 4. Similarly, we see that 1 and 3 are the only gen-
erators of the group.

Moreover, here is a fun fact. Let e = 1, b = −1, a = i and c = −i. Then, we
obtain the following Cayley table. This corresponds to the multiplicative group
of the fourth roots of unity (i.e. solutions to z4 = 1, where z ∈ C) generated by
i =

√
−1 (similar to the previous setups, −i is also a generator)!
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· 1 i −1 −i
1 1 i −1 −i
i i −1 −i 1
−1 −1 −i 1 i
−i −i 1 i −1

Table 2.2: A familiar Cayley table?

In Table 2.3, we have the Cayley table for G = Z/2Z×Z/2Z, which refers to the
direct product (recall Definition 1.5) of the quotient groups Z/2Z and itself. Ob-
serve that every non-identity element satisfies the relation a2 = e (we say that the
element a is an involution since it is equal to its inverse). A less-obvious relation is
(ab)2 = e.

The subgroups of G = Z/2Z×Z/2Z are

{1} ,G,{1,b} .

· e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Table 2.3: Cayley table for Z/2Z×Z/2Z (Klein four-group V )

At the end of Example 2.5, we mentioned that the group Z/2Z×Z/2Z is known as
the Klein four-group V .

Definition 2.3 (Klein four-group). The Klein four-group V is an Abelian group
with four elements e,a,b,c, in which each element is involutory/self-inverse, i.e.
composing it with itself produces the identity. Moreover, composing any two of
the three non-identity elements produces the third one.

V can be defined by the following group presentation (recall Example 1.66):

V =
〈

a,b | a2 = b2 = (ab)2 = e
〉

Example 2.6 (Dummit and Foote p. 48 Question 5). Prove that G cannot have a subgroup
H with |H|= n−1, where n = |G|> 2.
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Solution. Suppose on the contrary that such a subgroup H exists. Then, there exists a
non-identity element x ∈ H and an element y ̸∈ H. Consider the product xy. If xy ∈ H,
then x−1 ∈ H, so y ∈ H (since H ≤ G), which leads to a contradiction. On the other hand,
if xy ̸∈ H, then xy = y, which implies x = 1, which again is a contradiction1. □

Example 2.7 (Dummit and Foote p. 48 Question 8). Let H and K be subgroups of G.
Prove that

H ∪K is a subgroup if and only if either H ⊆ K or K ⊆ H.

Solution. We first prove the forward direction. Suppose on the contrary that neither H ⊆
K nor K ⊆ H. Then, choose h ∈ H \K and k ∈ K \H, which implies h ̸∈ K and k ̸∈ H.
Since hk ∈ H ∪K (given that H ∪K ≤ G), we shall consider two cases.

• Case 1: Suppose hk ∈ H. Then, because h−1 ∈ H, then h−1hk = k, which contra-
dicts the closure property of subgroups as we earlier mentioned that k ̸∈ H.

• Case 2: Suppose hk ∈ K. Same as Case 1, we reach a contradiction.

We now prove the reverse direction. Suppose either H ⊆ K or K ⊆ H. Then, H ∪K = K
or H ∪K = H respectively. Note that in each case, K ≤ G and H ≤ G, which implies
H ∪K ≤ G. □

Example 2.8 (Dummit and Foote p. 48 Question 10).

(a) Prove that if H and K are subgroups of G then so is their intersection H ∩K.

(b) Prove that the intersection of an arbitrary non-empty collection of subgroups of G
is again a subgroup of G (do not assume the collection is countable)

Solution.

(a) First, note that the intersection is non-empty since 1 ∈ H and 1 ∈ K implies 1 ∈
H ∩K.

Next, consider x,y ∈ H∩K. Then, x,y ∈ H and x,y ∈ K. Since y ∈ H, then y−1 ∈ H,
so xy−1 ∈ H. Similarly, xy−1 ∈ K, so xy−1 ∈ K. By the subgroup criterion (Propo-
sition 2.1), H ∩K ≤ G.

(b) Same as (a), the intersection is non-empty. Now, let H1, . . . ≤ G. Define their
intersection as follows:

X =
⋂

i

Hi where Hi ≤ G for all i.

Consider a,b ∈ X . Then, a,b ∈ Hi for all i. Since each Hi ≤ G, then ab−1 ∈ Hi for
all i, which implies

ab−1 ∈
⋂

i

Hi = X .

By the subgroup criterion (Proposition 2.1), the intersection is a subgroup of G.
1In fact, one can use Lagrange’s theorem (Theorem 3.1) and make the same conclusion. That is,

assuming that H ≤ G, we must have (n−1) | n, which clearly does not.
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Example 2.9 (Dummit and Foote p. 49 Question 15). Let H1 ≤H2 ≤ . . . be an ascending
chain of subgroups of G. Prove that

∞⋃
i=1

Hi is a subgroup of G.

Solution. Let H denote the union. Since 1G ∈ Hi for all i ∈ N, then 1G ∈ H, so H is
non-empty. Next, let a,b ∈ H, so there exist i, j ∈ N such that a ∈ Hi and b ∈ H j. Take
k = max{i, j} so a,b ∈ Hk. Hence, ab−1 ∈ Hk, and we conclude that ab−1 ∈ H. By the
subgroup criterion (Proposition 2.1), H ≤ G. □

We then discuss the kernel and image of a homomorphism. These are analogous to the
nullspace and column space of the matrix representation of a linear transformation re-
spectively (recall MA2001).

Definition 2.4 (kernel and image). Let ϕ : G → H be a homomorphism. The kernel
of φ and image of ϕ are defined as follows respectively:

kerϕ = {g ∈ G : ϕ (g) = 1H}
imϕ = {ϕ (g) ∈ H : g ∈ G}

Equivalently, im(ϕ) is the set of all h ∈ H where there exists g ∈ G such that h =

ϕ (g).

Proposition 2.3. Let ϕ : G → H be a homomorphism. Then,

kerϕ is a subgroup of G and imϕ is a subgroup of H.

Again, recall that there is an analogous result in MA2001, which mentions that if V
and W are vector spaces and

T : V →W is a linear transformation from V to W with matrix representation A,

then the nullspace of A is a subspace of V and the column space of A is a subspace of W .
We now prove Proposition 2.3.

Proof. We first prove that kerϕ ≤ G. Iti s clear that 1G ∈ kerϕ , so kerϕ ̸= /0. Next, let
x,y ∈ kerϕ ⊆ G. Then,

ϕ
(
xy−1)= ϕ (x)ϕ

(
y−1)= ϕ (x) [ϕ (y)]−1 = 1H1−1

H = 1H

where the second last equality follows from the fact that ϕ respects identity, i.e. 1H =

ϕ (1G) ∈ imϕ . It follows that xy−1 ∈ kerϕ , so by the subgroup criterion (Proposition
2.1), kerϕ ≤ G.
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We then prove that imϕ ≤ H. By definition of im, we see that it is non-empty. Let
x,y ∈ imϕ ⊆ H. Then, by definition,

there exist a,b ∈ G such that x = ϕ (a) and y = ϕ (b) in H.

Hence,

xy−1 = ϕ (a) [ϕ (b)]1 = ϕ (a)ϕ
(
b−1)= ϕ

(
ab−1)

with ab−1 ∈ G, which follows that xy−1 ∈ imϕ . Again, by the subgroup criterion (Propo-
sition 2.1), we conclude that imϕ ≤ G2.

Example 2.10. Consider the identity homomorphism

idG : G → G,

where it is clear that ker(idG) = {1G}, which is the trivial subgroup of G, and im(idG) =

G, which is the improper subgroup of G.

Example 2.11. Let

ϕ : G → H be an isomorphism.

Then, kerϕ = {1G}, which is the trivial subgroup of G, and imϕ = H, which is the im-
proper subgroup of H.

We give a generalisation of this example. Let

ϕ : G ↪→ H be an injective homomorphism and ψ : G ↠ H be a surjective homomorphism.

Then, kerϕ = {1G} and imψ = H. Also, we recall that an injective homomorphism is
known as a monomorphism, whereas a surjective homomorphism is known as an epimor-
phism.

Example 2.12. Consider the homomorphisms

ϕ : 1 → G which has ker = 1 and im = {1G}
ψ : G → 1 which has ker = G and im = 1

Example 2.13. We shall find the homomorphism from S2 to S3 and determine the kernels
and images. First, note that any homomorphism ϕ : S2 → S3 must map the identity in S2

to S3.

Let a = (1 2) denote the non-identity element in S2, i.e. the transposition. Since a ·a = e,
then applying ϕ to both sides yields

ϕ (a ·a) = ϕ (e) so [ϕ (a)]2 = e

2im(ϕ) ≤ H appears as a problem in Question p. 40 Question 13 of the Dummit and Foote textbook.
Moreover, the reader is asked to deduce that if ϕ is injective, then G ∼= ϕ (G). This can also be seen as an
application of the first isomorphism theorem (Theorem 3.6) which we will encounter in due course.
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So, ϕ (a) must have order dividing 2 in S3, i.e. ϕ (a) can only be mapped to elements
of S3 with order 2 or the identity. The elements in S3 with order 2 are the transpositions
(1 2), (1 3), and (2 3). We can define three homomorphism by mapping a to each of
these transpositions. Each choice gives a valid homomorphism since a single non-identity
element in S2 generates the group. Hence,

kerϕ = {1S2} and imϕ = {e,(1 2)} or {e,(1 3)} or {e,(2 3)}

Here, e = ε denotes the identity permutation on S3 (recall that this can be applied to Sn in
general).

Example 2.14. One checks that the map S3 → S2, where

1,(1 2 3) 7→ 1S2 and (12) ,(13) ,(23) 7→ a

is a homomorphism with kernel {1,(123) ,(132)} ⊆ S3 and image S2.

Example 2.15 (Dummit and Foote p. 40 Question 15). Define a map

π : R2 → R by π ((x,y)) = x.

Prove that π is a homomorphism and find the kernel of π .

Solution. We first prove that π is a homomorphism. Suppose (x1,y1) ,(x2,y2)∈R2. Then,

π ((x1 + x2,y1 + y2)) = x1 + x2 = π ((x1,y1))+π ((x2,y2)) ,

where we used the fact that the structure we are working with is additive. We then deter-
mine kerπ . Suppose π ((x,y)) = 0, where 0 is the additive identity of R. Then, we must
have x = 0, while y ∈ R is arbitrary. We conclude that

kerπ =
{
(x,y) ∈ R2 : x = 0

}
,

which is precisely the y-axis! □

It turns out that the map

π : R2 → R where π ((x,y)) = x

defined in Example 2.15 is known as a projection map. The fact that (x,y) is mapped
to x for every projection map π means that π maps a 2-tuple to its first coordinate. The
geometric interpretation is as follows: consider a point in R2. Then, π returns the x-
coordinate of this point.

Example 2.16 (Dummit and Foote p. 40 Question 16). Let A and B be groups and let G
be their direct product, A×B. Prove that the maps

π1 : G → A and π2 : G → B defined by π1 ((a,b)) = a and π2 ((a,b)) = b

are homomorphisms and find their kernels.

Solution. The proof that π1 and π2 are homomorphisms uses the same idea as mentioned
in Example 2.15, and we note that π1 denotes projection onto the first coordinate, whereas
π2 denotes projection onto the second coordinate. Again, similar to Example 2.15, kerπ1

is the y-axis, whereas kerπ2 is the x-axis. □
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Definition 2.5 (torsion subgroup). Let G be an Abelian group. Then, the set

GT = {g ∈ G : |g|< ∞}

is known as the torsion subgroup of G.

Proposition 2.4. The torsion subgroup GT of an Abelian group G is indeed a sub-
group.

Proof. See the first part of Example 2.17.

Example 2.17 (Dummit and Foote p. 48 Question 6). Let G be an Abelian group. Prove
that {g ∈ G : |g|< ∞} is a subgroup of G (called the torsion subgroup of G). Give an
explicit example where this set is not a subgroup when G is non-Abelian.

Solution. Note that GT (notation used in Definition 2.5) is the set of all elements of G
with finite order. Clearly, GT ̸= /0 since e ∈ G which is of order 1. Next, let g1,g2 ∈ GT .
Then, there exist m,n ∈ Z+ such that

gm
1 = e and gn

2 = e.

Without loss of generality, assume that m ≥ n. So,(
g1g−1

2
)mn

= (g1)
mn (g−1

2
)mn

since G is Abelian

= [(g1)
m]n ·

[(
g−1

2
)n
]m

which is equal to e · e = e. By the subgroup criterion (Proposition 2.1), GT ≤ G.

For the second part, consider the group of invertible functions from R to R under function
composition. Let

f ,g : R→ R where f (x) =−x and g(x) = 1− x.

Then, | f |= |g|= 2 but f ◦g, given by x 7→ x−1, has infinite order. □

Example 2.18 (Dummit and Foote p. 85 Question 8). Let ϕ : R× → R× be the map
sending x to the absolute value of x. Prove that ϕ is a homomorphism and find the image
of ϕ . Describe the kernel and the fibers of ϕ .

Solution. We have ϕ (x) = |x|. Since |xy|= |x| |y|, it follows that ϕ (xy) = ϕ (x)ϕ (y), so
ϕ is a homomorphism. Also, note that imϕ =R+. Also, one checks that kerϕ = {−1,1}
since ϕ (1) = ϕ (−1) = 1. Lastly, for any a ∈ R, the fiber over a ∈ R is {−a,a}. □

Example 2.19. For any n ∈ Z, the multiplication-by-n map

n∗ : Z→ Z where a 7→ na
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is a homomorphism. This respects addition in Z due to the distributive law n · (a+b) =
n ·a+n ·b.

We also note that

kern∗ =

{0} ⊆ Z if n ̸= 0;

Z if n = 0
and imn∗ = nZ.

We first verify that the result on kern∗ holds. If n = 0, then any a ∈ Z is mapped to 0
(important to recognise that this is the additive identity of Z) under n0∗; if n ̸= 0, say
a 7→ na under n∗. Setting na = 0 (additive identity of Z), we have

a = 0 or n = 0 but we can conclude that a = 0.

In fact, there is a hidden property of Z which we implicitly used here, which is that it
is an integral domain (will encounter in MA3201 formally), i.e. an algebraic structure
whereby

the product of non-zero elements is non-zero.

Note that the contraposition of this statement is that

if the product of two elements is zero, then at least one of the elements is zero.

To see why imn∗ = |n|Z, recall by definition of im that

imn∗ = {na : a ∈ Z} which is the set of all multiples of n.

Theorem 2.2. For any homomorphism ϕ : Z→ Z,

there exists a unique n ∈ Z such that ϕ = n∗.

Note that this is similar to Theorem 2.1.

Example 2.20 (Dummit and Foote p. 86 Question 12). Let G be the additive group of
real numbers, let H be the multiplicative group of complex numbers of absolute value 1
(the unit circle S1 in the complex plane) and let

ϕ : G → H be the homomorphism ϕ : r 7→ e2πir.

Draw the points on a real line which lie in the kernel of ϕ . Describe similarly the elements
in the fibers of ϕ above the points −1, i, and e4πi/3 of H.

ϕ

Solution. Note that the identity element of H is 1H . Let ϕ : r 7→ e2πir be a homomorphism.
Then, if ϕ (r) = 1H , then cos2πr = 1 and sin2πr = 0 (in fact, these two statements are
equivalent). Solving yields r ∈ Z, which implies kerϕ = Z (sketching the points on R is
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trivial).

Next, say ϕ (r) = −1. Then, cos2πr = −1 and sin2πr = 0. Hence, 2r must be an odd
integer, i.e. there exists n ∈ Z such that 2r = 2n+ 1. Hence, r = n+ 1/2, where n ∈ Z,
i.e.

ϕ ∗ (1) =
{

n+
1
2

: n ∈ Z
}

If ϕ (r) = i, then cos2πr = 0 and sin2πr = 1. Solving yields r = n+1/4 for some n ∈ Z.
Hence,

ϕ
∗ (i) =

{
n+

1
4

: n ∈ Z
}
.

Lastly, if ϕ (r) = e4πi/3, then cos2πr = cos4π/3 and sin2πr = sin4π/3. From the first
equation, 2πr = 2πn+4π/3 for some n ∈ Z. Hence, r = n±2/3. However, the second
equation would imply r = n+2/3. To conclude,

ϕ
∗
(

e4πi/3
)
=

{
n+

2
3

: n ∈ Z
}
.

We give a remark that Question 13 from the same exercise set in the Dummit and Foote
textbook is a slight modification of the question, where the homomorphism is now changed
to ϕ : r 7→ e4πir. □

Example 2.21 (Dummit and Foote p. 49 Question 13). Let H be a subgroup of the
additive group of rational numbers with the property that 1/x ∈ H for every non-zero
element x of H. Prove that H = 0 or Q.

Solution. Since H ≤ Q, then H itself is a group so 0 ∈ H. If there does not exist any
non-zero element in H, then we can take H = 0.

On the other hand, if H contains at least one non-zero element x, it must be rational.
Without loss of generality, say there exist p,q ∈ N, with q ̸= 0 such that x = p/q. Since
(Q,+) is an additive group, then it is closed under addition, i.e.

qx =
p
q
+ . . .+

p
q︸ ︷︷ ︸

q times

= p is also ∈ H.

We use the fact that H contains at least one non-zero element to deduce that p ̸= 0. So,
1/p ∈ H. In a similar vein, we deduce that

p
(

1
p

)
=

1
p
+ . . .+

1
p︸ ︷︷ ︸

p times

= 1

so 1 ∈ H. Since H is closed under addition and inverses, we deduce that Z⊆ H.

We now prove that Q ⊆ H. Let r ∈ Q be an arbitrary non-zero rational number. Then,
there exist p,q ∈ Z with q ̸= 0 such that r = p/q. Since q ∈ H, then 1/q ∈ H. As such,
r ∈ H, which implies Q⊆ H. As H ⊆Q as well, we deduce that H =Q. □
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2.2 Centralizers and Normalizers, Stabilizers and Ker-
nels

Definition 2.6 (conjugate and conjugacy class). Let G be a group and a ∈ G be any
element of G. For any g ∈ G,

the element gag−1 ∈ G is called the g-conjugate of a.

Some would also refer to this as the conjugate of a by g.

The conjugates of a in G are the gag−1 for g ∈ G, and we define this set to
be the G-conjugacy class of a. One sees that this is equivalent to the following set:{

x ∈ G : there exists g ∈ G such that x = gag−1}
Definition 2.7 (centralize and centralizer). The element g ∈ G centralizes a

if and only if gag−1 or equivalently, ga = ag.

So, g ∈ G centralizes a if and only if g commutes with a.

The centralizer of a in G is the set

CG (a) = {g ∈ G : g centralizes a}=
{

g ∈ G : gag−1 = a
}
.

The centralizer of A in G is the set

CG (A) = {g ∈ G : g centralizes A}
=
{

g ∈ G : for all a ∈ A, we have gag−1 = a
}

Example 2.22 (Dummit and Foote p. 52 Question 1). Prove that

CG (A) =
{

g ∈ G : g−1ag = a for all a ∈ A
}
.

Solution. Recall Definition 2.7. Replacing g with g−1 yields the desired result. □

Definition 2.8 (normalize and normalizer). The element g ∈ G normalizes a

if and only if gAg−1 = A as a subset of G.

The normalizer of a ∈ G is the set

NG (A) = {g ∈ G : g normalizes A}=
{

g ∈ G : gAg−1 = A
}
.
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Definition 2.9 (center). The center of a group G is the set

Z (G) =
{

g ∈ G : for all a ∈ G : gag−1 = a
}

= {g ∈ G : for all a ∈ G : ga = ag}

Example 2.23 (Dummit and Foote p. 52 Question 7). Let n ∈ Z with n ≥ 3. Prove the
following:

(a) Z (D2n) = 1 if n is odd

(b) Z (D2n) =
{

1,r2k} if n = 2k

Solution.

(a) Suppose rk ∈ Z (D2n) for k ∈ Z+. Since srk = r−ks (obtained by repeatedly apply-
ing rs = sr−1), we have rk = r−k. Hence, r2k = e and we see that 2 | n, which is a
contradiction.

s cannot be in the center since it does not commute with r. Now suppose srk ∈
Z (D2n), with k ∈ Z+. In order to commute with r, we must have

(
srk)r = r

(
srk),

so srk+1 = srk−1. As such, rk+1 = rk−1 and we see that r2 = e, which means n ≤ 2,
another contradiction. The result follows.

(b) From the proof of (a), we know that the only possible candidates are e and rk where
n = 2k. Since r2k = e, thenrk = r−k. Any element x in D2n can be written as x = sir j

for i ∈ {0,1} and j ≥ 0, so,

rk (sir j)= sir−kr j = sirkr j = sirk+ j =
(
sir j)rk.

The result follows.

Proposition 2.5. We have the following obvious results, which need not be memo-
rised:

(i) For any a ∈ G, we have CG (a) =CG ({a}) = NG ({a})

(ii) For any A ⊆ G, we have

CG (A) =
⋂
a∈A

CG (a) and CG (A)⊆ NG (A)

(iii) We have

Z (G) =CG (G) =
⋂

a∈G

CG (a) and NG (G) = G

(iv) We have

CG (1G) = NG ({1G}) = G or equivalently 1G ∈ ZG

(v) G is Abelian if and only if Z (G) = G
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Example 2.24 (Dummit and Foote p. 52 Question 2). Prove that

CG (Z (G)) = G and deduce that NG (Z (G))≤ G

Solution. Recall Definitions 2.7 and 2.9 on the centralizer and center of a group. We have

CG (Z (G)) =
{

g ∈ Z (G) : for all a ∈ Z (G) , we have gag−1 = a
}

by Definition 2.7

=
{

g ∈ G : for all a ∈ G, we have agg−1 = a
}

by Definition 2.9

= {g ∈ G : for all a ∈ G, we have a = a}

which is equal to G.

We then prove the second result. Since CG (A) ,NG (A) ⊆ G (this is actually a conse-
quence of Proposition 2.6 which we will mention in due course; we will also use the fact
that H ≤ G implies H ⊆ G) and CG (A) ⊆ NG (A) ((ii) of Proposition 2.5), the second
result follows. □

Proposition 2.6. For any A ⊆ G, we have

CG (A) ,NG (A)≤ G.

Proof. The proofs are quite easy to establish. We first prove that CG (A) ≤ G. It is clear
that 1G ∈CG (A) since for any a ∈ A, 1G ·a ·1−1

G = a. Next, let x,y ∈CG (A). Then,

y−1 ∈CG (A) since for any a ∈ A we have yay−1 = a so a = y−1ay

So, xy−1 ∈CG (A) since

for any a ∈ A we have (xy)a(xy)−1 = xyay−1x−1 = x
(
yay−1)= xax−1 = a

so by the subgroup criterion, we conclude that CG (A)≤ G.

We then prove that NG (A)≤ G. Again, it is clear that 1G ∈ NG (A) since 1G ·A ·1−1
G = A.

Next, let x,y ∈ NG (A). Then, similar to our proof that CG (A)≤ G, one can easily do the
same for NG (A).

Example 2.25 (Dummit and Foote p. 52 Question 3). Prove that if A and B are subsets
of G with A ⊆ B, then

CG (B) is a subgroup of CG (A)

Solution. Suppose x ∈CG (B). Then, for every b ∈ B, we have xbx−1 = b. Since A ⊆ B,
then for any a∈A, we have xax−1 = a. Hence, x∈CG (A). It follows that CG (B)⊆CG (A).
By Proposition 2.6, CG (A) is a group, so the result follows. □

Example 2.26 (Dummit and Foote p. 52 Question 6). Let H be a subgroup of the group
G.
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(a) Show that H ≤ NG (H). Give an example to show that this is not necessarily true if
H is not a subgroup.

(b) Show that H ≤CG (H) if and only if H is Abelian.

Solution.

(a) By Definition 2.8, the normalizer NG (H) is defined as follows:

NG (H) =
{

g ∈ G : gHg−1 = H
}

Take g ∈ H and x ∈ gHg−1. Then, there exists h ∈ H such that x = ghg−1. Since
H ≤ G, then x ∈ H so gHg−1 ⊆ H. The other inclusion H ⊆ gHg−1 holds too, so
it follows that gHg−1 = H. Hence, g ∈ NG (H). As H ⊆ NG (H), we conclude that
H ≤ NG (H) by Definition 2.1.

However, if H is not a subgroup, the aforementioned property may not hold. Take
for example the dihedral group G = D8 (symmetries of a square) and H = {1,r,s}.
Note that H is not a subgroup of G as we have r,s ∈ H but rs ̸∈ H. We shall prove
that sHs ̸= H3. We have

sHs = {s1s,srs,sss}=
{

s2,srs,s3}= {1,r2,s
}
̸= H.

(b) We first prove the forward direction. Suppose H ≤ CG (H). Take a,b ∈ H with
a ∈CG (H). So,

aba−1 = b

which implies ab = ba, showing that H is Abelian.

The proof of the reverse direction is pretty much the same — given a,b ∈ H where
ab = ba, we have aba−1 = b, so a ∈CG (H). The result follows.

Example 2.27 (Dummit and Foote p. 53 Question 9). For any subgroup H of G and any
non-empty subset A of G, define

NH (A) =
{

h ∈ H : hAh−1 = A
}
.

Show that NH (A) = NG (A)∩H and deduce that NH (A) is a subgroup of H (note that A
need not be a subset of H).

Solution. We first prove that

NH (A) = NG (A)∩H.

We start by proving the forward inclusion NH (A) ⊆ NG (A)∩H. Note that NH (A) ⊆
NG (A) since every h ∈ NH (A) is also an element of G for which hAh−1 = A. Moreover,

3Throughout this chapter, we have been exploring the concept of the normalizer. Formally, the notation
sHs can be interpreted as a coset. This idea will be revisited in Definition 3.1.
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as NH (A)⊆ H, the inclusion holds.

As for the reverse inclusion, choose h ∈ NG (A)∩H. Since h ∈ NG (A), we have hAh−1 =

A. Also, since h ∈ H, then h ∈ NH (A), which proves this inclusion.

It follows that NH (A) = NG (A)∩H. Since NG (A) and H are subgroups, by (a) of Ex-
ample 2.8 on the intersection of two subgroups also being a subgroup, we conclude that
NH (A)≤ H. □

Example 2.28 (Dummit and Foote p. 53 Question 10). Let H be a subgroup of order 2
in G. Show that NG (H) =CG (H). Deduce that if NG (H) = G, then H ≤ Z (G).

Solution. Since H is of order 2, then it has two elements. Say H = {e,a}, where e is the
identity element.

Take x ∈ NG (H), so xex−1 = e and xax−1 = a. As such, x ∈ CG (H). Similarly, take
y ∈CG (H), so yey−1 = e and yay−1 = a. As such, y ∈ NG (H). It follows that NG (H) =

CG (H).

Now, suppose NG (H) = G. Then, we have G =CG (H). So, for every g ∈ G and h ∈ H,
we have ghg−1 = h, so gh = hg. This implies h ∈ Z (G), so H ⊆ Z (G). We conclude that
H ≤ Z (G). □

Example 2.29 (Dummit and Foote p. 53 Question 11). Prove that Z (G) ≤ NG (A) for
any A ⊆ G.

Solution. Let A ⊆ G. Suppose a ∈ A and g ∈ Z (G). Then, gag−1 = a for all a ∈ A.
Equivalently, gAg−1 = A, and the result follows. □

2.3 Cyclic Groups and Cyclic Subgroups
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Definition 2.10 (cyclic subgroup). Let G be a group. Let x ∈ G be any element of
G. The cyclic subgroup of G generated by x is the subgroup H that can be defined
either of the two ways, where appropriate, as follows:

(i) multiplicative notation: H is a cyclic subgroup of G if

H = {xn : x ∈ Z}= {g ∈ G : there exists n ∈ Z such that g = xn}

(ii) additive notation: H is a cyclic subgroup of G if

H = {nx : n ∈ Z}= {g ∈ G : there exists n ∈ Z such that g = nx}

We then say that

H is generated by x or x is a generator of H and we write H = ⟨x⟩ .

Definition 2.11 (cyclic group). A group G if cyclic if and only if

there exists x ∈ G such that G = ⟨x⟩ .

If G is cyclic of order n, we say that G =Cn.

Example 2.30. The group of integers under addition, i.e. (Z,+), is cyclic and generated
by ±1.

Example 2.31 (integers modulo n). For any n∈Z+, the additive group Z/nZ=
{

0,1, . . . ,n−1
}

,
which denotes the set of remainders when divided by n, is cyclic and generated by
a ∈Z/nZ such that gcd(a,n) = 1 (fact from Number Theory). The group Z/nZ is known
as the integers modulo n.

Recall the following fact from MA1100 Basic Discrete Mathematics: for any a ∈ Z,
the congruence class of a modulo n is

a = a+nZ= {a+ kn : k ∈ Z}= {a,a±n,a±2n, . . .}

which is an element of Z/nZ. As such, we see that Z/nZ has precisely n elements, which
follows by the division algorithm. Also, note that for any a,b ∈ Z/nZ, their sum is

a+b = a+b in Z/nZ

for which the sum is well-defined.

Example 2.32 (Dummit and Foote p. 40 Question 6). Prove that the additive groups Z
and Q are not isomorphic.

Solution. Suppose on the contrary that (Z,+)∼= (Q,+). Then, both groups should share
common structural properties. However, we know from Example 2.30 that (Z,+) is cyclic
and we will prove that (Q,+) is not cyclic, which leads to a contradiction.



68 CHAPTER 2. SUBGROUPS

Say we have some q ∈Q, i.e. there exist a,b ∈ Z with b ̸= 0 such that q = a/b. However,
a/2b cannot be generated by a/b since there does not exist k ∈ Z such that

a
2b

= k
(a

b

)
.

This leads to a contradiction, so (Q,+) is not a cyclic group. Hence, (Z,+) and (Q,+)

are not isomorphic. □

Example 2.33 (Dummit and Foote p. 22 Question 11). Find the orders of each element
of the additive group Z/12Z.

Solution. We shall present our answer in Table 2.4.

Element 0 1 2 3 4 5 6 7 8 9 10 11
Order 0 12 6 4 3 12 2 12 3 4 6 12

Table 2.4: Order of each element of the additive group Z/12Z

We have a couple of interesting observations. If gcd(k,12) = 1, then the order of the
element k is 12. Also, the order of the additive group Z/12Z is 12 and we see that the
order of each element in Z/12Z is a factor of 12. This is not surprising, as we would see
in a useful corollary of Lagrange’s theorem (Corollary 3.2). □

Example 2.34 (Dummit and Foote p. 22 Question 12). Find the orders of the following
elements of the multiplicative group (Z/12Z)× : 1,−1,5,7,−7,13.

Solution. We construct the following table:

Element 1 −1 5 7 −7 13
Order 1 1 5 7 5 1

Table 2.5: Order of each element of the multiplicative group (Z/12Z)×

One notes that −1 = 11 so
(
−1
)2

= 1, 13 = 1, and −7 = 5. □

Example 2.35 (Gallian p. 82 Question 19). List the cyclic subgroups of Z/30Z.

Solution. One can construct a Cayley table describing Z/30Z with the row and column
headers being k, where gcd(k,30) = 1.

Such k satisfying this equation are 1,7,11,13,17,19,23 and 29. The subgroup ⟨1⟩ is
cyclic since 1m = 1 for all m ∈ N. ⟨7⟩ is also cyclic since the powers of 7 form a periodic
sequence. One can verify that the subgroups ⟨11⟩ ,⟨17⟩ ,⟨19⟩ and ⟨29⟩ are also subgroups
of Z/30Z. □

Example 2.36 (Dummit and Foote p. 60 Question 12). Prove that the following groups
are not cyclic:
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(a) Z/2Z×Z/2Z

(b) Z/2Z×Z

(c) Z×Z

Solution.

(a) Recall that Z/2Z consists of the possible remainders when an integer is divided by
2, so

Z/2Z×Z/2Z=
{(

0,0
)
,
(
1,0
)
,
(
0,1
)
,
(
1,1
)}

The order of
(
1,1
)
∈ Z/2Z×Z/2Z is 2 since(

1,1
)
+
(
1,1
)
=
(
0,0
)
.

However, we are unable to generate
(
1,0
)

using
(
1,1
)
. Alternatively, one notes

that the orders of
(
1,0
)
,
(
0,1
)
∈ Z/2Z×Z/2Z are both 2, but they do not generate(

1,1
)
. Hence, Z/2Z×Z/2Z does not have a generator, so it is not cyclic.

(b) We have

Z/2Z×Z=
{(

0,n
)

: n ∈ Z
}
⊔
{(

1,n
)

: n ∈ Z
}
.

Clearly, elements of the form
(
0,n
)

cannot generate Z/2Z×Z since we will never
obtain an element with 1 in the first component.

(c) Note that (1,0) ,(0,1) ∈ Z×Z, but there does not exist k ∈ Z such that k · (1,0) =
(0,1).

We give a nice geometric interpretation of (c) of Example 2.36. Refer to Figure 2.1 for
a diagram that depicts Z×Z, i.e. these refer to lattice points on the Cartesian plane
R×R. Suppose ⟨(n,m)⟩ is a generator for the group, where (n,m) ∈ Z×Z. So, ⟨n,m⟩ is
contained in the line mx = ny (since the line has slope m/n), so the line cannot cover all
of Z×Z.

x

y
mx = ny

Figure 2.1: The line mx = ny embedded in Z×Z
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Example 2.37 (Dummit and Foote p. 60 Question 13). Prove that the following groups
are not isomorphic:

(a) Z×Z/2Z and Z

(b) Q×Z/2Z and Q

Solution.

(a) By Example 2.36, Z/2Z×Z is not a cyclic group. However, by Example 2.30, Z
is a cyclic group. As such, these groups cannot be isomorphic.

(b) Every non-identity element in Q is of infinite order but every element of the form(
0,1
)
∈Q×Z/2Z is of order 2. By (b) of Proposition 1.14, there does not exist an

isomorphism between these two groups.

Theorem 2.3 (universal property of Z as a group). For any group G and element
x ∈ G,

there exists a unique homomorphism ϕ : Z→ G such that ϕ (1Z) = x.

In fact, ϕ is defined as follows: for any n ∈ Z, we have ϕ (n) = xn.

Example 2.38. Take G=Z to be the additive group of integers and x= n to be any integer.
Then, by Theorem 2.3, there exists a unique homomorphism

ϕn : Z→ Z such that ϕn (1Z) = n.

Given n ∈ Z, recall that we have the multiplication-by-n map (Example 2.19) defined as
follows:

n∗ : Z→ Z such that a 7→ na.

Since n∗ (1Z) = n = ϕn (1Z), by uniqueness, it follows that ϕn = n∗ is the multiplication-
by-n map.

Example 2.39. A familiar law of indices

(xa)b = xab for every x ∈ G and a,b ∈ Z

follows from Theorem 2.3 too. To see why, let a,b ∈ Z be arbitrary and define

ϕa : Z→ Z such that x 7→ ax and ϕb : Z→ Z such that x 7→ bx.

Then,

ϕa ◦ϕb : Z→ Z where x 7→ a(bx) = abx

is equal to
ϕab : Z→ Z where x 7→ (ab)x = abx
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due to the uniqueness of the universal property. Here, we let

ψ : Z→ G be the unique homomorphism such that ψ (1Z) = x

So, the following diagram commutes:

Z Z

Z G

ϕb

ϕa ◦ϕb = ϕab
ϕa

ψ

ψ ◦ϕa

This shows that

(ψ ◦ϕa)◦ϕb = ψ ◦ϕab,

where (ψ ◦ϕa)◦ϕb : Z→ G is a homomorphism sending 1Z to (ψ ◦ϕa)(b) = (xa)b; ψ ◦
ϕab : Z→ G is a homomorphism sending 1Z to ψ (ab) = xab. By the above commutative
diagram, it follows that (xa)b = xab.

Example 2.40 (Dummit and Foote p. 60 Question 9). Let Z36 = ⟨x⟩. For which integers
a does the map ψa defined by ψa : 1 7→ xa extend to a well-defined homomorphism from
Z/48Z into Z36. Can ψa ever be a surjective homomorphism?

Solution. Note that Z36 = {0,1, . . . ,36}. Consider the map

ψa : Z/48Z→ Z36 where ψa (y) = xay.

Consider b,c ∈Z/48Z such that b = c. For ψa to be well-defined, we must have ψa
(
b
)
=

ψa (c). As such,

xab = xac which implies xa(b−c) = 1.

Since Z36 = ⟨x⟩, then 36 | a(b− c). We also know that 48 | (b− c) which implies there
exists k ∈Z such that b−c = 48k. Hence, 36 | 48ak. Since gcd(48,36) = 12, then 3 | 4ak.
Regardless of the choice of k, we must have 3 | 4a, so 3 | a, i.e. a must be divisible by 3.

Next, we claim that ψa can never be surjective. Suppose on the contrary that it is. Then,
for x ∈Z36, there exists y ∈Z/48Z such that ψa (y) = x = xay. For ψa to be a well-defined
homomorphism, we mentioned that a must be divisible by 3, i.e. write a = 3k for some
k ∈ Z. So, x = x3ky which implies x3ky−1 = 1. We must have 36 | (3ky−1). This is a
contradiction as it would imply 3 | 1. □
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Proposition 2.7. Let ϕ : G → H be a homomorphism. Then,

ϕ is injective if and only if kerϕ = {1G} and

ϕ is surjective if and only if imϕ = H

Proposition 2.8. Let G be a group and let x ∈ G. Let ϕ : Z → G be the unique
homomorphism such that ϕ (1Z) = x, i.e. for any k ∈ Z, we have ϕ (k) = xk. Then,
the following hold:

imϕ = ⟨x⟩ which is a cyclic subgroup of G generated by x

kerϕ =

0 = 0Z if x is of infinite order;

nZ if x is of finite order n ∈ Z+

Corollary 2.1. Let G be a group and x ∈ G. Then, the following hold:

if x is of infinite order then ⟨x⟩ is an infinite cyclic group

if x is of finite order n ∈ Z+ then ⟨x⟩ is a finite cyclic group of order n.

Corollary 2.2. Any two infinite cyclic groups are isomorphic.

Proof. Let G = ⟨x⟩ be an infinite cyclic group with generator x. By Corollary 2.1, x is of
infinite order. Define

ϕ : Z→ G to be the unique homomorphism such that ϕ (1Z) = x.

One checks that kerϕ = 0Z and imϕ = ⟨x⟩, which respectively show that ϕ is injective
and surjective by Proposition 2.7. Hence, ϕ is bijective, hence it is an isomorphism.

We shall investigate some properties of the cyclic group Z/nZ. Recall that this refers to
the set of integers modulo n. Let

π : Z→ nZ be the unique homomorphism such that π (1Z) = 1.

This means that for any a ∈Z, π (a) = a ·1 = a in Z/nZ. π is typically called a projection
map, or some would call it a reduction map or a quotient map because it maps elements
of Z to a subset like nZ, particularly in terms of congruences.

Since 1 ∈ Z/nZ is a generator of Z/nZ is of finite order n, we know that

imπ = Z/nZ or equivalently π : Z↠ Z/nZ is an epimorphism.

ALso, kerπ = nZ⊆ Z.
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Proposition 2.9. Let G be a group and x ∈ G. Suppose a,b ∈Z such that xa = 1G =

xb. Then, xc = 1G, where c = gcd(a,b).

There is an analogous result in Number Theory, i.e. if a,b ∈ Z are both divisible by
a positive integer n, then their gcd, or any linear combination, will also be divisible by n.
Note that by Bézout’s lemma, the gcd of two integers is a linear combination of a and b.

Theorem 2.4 (universal property of Z/nZ). For any group G and any element x∈G
such that xn = 1G,

there exists a unique homomorphism ϕ : Z/nZ→ G such that ϕ
(
1
)
= x.

So, for any ξ ∈ Z/nZ, one can choose a ∈ Z such that ξ = π (a) = a in Z/nZ so
that ϕ (ξ ) = xa.

As such, given any group G and element x ∈ G such that xn = 1G, let

ϕ : Z/nZ be the unique homomorphism such that ϕ (1) = x.

Also, let

Φ : Z→ G be the unique homomorphism such that Φ(1Z) = x.

Lastly, let

π : Z→ Z/nZ be the unique homomorphism such that π (1Z) = 1.

Then, Φ = ϕ ◦π , i.e. the following diagram commutes:

Z

Z/nZ

G
Φ

π
ϕ

This is a classic example of the first isomorphism theorem (we will explore this in due
course in Theorem 3.6). Simply said, if we have a group homomorphism ϕ : G → H,
then G/kerϕ ∼= imϕ . Here, the reduction map π : Z→ Z/nZ tells us that kerϕ = nZ as
shown in the commutative diagram. Not surprising!

Proposition 2.10. Let G be a group and x ∈ G such that xn = 1G. Let

ϕ : Z/nZ→ G be the unique homomorphism such that ϕ
(
1
)
= x.

Let d ∈ Z+ be the finite order of x. Then, the following hold:

imϕ = ⟨x⟩ which is the cyclic subgroup of G generated by x

kerϕ =
〈
d
〉
= dZ/nZ in Z/nZ
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Corollary 2.3. Any two finite cyclic groups of the same order are isomorphic.

We then investigate the subgroups of Z.

Theorem 2.5. For any H ≤ Z, there exists a unique n ∈ Z≥0 such that H = nZ. If
H ̸= 0, then n ∈ Z+ is characterised as the smallest element of H ∩Z+.

Proposition 2.11. Let ϕ : G → H be a homomorphism. Then, the following hold:

(i) For any H0 ≤ H, its ϕ-preimage

ϕ
−1 (H0) = {g ∈ G : ϕ (g) ∈ H0} is a subgroup of G

(ii) For any G0 ≤ G, its ϕ-image

ϕ (G0) = {ϕ (g) ∈ H : g ∈ G0} is a subgroup of H

Example 2.41 (Dummit and Foote p. 85 Question 1). Let ϕ : G → H be a homomor-
phism and let E be a subgroup of H. Prove that ϕ−1 (E) ≤ G (i.e., the pre-image or
pullback of a subgroup under a homomorphism is a subgroup). If E ⊴ H, prove that
ϕ−1 (E)⊴G. Deduce that ker ϕ ⊴G.

Solution. Since ϕ (1G) = 1E , then ϕ−1 (1E) = 1G ∈ ϕ−1 (E) so ϕ−1 (E) is non-empty.

Next, let a,b ∈ ϕ−1 (E) and suppose x,y ∈ E such that

ϕ (a) = x and ϕ (b) = y.

Then, ϕ
(
b−1) ∈ E since E ≤ H. Since ϕ : G → H is a homomorphism, then

ϕ
(
ab−1)= ϕ (a)ϕ

(
b−1)= ϕ (a) [ϕ (b)]−1 ∈ E

which implies ab−1 ∈ϕ−1 (E). By the subgroup criterion (Proposition 2.1), ϕ−1 (E)≤G.

Next, if we further assume that E ⊴H, suppose we have g ∈ G and a ∈ ϕ−1 (E) such
that

ϕ (a) = x and ϕ (g) = y for some x ∈ E,y ∈ H.

We have
ϕ
(
gag−1)= ϕ (g)ϕ (a)ϕ

(
g−1)= yxy−1 ∈ E

so gag−1 ∈ ϕ−1 (E). Lastly, if we let E = {1H}, which is the trivial subgroup of H, then
we have kerϕ = ϕ−1 (E). We conclude that kerϕ ⊴G. □

Example 2.42 (Dummit and Foote p. 85 Question 2). Let ϕ : G → H be a homomor-
phism of groups with kernel K and let a,b ∈ ϕ (G). Let X ∈ G/K be the fiber above a and
let Y be the fiber above b, i.e. X = ϕ−1 (a) ,Y = ϕ−1 (b).
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Fix an element u of X (so ϕ (u) = a). Prove that if XY = Z in the quotient group G/K and
w is any member of Z, then

there is some v ∈ Y such that uv = w.

Hint: show that u−1w ∈ Y .

Solution. Since ϕ is a homomorphism, then

ϕ (XY ) = ϕ (X)ϕ (Y ) which implies ϕ (Z) = ab.

Hence, Z = ϕ−1 (ab). Consider v = u−1w, where ϕ (u) = a and ϕ (v) = b. Hence,

ϕ (v) = ϕ
(
u−1w

)
= ϕ

(
u−1)

ϕ (w) = a−1 (ab) =
(
a−1a

)
b = b

which shows that there exists v ∈ Y such that u−1w ∈ Y . Hence, uv = w. □

Theorem 2.6. For any H ≤Z/nZ, there exists a unique a ∈Z+ dividing n such that
H = π (aZ) = ⟨a⟩. In fact, a ∈ Z+ is characterised as the smallest positive integer
such that a ∈ H.

Corollary 2.4. Every subgroup of a cyclic group G is cyclic.

Corollary 2.5. Let G be a cyclic group. Then, the following hold:

(i) If G is an infinite cyclic group and x ∈ G is a generator, then

Z≥0 →{subgroups of G} where n 7→ ⟨xn⟩ is a bijection.

The inverse map is {subgroups of G} where

K 7→

0 if K = 1;

n if K ̸= 1 and n ∈ Z+ is the smallest such that xn ∈ K

(ii) On the other hand, if G is a finite cyclic group of order n ∈ Z+ and x ∈ G is a
generator, then{

a ∈ Z+ : a | n
}
→{subgroups of G} where a 7→ ⟨xa⟩ is a bijection.

The inverse map is

{subgroups of G}→
{

a ∈ Z+ : a | n
}

K 7→ the smallest a ∈ Z+ such that xa ∈ K
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Proposition 2.12 (generators of Z and Z/nZ). We have the following:

(i) For any a ∈ Z, we have Z= ⟨a⟩ if and only if a =±1

(ii) For fixed n ∈ Z+ and a ∈ Z, we have Z/nZ= ⟨a⟩ if and only if gcd(a,b) = 1

Corollary 2.6 (generators of a cyclic group). Let G be a cyclic group and x ∈ G be
a generator.

(i) If G is infinite, then for any a ∈ Z, we have

G = ⟨xa⟩ if and only if a =±1

(ii) If G is finite of order n ∈ Z+, then for any a ∈ Z, we have

G = ⟨xa⟩ if and only if gcd(a,n) = 1

Example 2.43. Find a collection of distinct subgroups ⟨m1⟩ ,⟨mn⟩ of Z/124Z such that

⟨m1⟩ ≤ . . .≤ ⟨mn⟩ ≤ Z/124Z,

where n is as large as possible.

Solution. Note that the divisors of 124 are 1,2,4,31,62,124. So, to find the longest chain,
we have

⟨124⟩ ≤ ⟨4⟩ ≤ ⟨2⟩ ≤ ⟨1⟩= ⟨Z/124Z⟩ ,

where n = 4. □

2.4 Subgroups generated by Subsets of a Group
Example 2.44 (Dummit and Foote p. 65 Question 13). Prove that the multiplicative
group of positive rational numbers is generated by the set{

1
p

: p is a prime
}
.

Solution. By definition of Q+, every positive rational number x can be uniquely written
as

x =
a
b

where a,b ∈ Z+ and gcd(a,b) = 1.

By the fundamental theorem of arithmetic, there exist primes p1, . . . , ps,q1, . . . ,qt such
that

a = pα1
1 . . . pαs

s and b = qβ1
1 . . .qβt

t where α1, . . . ,αs,β1, . . . ,βt ≥ 0.
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So,

x = pα1
1 . . . pαs

s

(
1
q1

)β1

. . .

(
1
qt

)βt

.

Each term of the form pαi
i is the power of some prime pi, which is permitted since any

integer power of a prime is included in a generated group. Also, we can take each of the
1/q j’s to be a generator. The result follows. □

Proposition 2.13 (intersection of subgroups). Let C be a non-empty collection of
subgroups of G. Then, ⋂

H∈C
H is also a subgroup of G.

Proof. We have

1G ∈
⋂

H∈C
H since for any H ∈ C we have 1G ∈ H.

Next, let

x,y ∈
⋂

H∈C
H.

Then, for any H ∈ A, we have x,y ∈ H so xy−1 ∈ H. Hence,

xy−1 ∈
⋂

H∈A
H.

By the subgroup criterion, the aforementioned intersection is also a subgroup of H.

Definition 2.12. Let A ⊆ G. Define

⟨A⟩=
⋂

A⊆H
H≤G

H to be the intersection of all H ≤ G that contain A.

This is a subgroup of G containing A known as the subgroup of G generated by A.

Example 2.45 (Dummit and Foote p. 65 Question 1). Prove that if H ≤G then ⟨H⟩=H.

Solution. Clearly, H ⊆ ⟨H⟩ since H ≤G. To prove the reverse inclusion, replacing A with
H in Definition 2.12 yields

⟨H⟩=
⋂

H⊆H
H≤G

H =
⋂

H≤G

H

which follows that ⟨H⟩ ⊆ H. Hence, ⟨H⟩= H. □

Example 2.46 (Dummit and Foote p. 65 Question 2). Prove that if A is a subset of B,
then ⟨A⟩ ≤ ⟨B⟩. Give an example where A ⊆ B with A ̸= B but ⟨A⟩= ⟨B⟩.
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Solution. Suppose x ∈ A. Then, x ∈ ⟨A⟩. Since A ⊆ B, then x ∈ B so x ∈ ⟨B⟩. The first
result follows.

We then construct some A ⊆ B with A ̸= B but ⟨A⟩= ⟨B⟩. Take A = {x} and B =
{

x,x3}.
One checks that A ⊆ B with A ̸= B and ⟨A⟩= ⟨B⟩. □

Definition 2.13 (normal closure). Let

A = nclG (A) =

{
n

∏
i=1

aεi
i : n ∈ Z≥0 and ai ∈ A,εi =±1

}
.

This is called the normal closure of A in G.

After learning about normal subgroups in Definition 3.7, you will come to realise that
the normal closure of a group G is the smallest normal subgroup of G containing S, where
S ⊆ G.

Example 2.47 (Dummit and Foote p. 65 Question 3). Prove that if H is an Abelian
subgroup of a group G, then ⟨H,Z (G)⟩ is Abelian. Give an explicit example of an Abelian
subgroup H of a group G such that ⟨H,CG (H)⟩ is not Abelian.

Solution. Suppose H is an Abelian subgroup of a group G. We shall consider the set
⟨H,Z (G)⟩. Every element of this set can be written as a finite product of elements each
lying in either H or Z (G). As such,

x ∈ ⟨H,Z (G)⟩ can be written as x = h1z1 . . .hkzk where hi ∈ H and zi ∈ Z (G) .

Since H is Abelian, then hi and h j commute. By definition of the center Z (G), every
element z∈ Z (G) commutes with every element of G, and in particular with every element
of H ⊆ G. That is,

zh = hz for all z ∈ Z (G) ,h ∈ H.

Now, putting everything together, multiplying two elements

x = h1z1 . . .hkzk and y = h′1z′1 . . .h
′
lz
′
l,

one may rearrange the factors freely as they all commute pairwise. This implies xy = yx
so ⟨H,Z (G)⟩ is Abelian.

For the second part, consider the dihedral group D8 with H =
{

e,r2}. Since e,r2 ∈ Z (D8),
we have CG (H) = D8. Although H is Abelian, we see that ⟨H,CG (H)⟩ = D8 is not
Abelian. □

Example 2.48 (Dummit and Foote p. 65 Question 4). Prove that if H is a subgroup of
G, then H is generated by the set H −{1}.

Solution. First, note that H −{1}= H \{e}. We shall consider two cases.
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• Case 1: Suppose H = {e}. Then, H \ {e} = /0 which is a generator of the trivial
subgroup.

• Case 2: Suppose |H|> 1. We first prove that

⟨H \{e}⟩ ⊆ H.

Clearly, every element of H \{e} also lies in H. Since H is a subgroup, it is closed
under taking products and inverses, i.e. e = hh−1. So, the inclusion holds.

We then prove the reverse inclusion. Consider some h ∈ H. If h = e, the result
follows. If h is non-identity, then h is already one of the generators in H \ {e}, so
h ∈ ⟨H \{e}⟩. The reverse inclusion holds as a result.

Combining both cases, the result follows. □

Definition 2.14 (finitely generated group). A group H is finitely generated if

there exists a finite set A such that H = ⟨A⟩ .

Example 2.49 (Dummit and Foote p. 65 Question 14). A group H is finitely generated
if

there exists a finite set A such that H = ⟨A⟩ .

(a) Prove that every finite group is finitely generated.

(b) Prove that Z is finitely generated.

(c) Prove that every finitely generated subgroup of the additive group Q is cyclic.
Hint: If H is a finitely generated subgroup of Q, show that H ≤ ⟨1/k⟩, where k is
the product of all denominators which appear in a set of generators for H.

(d) Prove that Q is not finitely generated.

Solution.

(a) Every finite group H is cyclic with generator H, i.e. H = ⟨H⟩.

(b) Note that Z is cyclic with generators ±1, and the result follows.

(c) Suppose H is generated by {h1, . . . ,hn}, where each hi ∈Q. Write

hi =
pi

qi
where pi,qi ∈ Z,qi ̸= 0 and gcd(pi,qi) = 1.

Define k = q1 . . .qn. Then, we shall rewrite each generator hi in terms of 1/k, i.e.

hi =
pi

qi
= pi ·

q1 . . .qn

qi
· 1

k
=

(
pi ·

q1 . . .qn

qi

)
· 1

k
.

Essentially, we deduced the hint. Also, ⟨1/k⟩≤H so combining both results, we see
that H is generated by a single element 1/k, implying that H is a cyclic subgroup
of Q. Note that q1 . . .qn/qi ∈ Z so hi is indeed an integer multiple of 1/k. So,
hi ∈ ⟨1/k⟩. We deduce that H ≤ ⟨1/k⟩.
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(d) Suppose on the contrary that Q is finitely generated. Then, there exists a finite set A
such that Q= ⟨A⟩, i.e. Q is cyclic. Let p/q ∈ A, where q ̸= 0 and gcd(p,q) = 1. So
for every x ∈Q, there exists k ∈Z such that x = k (p/q). Since p/q is the generator,
then there exists r ∈ Z such that 1/r ∈ ⟨p/q⟩.

So, q = pkr which implies q | p. This is a contradiction as we assumed that
gcd(p,q) = 1.

Definition 2.15 (divisible group). A non-trivial Abelian group A (written multi-
plicatively) is said to be divisible if

for every a ∈ A and each k ∈ Z\{0} there exists x ∈ A such that xk = a.

This means that each element has a kth root in A.

Example 2.50 (Dummit and Foote p. 66 Question 19). A non-trivial Abelian group A
(written multiplicatively) is said to be divisible if

for every a ∈ A,k ∈ Z\{0} there exists x ∈ A such that xk = a.

This means that each element has a kth root in A. In additive notation, each element is the
kth multiple of some element of A.

(a) Prove that the additive group of rational numbers, Q, is divisible.

(b) Prove that no finite Abelian group is divisible.

Solution.

(a) Let a ∈ Q and a ∈ Z \ {0}. Then, choose x = a/k ∈ Q so that kx = a. So, Q is
divisible.

(b) First, note that although the trivial group {e} is Abelian, it does not satisfy the con-
dition of a divisible group since k must be non-zero.

Now, suppose on the contrary that there exists a finite Abelian group G that is
divisible. Suppose |G| = n. Choose two non-identity elements x,y ∈ G such that
yn = e (actually, this choice is attributed to a useful corollary of Lagrange’s theorem
in Corollary 3.2 which we will explore in due course). Then, for x ∈G, the equation
yn = x does not hold.

Example 2.51 (Dummit and Foote p. 66 Question 20). Prove that if A and B are non-
trivial Abelian groups, then

A×B is divisible if and only if both A and B are divisible groups.

Solution. We first prove the forward direction. Suppose A×B is a divisible group. Then,
for any (a,b) ∈ A×B and k ∈ Z\{0}, we have

(x,y)k = (a,b) which implies
(

xk,yk
)
= (a,b) .
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By equality of ordered pairs, we have xk = a and yk = b, so A and B are divisible groups.

We then prove the reverse direction. Suppose A and B are divisible groups. Then, take
a,x ∈ A and b,y ∈ B, as well as k ∈ Z\{0} such that

xk = a and yk = b.

This implies that (x,y)k = (a,b), showing that A×B is divisible. □

Example 2.52 (Dummit and Foote p. 86 Question 15). Prove that a quotient of a divisible
Abelian group by any proper subgroup is also divisible. Deduce that Q/Z is divisible.

Solution. Let G be a divisible Abelian group and let H be a proper subgroup of G. Sup-
pose g ∈ G and k ∈ Z+. Since G is divisible, then

there exists k ∈ Z\{0} such that xk = g.

So, xkH = gH, which implies that (xH)k = gH. So, G/H is divisible. As for the second
part, take G =Q and H = Z. □

Example 2.53 (Dummit and Foote p. 86 QUestion 16). Let G be a group, let N be a
normal subgroup of G and let G = G/N. Prove that if G = ⟨x,y⟩ then G = ⟨x,y⟩. Prove
more generally if

G = ⟨S⟩ for any subset S of G,

then G = ⟨S⟩.

Solution. Suppose we have g ∈ G. Then, gN ∈ G. So,

there exist xi ∈ {x,y} and ai ∈ Z such that g = xa1
1 . . .xak

k .

So,

gN =
(
xa1

1 . . .xak
k

)
N =

(
xa1

1 N
)
. . .
(
xak

k N
)
= (x1N)a1 . . .(xkN)ak = x1

a1 . . .xk
ak .

Here, xi ∈ {x,y}. As such, for any gN ∈ G, we have G = ⟨x,y⟩.

More generally, if S ⊆ G, suppose si ∈ S for all 1 ≤ i ≤ k such that

g = s1 . . .sk.

Similar to the above, we can write gN as

gN = s1
a1 . . .sk

ak

so G = S. □

2.5 The Lattice of Subgroups of a Group
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Algorithm 2.1 (lattice construction). The lattice of subgroups of G is constructed
as follows:

1. Plot all subgroups of G with

1 at the bottom and G at the top,

and subgroups of larger order positioned higher.

2. Draw a line upward from A to B if and only if A ≤ B and there are no sub-
groups properly contained between A and B.

We will encounter this topic of lattice construction in Galois Theory (MA4203) again.
This concept of lattice construction is fundamental to understanding the Galois correspon-
dence, which elegantly connects what is called field extensions to subgroup structures in
the Galois group of the extension. Interestingly, in this structure, we will encounter an
inversion of inclusion, where larger subgroups correspond to smaller field extensions.
This inverse relationship between subgroups and subfields makes the lattice construction
particularly useful for organising these dependencies.

Proposition 2.14. For any d,n ∈ Z≥0, one has

nZ⊆ dZ if and only if d | n in Z.

Proof. Since nZ is cyclic generated by n, it is the smallest subgroup of Z generated by
n. Hence, nZ ⊆ dZ if and only if n ∈ dZ, which is equivalent to saying that there exists
k ∈ Z such that n = dk.

Proposition 2.15. For fixed n ∈ Z+ and any a,b ∈ Z+ dividing n, we have

⟨a⟩ ⊆ ⟨b⟩ in Z/nZ if and only if b | a in Z.

Proof. We have

⟨a⟩ ⊆
〈
b
〉

if and only if a ∈
〈
b
〉

if and only if there exists k ∈ Z such that a = kb in Z/nZ

if and only if a ∈ bZ+nZ= bZ since b | n

if and only if b | a in Z

Example 2.54 (lattice of subgroups of G when |G| = 1). This example is uninteresting
as Z/1Z= ⟨1⟩= {0}.
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Example 2.55 (lattice of subgroups of G when |G| = 2). If |G| = 2, we obtain the fol-
lowing lattice of subgroups:

Z/2Z

2Z/2Z

Example 2.56 (lattice of subgroups of G when |G| = 3). If |G| = 3, we obtain the fol-
lowing lattice of subgroups:

Z/3Z

3Z/3Z

Example 2.57 (lattice of subgroups of G when |G|= 4). If |G|= 4, recall that there are
two possibilities of G up to isomorphism, namely the cyclic group of order 4 (Z/4Z) and
the Klein four-group V . For the former, we obtain the following lattice of subgroups:

Z/4Z

2Z/4Z

4Z/4Z

The Klein four-group has the following lattice of subgroups:

V = Z/2Z×Z/2Z= {(0,0) ,(0,1) ,(1,0) ,(1,1)}

⟨(1,0)⟩ ⟨(1,1)⟩ ⟨(0,1)⟩

⟨(0,0)⟩

Example 2.58 (lattice of subgroups of G when |G| = 5). If |G| = 5, we obtain the fol-
lowing lattice of subgroups:

Z/5Z

5Z/5Z

Example 2.59 (lattice of subgroups of groups of prime order). Suppose G is a group,
where |G|= p, where p is prime. Based on our examples of the lattices of subgroups for
the cases when p = 2,3,5, we generalise to the following lattice for some arbitrary p:

Z/pZ

pZ/pZ

We state an interesting theorem in Number Theory regarding primes.

Theorem 2.7 (Wilson’s theorem). Let p be a prime. Then, (p−1)! ≡−1 (mod p).
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Proof. We pair the elements of (Z/pZ)× with their respective inverses. The elements
which cannot be paired up are those which are self-invertible. These elements satisfy
x2 ≡ 1 (mod p). There are only two elements which satisfy this congruence, which are 1
and p− 1. Therefore, in the product (p− 1)! ∈ (Z/pZ)×, all the other elements cancel
out, leaving p−1.

Example 2.60 (lattice of subgroups of G when |G| = 6). Similar to groups of order 4,
we note that there are 2 groups of order 6, up to isomorphism. These are

C6, the cyclic group of order 6 and S3, the symmetric group on 3 letters.

We first discuss subgroups of C6 ∼= Z/6Z. We note that 2Z/6Z,3Z/6Z ≤ Z/6Z. To see
what the elements of each subgroup look like, we have

2Z/6Z=
{

0,2,4
}

and 3Z/6Z=
{

0,3
}
.

Hence, 2Z/6Z should be placed above (but not directly) 3Z/6Z since the former is of a
larger order. However, 2Z/6Z and 3Z/6Z are not comparable since one is clearly not a
subset of the other.

Z/6Z

2Z/6Z
3Z/6Z

6Z/6Z

On the other hand, the following is the lattice of subgroups of S3:

S3 ∼= D6

⟨(123)⟩

⟨(12)⟩ ⟨(13)⟩ ⟨(23)⟩

1

Example 2.61 (lattice of subgroups of G when |G|= 8). There are 5 groups of order 8,
up to isomorphism. These are the cyclic group Z/8Z, the direct product Z/4Z×Z/2Z,
the direct product Z/2Z×Z/2Z×Z/2Z, the dihedral group D8, the quaternion group Q8.

We first discuss the lattice of subgroups of Z/8Z, which are as follows:

Z/8Z

2Z/8Z

4Z/8Z

8Z/8Z
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We then discuss the lattice of subgroups of Z/4Z×Z/2Z, which are as follows:

Z/4Z×Z/2Z

⟨(1,0)⟩ ⟨(2,0),(0,1)⟩ ⟨(1,1)⟩

⟨(2,1)⟩ ⟨(2,0)⟩ ⟨(0,1)⟩

⟨(0,0)⟩

The lattice of subgroups of Z/2Z×Z/2Z×Z/2Z is complicated, so we will not discuss
it. We then discuss the lattice of subgroups of D8.

D8 = ⟨r,s⟩

⟨r⟩⟨s,r2⟩ ⟨rs,r2⟩

⟨s⟩ ⟨r2s⟩ ⟨r2⟩ ⟨rs⟩ ⟨r3s⟩

1

Lastly, we discuss the lattice of subgroups of Q8.

Q8

⟨i⟩ ⟨ j⟩ ⟨k⟩

⟨−1⟩

1





Chapter 3
Quotient Groups and

Homomorphisms

3.1 Definitions and Examples

Definition 3.1 (cosets and representatives). Let G be a group and H ≤ G. For any
g ∈ G,

gH = {gh ∈ G : h ∈ H} is the left g-coset of H in G

Hg = {hg ∈ G : h ∈ H} is the right g-coset of H in G

Any element of the coset is known as a representative.

Example 3.1. g = g ·1G is a representative for gH; g = 1G ·g is a representative for Hg.

We will only discuss left cosets from now, although similar properties hold for right
cosets by symmetry. Also, there is no difference between left and right cosets if G is
Abelian, i.e. if a ∈ G, then a ∈ aH and a ∈ Ha.

Definition 3.2 (coset space). The set of left cosets of H in G is denoted by G/H.
So,

G/H = {X ⊆ G : there exists g ∈ G such that X = gH} .

Definition 3.3 (projection map). Let

π : G → G/H denote the map g 7→ gH.

Note that π is surjective (by definition) but not injective in general, i.e. there possibly
exist distinct g1,g2 ∈ G such that g1H = g2H in G/H.

87
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Example 3.2. Suppose H = G. Then, for any g ∈ G, we have gG = G = Gg and

G/G = {G} which is a singleton and π : G → G/G is the trivial map.

Example 3.3. If H = 1, then for any g ∈ G, we have g1 = {g}= 1g and

G/1 = {{g} ∈ P (G) : g ∈ G} and π : G → G/1 where g 7→ {g} is the obvious bijection.

Example 3.4. Fix n ∈ Z+. Take G = Z and H = nZ, where we see that H ≤ G. We have
the familiar set of cosets of nZ in Z, denoted by Z/nZ!

For any a ∈ Z, the a-coset of nZ in Z is the congruence class of a modulo n, i.e.

a = a+nZ= {a+ kn : k ∈ Z} .

The projection map

π : Z→ Z/nZ where a 7→ a+nZ is the reduction mod n map.

Example 3.5 (Dummit and Foote p. 85 Question 7). Define

π : R2 → R by π ((x,y)) = x+ y.

Prove that π is a surjective homomorphism and describe the kernel and fibers of π geo-
metrically.

Solution. Suppose (x1,y1) ,(x2,y2) ∈ R2. Then,

π ((x1,y1)+(x2,y2)) = π (x1 + x2,y1 + y2)

= x1 + x2 + y1 + y2

= x1 + y1 + x2 + y2

= π ((x1,y1))+π ((x2,y2))

so π is a homomorphism. To show that π is surjective, suppose x+ y = z ∈ R. Then, we
can choose (x,z− x) ∈ R2 such that π ((x,z− x)) = x+ z− x = z, so π is surjective.

kerπ denotes the set of all (x,y) ∈ R2 such that x+ y = 0. In other words, the kernel
represents the line y = −x. Lastly, for a ∈ R, the fiber over a is a line with equation
x+ y = a. □

Example 3.6. Let G = S3 and H = ⟨(12)⟩. The following are the left cosets of H in G:

(1)H = H

(12)H = H

(13)H = {(13) ,(123)}
(123)H = {(13) ,(123)}

(23) = {(23) ,(132)}
(132)H = {(23) ,(132)}

We leave the enumeration of all right H-cosets in G as an exercise. Also, one sees that in
general, the left and right cosets are different, i.e. gH ̸= Hg.
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Proposition 3.1. For any g1,g2 ∈ G, the following are equivalent:

(i) g1H = g2H in G/H

(ii) g1H ⊆ g2H

(iii) g1 ∈ g2H

(iv) g−1
2 g1 ∈ H

Corollary 3.1. Let G be a group and H ≤ G. Then, the following hold:

(i) The relation ∼ on G defined by

g1 ∼ g2 if and only if g−1
2 g1 ∈ H

is an equivalence relation

(ii) The set G/H is the quotient set of the equivalence relation in (i)

(iii) The map

π : G → G/H where g 7→ gH is the quotient map of the equivalence relation in (i)

(iv) The set of left cosets of H in G form a partition of G

Proof. (i) is trivial. We prove (ii), (iii), (iv) concurrently. Note that X ⊆ G is an equiva-
lence class (with relation ∼) if and only if there exists g ∈ G such that

X = {x ∈ G : x ∼ g}=
{

x ∈ G : g−1x ∈ H
}
= gH.

The result follows.

Example 3.7 (Dummit and Foote p. 89 Question 36). Prove that if G/Z(G) is cyclic then
G is abelian. (Hint: If G/Z(G) is cyclic with generator xZ(G), show that every element
of G can be written in the form xaz for some integer a ∈ Z and some element z ∈ Z(G).)

Solution. Suppose G/Z (G) is cyclic. Then, elements of this quotient group are of the
form xZ (G), where x ∈ G. So, we can write

G =
∞⋃

n=0

xnZ (G) .

Take a,b ∈ G. Then, there exist n,m ∈ Z≥0 such that

a = xny and b = xmz where y,z ∈ Z (G) .

So,

ab = xnyxmz = xmzxny = ba via repeated use of the fact that y,z ∈ Z (G) .

So, G is an Abelian group. □



90 CHAPTER 3. QUOTIENT GROUPS AND HOMOMORPHISMS

Definition 3.4 (index of subgroup). Let H ≤ G. The index of H in G is

|G : H|= |G/H| which is the cardinality of the set G/H.

Definition 3.5 (commutator and commutator subgroup). Let x,y ∈ G, where G is a
group. The element x−1y−1xy is called the commutator of x and y and it is denoted
by [x,y]. Also, the group

{[x,y] : x,y ∈ G}=
{

x−1y−1xy : x,y ∈ G
}

is the commutator subgroup of G.

3.2 More on Cosets and Lagrange’s Theorem

Proposition 3.2. For any g ∈ G, the map

H → gH defined by h 7→ gh is a well-defined bijection.

This is known as left multiplication by g.

Proof. The well-definedness and surjective nature of the map follows by the definition
of the left coset gH. The map is injective by performing left multiplication by g−1, i.e.
cancellation law.

Example 3.8 (Dummit and Foote p. 95 Question 6). Let H ≤ G and let g ∈ G. Prove
that if the right coset Hg equals some left coset of H in G then it equals the left coset gH
and g must be in NG (H).

Solution. Suppose we have Hg = aH for some a ∈ G. Since g ∈ Hg, then we have
g ∈ aH. We know that the right cosets partition G, thus aH = gH. Therefore, Hg = gH
which follows that gHg−1 = H. We conclude that g ∈ NG (H). □

Example 3.9 (Dummit and Foote p. 95 Question 5). Let H be a subgroup of G and fix
some element g ∈ G.

(a) Prove that gHg−1 is a subgroup of G of the same order as H.

(b) Deduce that if n ∈ Z+ and H is the unique subgroup of G of order n, then H ⊴G.

Solution.

(a) We know that 1 ∈ gHg−1 so gHg−1 is non-empty. Next, consider h1,h2 ∈ H and
g ∈ G as usual such that x,y ∈ gHg−1, i.e.

x = gh1g−1 and y = gh2g−1.

So,
xy−1 =

(
gh1g−1)(gh2g−1)−1

= gh1g−1gh−1
2 g−1 = gh1h−1

2 g−1.
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Since H ≤ G, then h1h−1
2 ∈ H, so xy−1 ∈ gHg−1. As such, gHg−1 ≤ G.

For the second part, define

ϕ : H → gHg−1 such that ϕ (h) = ghg−1.

For any x ∈ gHg−1, we can choose h = x so that ϕ (h) = ghg−1 = x so ϕ is surjec-
tive. Next, suppose there exist h1,h2 ∈ H such that f (h1) = f (h2). So,

gh1g−1 = gh2g−1 which implies h1 = h2.

As such, ϕ is injective. We conclude that ϕ is a bijective map and |H|=
∣∣gHg−1

∣∣.
(b) From (a), we know that

gHg−1 ≤ G and
∣∣gHg−1∣∣= |H| .

Since H is the unique subgroup of order n, then H = gHg−1 for all g ∈ G, and it
follows that H ⊴G.

We then move on to our first big theorem of Group Theory, called Lagrange’s theorem.

Theorem 3.1 (Lagrange’s theorem). Let G be a finite group. Then,

for any H ≤ G, we have |H| | |G| .

Moreover, |G|= |G : H| |H|.

Proof. The left cosets of H in G form the partition

G =
⊔

X∈G/H

X so |G|= ∑
X∈G/H

|X | .

Note that the symbol ⊔ denotes that the union of X over all X ∈ G/H denotes a disjoint
union. By Proposition 3.2, for each X ∈ G/H, we have |X |= |H|, and the result follows.

Example 3.10 (Dummit and Foote p. 95 Question 4). Show that if |G| = pq for some
primes p and q (not necessarily distinct) then either G is abelian or Z(G) = 1.

Solution. Note that Z (G) ≤ G so by Lagrange’s theorem (Theorem 3.1), |Z (G)| | |G| so
|Z (G)| is either 1 or p or q. We shall consider two cases.

• Case 1: Suppose Z (G) is the trivial group. Then, |Z (G)|= 1.

• Case 2: Without loss of generality, suppose |Z (G)| = p. Then, consider the quo-
tient group G/Z (G). By Lagrange’s theorem (Theorem 3.1),

|G/Z (G)|= |G|
|Z (G)|

=
pq
p

= q.

Since the order of this quotient group is prime, then it is cyclic. By Example 3.7, G
is Abelian.
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The result follows. □

Example 3.11 (Dummit and Foote p. 95 Question 8). PRove that if

H and K are finite subgroups of G whose orders are relatively prime then H ∩K = 1.

Solution. Suppose |H|= m and |K|= n such that gcd(m,n) = 1. Let |H ∩K|= a. Since
H ∩K ≤ H and H ∩K ≤ K, then

by Lagrange’s theorem we have |H ∩K| | |H| and |H ∩K| | |K| .

Thus, a | m and a | n. So, a | gcd(m,n). Since gcd(m,n) = 1, then a = 1. □

Corollary 3.2. Let G be a finite group. For any x ∈ G, we have

|x| | |G| or equivalently x|G| = 1G.

Corollary 3.2 is a useful corollary of Lagrange’s theorem. It can be used to deduce
some interesting results in Number Theory like Euler’s theorem and Fermat’s little theo-
rem. We start with some preliminaries.

Definition 3.6 (Euler ϕ-function). The Euler ϕ-function (not to be confused with
group homomorphism) or totient function can be described as follows:

ϕ (n) = |{a : a ≤ n and gcd(a,n) = 1}|

We can also think of the Euler ϕ-function from a group-theoretic point-of-view. Take
G = (Z/nZ)×, which refers to the multiplicative group of Z/nZ. One sees that |G| =
ϕ (n).

Theorem 3.2 (Euler’s theorem). For any x ∈ Z such that gcd(x,n) = 1, we have
xϕ(n) ≡ 1 (modn).

Proof. By Corollary 3.2, we see that for any x ∈ (Z/nZ)×, we have xϕ(n) = 1 in Z/nZ.

Theorem 3.3 (Fermat’s little theorem). Let p be a prime. Then, for any x ∈ Z, we
have xp−1 ≡ 1 (mod p).

Proof. One should see this as a proof of Euler’s theorem (Theorem 3.2) by setting n = p,
where p is prime.

Note that the converse of Lagrange’s theorem is false, i.e. if G is finite and n | |G|,
there need not exist a subgroup of G of order n. A classic counterexample to the converse
is about the alternating group of degree 4, denoted by A4 (will mention more in due
course, particularly once we have covered Definition 3.16). We briefly mention the details
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here but a formal explanation will be given in Example 3.38. The alternating group An is
related to the symmetric group Sn. We will mention in Definition 3.16 that |An|= |Sn|/2,
so it is clear that |A4| = 12. Although 6 divides 12, we will see in Example 3.38 that A4

does not have any subgroup of order 12.

Corollary 3.3. Let G be a finite group, where |G|= p for some prime p. Then,

G is cyclic and hence G ∼= Z/pZ.

Proof. Choose any non-identity element x ∈ G. Then, ⟨x⟩ ≤ G, where |x| | |G| = p and
|x|> 1. Hence, |⟨x⟩|= p, which implies ⟨x⟩= G.

We conclude that

the unique homomorphism ϕ : Z/pZ→ G such that ϕ
(
1
)
= x

is an isomorphism.

Theorem 3.4 (tower theorem). Suppose H ≤ G and K ≤ H. Then,

[G : K] = [G : H] [H : K] .

We will encounter a variant of Theorem 3.4 in Galois Theory, in particular when
discussing field extensions. Also, this problem appears on p. 96 of the Dummit and Foote
textbook (Question 11).

Proof. Note that we cannot assume that G is a finite group. So, we write G as the disjoint
union of left cosets of H as follows:

G =
⊔

g∈T

gH

where T ⊆ G is a set of coset representatives for G/H. Note that |T |= [G : H].

Similarly, within H, we can form its cosets using K, i.e.

H =
⊔
h∈R

hK,

where R ⊆ H is a set of coset representatives for H/K. Note that |R|= [H : K] similarly.
As such,

G =
⊔

g∈T

gH =
⊔

g∈T

⊔
h∈R

(gh)K.

Here, each gH breaks into [H : K] cosets of K, and there are [G : H] distinct cosets gH.
As the total number of cosets of K in G is [G : K], the result follows.
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Example 3.12 (Dummit and Foote p. 96 Question 10). Suppose H and K are subgroups
of finite index in the (possible infinite) group G with [G : H] = m and [G : K] = n. Prove
that

lcm(m,n)≤ [G : H ∩K]≤ mn.

Deduce that if m and n are relatively prime, then

[G : H ∩K] = [G : H] · [G : K] .

Solution. Suppose we have g ∈ G. Then, consider the cosets gH,gK,g(H ∩K). If
x ∈ g(H ∩K), then x ∈ gH and x ∈ gK so g(H ∩K) ⊆ gH ∩ gK. Similarly, if x ∈ gH
and x ∈ gK, then xg−1 ∈ H ∩K so x ∈ g(H ∩K). This shows that gH ∩gK = g(H ∩K).

For each coset of H ∩K, it is the intersection of one coset from H and one coset from
K. So, [G : H ∩K]≤ mn. Also, we note that

[G : H] | [G : H ∩K] and [G : K] | [G : H ∩K] .

As such, [G : H ∩K]≥ lcm(m,n). Combining both inequalities yields the first result.

For the second part, if m and n are relatively prime, then lcm(m,n) = mn so [G : H ∩K] =

mn. □

3.3 Normal Subgroups and Quotient Groups

Definition 3.7 (normal subgroup). A subgroup N of G is a normal subgroup if and
only if any of the following equivalent conditions is satisfied:

(i) for any g ∈ G, one has gNg−1 = N, i.e. every element of G normalizes N

(ii) NG (N) = G

(iii) for any g ∈ G, one has gN = Ng

(iv) for any g ∈ G, one has gNg−1 ⊆ N

If either of these holds, we write N ⊴G.

Example 3.13. Some trivial examples include 1⊴G and G⊴G.

Example 3.14. Let G be an Abelian group and H ≤ G. Then H ⊴G. This follows from
Definitions 2.7 and 2.8, where we discussed the definitions of the centralizer and normal-
izer of a group, i.e. G is Abelian

G is Abelian if and only if for any A ⊆ G we have CG (A) = NG (A) = G.

Example 3.15. If H ⊆ Z (G), then H is normal since this implies gHg−1 = H. It follows
that Z (G)⊴G.
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Proposition 3.3. In the quotient group G/N, we have

(gN)α = gαN for all α ∈ Z.

Proposition 3.3 appears in Dummit and Foote p. 85 Question 4. One can prove this
result using induction.

Example 3.16 (Dummit and Foote p. 85 Question 5). Prove that the order of the element
gN in G/N is n, where n is the smallest positive integer such that gn ∈ N (and gN has
infinite order if no such positive integer exists). Give an example to show that the order
of gN in G/N may be strictly smaller than the order of g in G.

Solution. For the first part, suppose we have gN ∈ G/N and gn ∈ N. Then, we have
gnN = 1N. From Proposition 3.3, we have (gN)n = gnN, so (gN)n = 1N. As such,
|G/N| ≤ n. Next, suppose there exists m∈N such that (gN)m = 1N. Then, (gN)m = gmN,
which follows that gm ∈ N. So, |G/N|= m. However, since n was defined to be the small-
est positive integer, then m ≥ n so we conclude that |gN|= n.

Next, assuming that there does not exist such a positive integer, then for each k ∈ N,
we have gk ̸∈ N. Suppose on the contrary that |gN| is finite. Then, there exists p ∈ Z such
that (gN)p = 1N, which follows that gp ∈ N. This is a contradiction!

For the last part, suppose G = Z/4Z which is a group of order 4. Let N =
〈
x2〉 and

G = ⟨x⟩. So, x2N = 1N which is of order 1. □

Example 3.17 (Dummit and Foote p. 88 Question 22).

(a) Prove that if H and K are normal subgroups of a group G, then

their intersection H ∩K is also a normal subgroup of G.

(b) Prove that the intersection of any arbitrary non-empty collection of normal sub-
groups of a group is a normal subgroup (do not assume the collection is countable).

Solution.

(a) By Proposition 2.13, we know that the arbitrary intersection of subgroups is also a
subgroup. In particular, if H,K ⊴G, then H ∩K ⊴G. So, it suffices to show that
H ∩K satisfies the normal subgroup criterion (Definition 3.7).

Suppose we have g ∈ G and x ∈ H ∩ K. Then, by definition, we have x ∈ H
and x ∈ K. Since H,K ≤ G, then gxg−1 ∈ H and gxg−1 ∈ K, which follows that
gxg−1 ∈ H ∩K. Hence, H ∩K ⊴G.

(b) Again, we make use of Proposition 2.13. Define X to be the collection of normal
subgroups Xi, i.e.

X =
⋂
i∈I

Xi where Xi ⊴G.
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Suppose we have g ∈ G and x ∈ X . Then, x ∈ Xi for all i ∈ I. Since Xi ≤ G, then
gxg−1 ∈ Xi, so gxg−1 ∈ X . The result follows.

Example 3.18 (Dummit and Foote p. 88 Question 24). Prove that if

N ⊴G and H is any subgroup of G then N ∩H ⊴H.

Solution. By a special case of Proposition 2.13, we know that the intersection of two
subgroups is also a subgroup of a group. So, N ∩H ≤ H. Suppose h ∈ H and x ∈ N ∩H.
Then, x ∈ N and x ∈ H. Since N ⊴G, then there exists g ∈ G such that gxg−1 ∈ N.

Set h = g so that hxh−1 ∈ N. Since x ∈ H, then hxh−1 ∈ H as well. It follows that
hxh−1 ∈ N ∩H, proving that N ∩H ⊴H. □

Definition 3.8. For any A,B ⊆ G, we write

AB = {ab ∈ G : a ∈ A,b ∈ B}
= {x ∈ G : there exist a ∈ A,b ∈ B such that x = ab}

Observe that this is precisely the image of A×B under the multiplication map G×
G → G.

Example 3.19 (Dummit and Foote p. 89 Question 39). Suppose A is the non-abelian
group S3 and D is the diagonal subgroup {(a,a) | a ∈ A} of A×A. Prove that D is not
normal in A×A.

Solution. Note that (123) ∈ S3. Let a = (13) and b = (123) be two permutations in S3.
Then, a−1 = a since a is a transposition, and b−1 = (132). Suppose

x = (a,b) ∈ A×A and y = (a,a) ∈ D.

Then,

xyx−1 =
(
a3,bab−1)= (a,bab−1) .

If D⊴A×A, then we must have xyx−1 ∈ D so a = bab−1. However, one checks that
bab−1 = (23) but a = (13) which implies D is not normal in A×A. □

Definition 3.9. For any A ⊆ G, define

A−1 =
{

a−1 ∈ G : a ∈ A
}

=
{

x ∈ G : there exist a ∈ A such that x = a−1}
This is precisely the image of A under the inversion map G → G.

One sees that

(AB)C = A(BC) since multiplication in G is associative.
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Example 3.20. Suppose H ≤ G and g ∈ G. Then,

HH = {ab ∈ G : a ∈ H,b ∈ H}= H

H−1 =
{

a−1 ∈ G : a ∈ H
}
= H

Example 3.21 (absorption property). Let N ⊴G. Then, for any g1,g2 ∈ G, we obtain
g1N,g2N ⊆ G, and

(g1N)(g2N) = g1 (Ng2)N by associativity

= g1 (g2N)N since N ⊴G

= (g1g2)(NN) by associativity

= (g1g2)N

In a similar fashion, one is able to deduce that (gN)−1 = g−1N.

We are now in a position to define the product of cosets and the inversion of a coset.

Definition 3.10 (product of cosets). Let X1,X2 ∈ G/N. We can compute their prod-
uct by first

choosing any representative g1 of X and choosing any representative g2 of X2.

So, X1 = g1N and X2 = g2N respectively. We then multiply g1 and g2 in G, and

form the coset X1X2 = g1g2N ∈ G/N.

Definition 3.11 (inversion of coset). Let X ∈ G/N. We can compute the inversion
of X by

choosing any representative g of X so X = gN,

then inversing g in G and forming the coset X−1 = g−1N ∈ G/N.

The results in Definitions 3.10 and 3.11 are well-defined, i.e. independent of the
choice of representatives for the cosets.

Example 3.22 (Dummit and Foote p. 85 Question 3). Let A be an Abelian group and
let B be a subgroup of A. Prove that A/B is Abelian. Give an example of a non-Abelian
group G containing a proper normal subgroup N such that G/N is Abelian.

Solution. For the first result, suppose we have xB,yB ∈ A/B, where x,y ∈ A. Then,

xByB = xyBB = xyB = yxB = yBxB

so A/B is Abelian.

For the second part, consider G=D8 which is non-Abelian. It has a normal subgroup N =〈
r2〉. However, G/N ∼=V4 (the Klein four-group in Definition 2.3) which is Abelian. □
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Example 3.23 (Dummit and Foote p. 89 Question 40). Let G be a group, let N be a
normal subgroup of G and let G = G/N. Prove that x and y commute in G if and only
if x−1y−1xy ∈ N. Here, the element x−1y−1xy is called the commutator of x and y and is
denoted by [x,y] (recall Definition 3.5).

Solution. Say x = xN and y = yN, where x,y ∈ G. We first prove the forward direction.
Suppose x and y commute in G. Then,

x · y = (xN) · (yN) = (xy)N and y · x = (yx)N similarly.

So, (xy)N = (yx)N, which implies (yx)−1 (xy) ∈ N, i.e. x−1y−1xy ∈ N.

We then prove the reverse direction. Suppose x−1y−1xy ∈ N. Then, (xy)N = (yx)N,
so in G, if we define x = xN and y = yN for some x,y ∈ G, it follows that

x · y = (xy)N = (yx)N = y · x,

showing that x and y commute in G. □

Example 3.24 (Dummit and Foote p. 89 Question 41). Let G be a group. Prove that
N = {x−1y−1xy : x,y ∈ G} is a normal subgroup of G and G/N is abelian. Here, N is
called the commutator subgroup of G (recall Definition 3.5).

Solution. x−1y−1xy∈N by definition of the commutator subgroup. Let g∈G be arbitrary
too. Then,

g∗ x−1y−1xy∗g−1 = gx−1y−1xyg−1

=
(
gxg−1)−1 (

gyg−1)(gxg−1)(gyg−1) ∈ N

so N ⊴G. The fact that G/N is Abelian was established in Example 3.23, where we
mentioned that if G = G/N, then x,y commute in G if and only if x−1y−1xy ∈ N, where
N denotes the commutator subgroup. □

Example 3.25 (Dummit and Foote p. 89 Question 42). Assume both H and K are normal
subgroups of G with H ∩K = 1. Prove that xy = yx for all x ∈ H and y ∈ K. (Hint: Show
x−1y−1xy ∈ H ∩K)

Solution. Since H ⊴G, then for any g ∈ G and h ∈ H, we have ghg−1 ∈ H. In particular,
we can choose g ∈ K, so set y ∈ K. As such,

yxy−1 ∈ H where x ∈ H,y ∈ K.

So, y−1xy ∈ H, which implies x−1y−1xy ∈ H. Similarly, one can deduce that x−1y−1xy ∈
K as well. So, x−1y−1xy ∈ H ∩K. However, as H ∩K = 1, it forces x−1y−1xy = 1, so
xy = yx. □

Lemma 3.1. Let G be a group. Then, every subgroup H of index 2 is normal.
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Proof. Suppose [G : H] = 2 and g ∈ G. Then, H has 2 left cosets in G. If gH = H, then
g ∈ H and so gH = H = Hg. gH = Hg satisfies condition (iii) in Definition 3.7 and the
result follows.

On the other hand, if gH ̸= H, then H and gH are the only two left cosets of H in G.
As g ̸∈ H, then H and Hg are the only two right cosets of H in G, so Hg = G\H = gH.
Thus, gH = Hg so the result follows by (iii) of Definition 3.7.

Definition 3.12 (quotient group). Let G be a group and N⊴G. The quotient group
of G modulo N is the group G/N with underlying set

G/N = set of left/right cosets of N in G

= {X ⊆ G : there exists g ∈ g such that X = gN = Ng}

having the following properties:

(a) Equipped with a multiplication map:

G/N ×G/N → G/N defined by (g1N,g2N) 7→ (g1N)(g2N) = g1g2N

(b) Existence of identity element: 1G/N = 1GN = N ∈ G/N

(c) Equipped with an inversion map

G/N → G/N defined by gN 7→ (gN)−1 = g−1N

One checks that the quotient group is a group, i.e. the group axioms in Definition 1.1
indeed hold. These are easy to check and are induced by their validity in G.

Proposition 3.4. Suppose H ≤ G. Then,

the multiplication of left cosets G/H ×G/H → G/H is well-defined

if and only if H ⊴G.

Example 3.26. Some obvious examples include 1⊴G and G⊴G, as well as nZ⊴Z.

3.4 The Isomorphism Theorems
We first state an important fact before delving into the isomorphism theorems. If H is a
group and H0 ≤ H, we say that

the inclusion map i : H0 → H where h0 7→ h0 is a monomorphism

called the inclusion homomorphism, and im i = H0.
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Proposition 3.5 (universal property of subgroup). Let ϕ : G → H be a homomor-
phism from another group G to H such that imϕ ⊆ H0, where H0 ≤ H. The, there
exists a unique homomorphism ϕ0 : G → H0 such that the following diagram com-
mutes, i.e. ϕ = i◦ϕ0:

G H

H0

ϕ

i
ϕ0

The shaded line to denote ϕ0 : G → H0 indicates that ϕ0 is unique. In fact, ϕ0 is
defined as follows:

for any g ∈ G set ϕ0 (g) = ϕ (g) which is regarded as an element of H0.

Proposition 3.6. The quotient map

π : G → G/N where g 7→ gN

is an epimorphism, with kerπ = N. The map π is known as the quotient mod N
homomorphism.

Proof. For any g1,g2 ∈ G, we have

π (g1g2) = (g1g2)N = (g1N)(g2N) = π (g1)π (g2)

which shows that π is a homomorphism. Also,

kerπ = π
(
1G/N

)
= π

−1 (N) = {g ∈ G : gN = N}= N

and the result follows.

Theorem 3.5 (universal property of quotient group). Let ϕ : G → H be a homo-
morphism from G to another group H such that N ⊆ kerϕ . Then, there exists a
unique homomorphism ϕ : G/N → H such that the following diagram commutes,
i.e. ϕ = ϕ ◦π:

G

G/N

H
ϕ

π
ϕ

Example 3.27. Set G = Z and N = nZ, for which we obtain the universal property of
Z/nZ (Theorem 2.4).

Theorem 3.6 (first isomorphism theorem). Let ϕ : G → H be a homomorphism.
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Then, let

ϕ = i◦ ϕ̃ ◦π denote the canonical factorisation of ϕ,

where

π : G ↠ G/kerϕ is the quotient homomorphism and

i : imϕ ↪→ H is the inclusion homomorphism

Also,

ϕ̃ : G/kerϕ → imϕ is an isomorphism induced by ϕ,

meaning the following diagram commutes:

G H

G/ker(ϕ) im(ϕ) = ϕ(G)

ϕ

π

ϕ̃

i

Proof. Let ϕ̃ : G/kerϕ → ϕ (G), where ψ (gkerϕ) = ϕ̃ (g). We shall prove that ϕ̃ is
well-defined and injective. We have

gkerϕ = hkerϕ if and only if h−1g ∈ kerϕ

if and only if ϕ
(
h−1g

)
= 1G

if and only if ϕ (g) = ϕ (h)

so it follows that ϕ̃ (gkerϕ) = ϕ̃ (hkerϕ). In particular, the idea behind showing that a
map is well-defined is to justify uniqueness, i.e. for each element in ϕ̃ , there must be
exactly one element in G/ker(φ) that it maps to. As such, there cannot be ambiguity or
multiple possible mappings for a single element.

To show that ϕ̃ is surjective, suppose there exists g ∈ G such that ϕ (g) = h. Then,
ϕ̃ (gkerϕ) = ϕ (g) = h and the result follows.

Example 3.28 (Dummit and Foote p. 89 Question 37). Let A and B be groups. Show that
{(a,1) | a ∈ A} is a normal subgroup of A×B and the quotient of A×B by this subgroup
is isomorphic to B.

Solution. Let S = {(a,1) | a ∈ A}. Note that (a,1) ∈ S and (x,y) ∈ A×B. So,

g∗ s∗g−1 = (x,y)∗ (a,1)∗ (x,y)−1 =
(
xax−1,yy−1)= (xax−1,1

)
∈ S.

It follows that S⊴A×B.
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We then wish to prove that (A×B)/S ∼= B. Define a map

ϕ : A×B → B where ϕ ((a,b)) = b.

ϕ is a well-defined surjective homomorphism. We then compute kerϕ . Suppose ϕ ((x,y))=
1B. Then, x can be arbitrarily set and y = 1B. So, kerϕ = {(a,1) : A ∈ A}= S. By the first
isomorphism theorem (Theorem 3.6), there exists an isomorphism ϕ : A×B → B such
that kerϕ = S. □

Example 3.29 (Dummit and Foote p. 89 Question 38). Let A be an abelian group and let
D be the (diagonal) subgroup {(a,a) | a ∈ A} of A×A. Prove that D is a normal subgroup
of A×A and (A×A)/D ∼= A.

Solution. This question is similar to Example 3.28. Anyway, let (a,a) ∈ D and (x,x) ∈
A×A. Then,

(x,x)∗ (a,a)∗ (x,x)−1 =
(
xax−1,xax−1) ∈ D,

where the inclusion ∈ D follows from the fact that xax−1 ∈ A.

To prove the second result, define a map

ϕ : A×A → A where ϕ ((a,a)) = a.

Again, one checks that ϕ is a well-defined surjective homomorphism. We then compute
kerϕ , which turns out to be D. By the first isomorphism theorem (Theorem 3.6), ϕ is an
isomorphism with kerϕ = D. □

We then discuss the second and third isomorphism theorems. These should be seen as
corollaries of the first isomorphism theorem.

Corollary 3.4 (second isomorphism theorem). Let G be a group. Suppose H ≤ G
and K ⊴G. Then, HK is a subgroup of G containing H and K and

the composite homomorphism H ↪→ HK ↠ HK/K induces an isomorphism H/H ∩K ∼= HK/K.

In particular, K ⊴HK and H ∩K ⊴H.

Proof. Consider the map ϕ : H → HK/K with ϕ (h) = hK. One can show that ϕ is a
well-defined surjective homomorphism with kerϕ = H ∩K.

Example 3.30. We know that there is a fundamental result in Number Theory that

for any m,n ∈ Z we have gcd(m,n) · lcm(m,n) = mn.

Use the second isomorphism theorem to deduce this result.
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Solution. We will use N in place of K (Corollary 3.4) to denote the normal subgroup of
G. Let

G = Z,H = mZ,N = nZ where it is clear that H ≤ G and N ⊴G.

Since G=Z is an additive group, then HN =H+N =mZ+nZ. These comprise elements
of the form mx+ny, where x,y ∈ Z. Note that

{mx+ny : x,y ∈ Z}= gcd(m,n)Z follows by Bézout’s lemma.

Consider H∩N = mZ∩nZ. Here, mZ refers to all multiples of m; nZ is defined similarly.
Hence, H ∩ N = lcm(m,n)Z. Let d = gcd(m,n) and lcm(m,n) = l. By the second
isomorphism theorem,

dZ/nZ= HN/N ∼= H/H ∩K = mZ/lZ.

Define ϕ : dZ→Z/
( n

dZ
)
, for which kerϕ = nZ. One can deduce that mZ/lZ∼=Z/

( l
mZ
)
.

So, ∣∣∣Z/(n
d
Z
)∣∣∣= ∣∣∣∣Z/( l

m
Z
)∣∣∣∣ which implies

n
d
=

l
m
.

As such, mn = dl and the result follows. □

Example 3.31 (Dummit and Foote p. 101 Question 3). Prove that if H is a normal
subgroup of G of prime index p, then for all K ≤ G, either

(i) K ≤ H or

(ii) G = HK and |K : K ∩H|= p

Solution. Suppose H ⊴G such that |G : H|= p. Suppose K ≤ G, then either K ≤ H ≤ G
or H ≤ K ≤ G. The former establishes (i). We now work with H ≤ K ≤ G. By the tower
theorem (Theorem 3.4), we have

|G : H|= |G : HK| · |HK : H|

Since |G : H|= p which is prime, then |G : HK|= 1 or p. If |G : HK|= p, then |HK : H|=
1, so H = HK. This implies K ≤ H (which is just (i)). On the other hand, if |G : HK|= 1,
then |HK : H|= p. By the second isomorphism theorem (Theorem 3.4), we have

K/H ∩K ∼= HK/H where H ⊴G.

Since the groups are isomorphic, then |K : H ∩K|= |HK : H|, so |K : H ∩K|= p, and the
result follows. □

Corollary 3.5 (third isomorphism theorem). Let G be a group and let N,K⊴G with
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N ⊆ K ⊆ G. Then, K/N ⊴G/N and

the composite homomorphism G ↠ G/N ↠ (G/N)/(K/N)

induces an isomorphism G/K ∼= (G/N)/(K/N)

Proof. Consider the map ϕ : G/N → G/K with ϕ (gK) = gH. One can show that ϕ is a
well-defined surjective homomorphism with kerϕ = H/N.

Example 3.32 (Dummit and Foote p. 101 Question 4). Let C be a normal subgroup of
the group A and D be a normal subgroup of the group B. Prove that

(C×D)⊴ (A×B) and (A×B)/(C×D)∼= (A/C)× (B/D) .

Solution. Define a map

ϕ : A×B → (A/C)× (B/D) where ϕ ((a,b)) = (aC,bD)

We first show that ϕ is a homomorphism. We have

ϕ ((a1,b1)(a2,b2)) = ϕ ((a1a2,b1b2))

= (a1a2C,b1b2D) = (a1C,b1D)(a2C,b2D)

= ϕ ((a1,b1))ϕ ((a2,b2))

This shows that ϕ is a homomorphism. Showing that ϕ is surjective is trivial; also kerϕ =

C×D. Hence, ϕ induces an isomorphism, with (C×D)⊴ (A×B), which follows by the
third isomorphism theorem (Theorem 3.5). □

Theorem 3.7 (lattice isomorphism theorem). Let G be a group and N ⊴G. Let
π : G → G/N be the quotient homomorphism. Then, the maps

{subgroups of G containing N}↔ {subgroups of G/N}

where H 7→ π (H) and π−1 (X)X are well-defined inclusion-preserving and
normality-preserving bijections, inverses of each other.

Lemma 3.2 (Zassenhaus’ lemma). Let A1⊴A2 and B1⊴B2 be four subgroups of a
group G. Then,

A1 (A2 ∩B1)⊴A1 (A2 ∩B2) and B1 (A2 ∩B2)⊴B1 (A1 ∩B2) ,

and we have the following isomorphism:

A1(A2 ∩B2)

A1(A2 ∩B1)
∼=

A2 ∩B2

(A1 ∩B2)(A2 ∩B1)
∼=

B1(A2 ∩B2)

B1(A1 ∩B2)

Proof. Due to symmetry, we only prove one of the isomorphisms. First, we prove that
A1(A2 ∩B1)⊴A1(A2 ∩B2). In other words, if c ∈ A2 ∩B1 and x ∈ A2 ∩B2, then xcx−1 ∈
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A2 ∩B2. This is trivial (recall that B1 ⊴B2). Now, it suffices to show that there exists an
isomorphism

A1(A2 ∩B2)

A1(A2 ∩B1)
∼=

A2 ∩B2

(A1 ∩B2)(A2 ∩B1)
.

Set D = (A1 ∩B2)(A2 ∩B1). Define

φ : A1(A2 ∩B2)→ (A2 ∩B2)/D where φ : a1x 7→ xD

Here, a1 ∈ A1 and x ∈ A2 ∩B2. One checks that φ is well-defined and is a homomor-
phism. Surjectivity is clear. Now, we need to show that ker(φ) = A1(A2 ∩B1). Suppose
a1x ∈ ker(φ). Then, x ∈ D = (A1 ∩B2)(A2 ∩B1). Hence, x = a′1x′, where a′1 ∈ A1 ∩B2

and x′ ∈ A2 ∩B1. As such, a1x = a1a′1x′.

By considering x′ ∈ A2 ∩B1 and (A1 ∩B2)⊆ A1, we have

a1 ∈ A1 ∩A1 ∩ (A2 ∩B1) = A1(A2 ∩B1)

which concludes the proof.

3.5 Transpositions and the Alternating Group

Lemma 3.3. Any cycle in Sn can be written as a product of transpositions.

Proof. Suppose m ≤ n. Note that

(a1 a2 am) is an m-cycle.

One observes that

(a1 a2 am) = (a1 am)(a1 am−1) . . .(a1 a3)(a1 a2) which is a product of transpositions.

The result follows.

Proposition 3.7. Every element of Sn can be written as a product of transpositions.

Proof. We proceed with strong induction on n ∈ Z+. The base case n = 1 is trivial since
S1 only contains the identity permutation. Suppose n > 1 is arbitrary and regard

Sn−1 ≤ Sn via Sn−1 = {σ ∈ Sn : σ (n) = n} .

Consider σ ∈ Sn. Define

τ =

the transposition (σ (n) n) ∈ Sn if σ (n) ̸= n;

identity ∈ Sn if σ (n) = n.

Then, τ ◦σ maps n to n, so τ ◦σ ∈ Sn−1. By the induction hypothesis,

there exist transpositions τ1, . . . ,τk ∈ Sn−1 ⊆ Sn such that τ ◦σ = τ1 . . .τk,

which implies σ = ττ1 . . .τk is a product of transpositions in Sn.
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Corollary 3.6. Sn is generated by the n−1 transpositions

(12) ,(13) , . . . ,(1n) .

Proof. For any a,b ∈ {2,3, . . . ,n} with a ̸= b, we have

(ab) = (1b)(1a)(1b)

and the result follows.

Corollary 3.7. Sn is generated by the n−1 adjacent transpositions

(12) ,(23) , . . . ,(n−1n) .

Proof. If b ∈ {2,3, . . . ,n}, where b < n, then

(1b+1) = (bb+1)(1b)(bb+1)

so by induction, the transpositions (12) ,(13) , . . . ,(1n) are in G.

Corollary 3.8. Sn is generated by (12) and the n-cycle (12 . . . n).

Proof. If b ∈ {1, . . . ,n} and b < n, then

(12 . . . n)(bb+1)(12 . . . n)−1 = (b+1b+2)

so by induction, the adjacent transpositions are in the subgroup of Sn generated by (12)
and (12 . . . n).

Definition 3.13 (reversal of permutation). A reversal of σ ∈ Sn is an ordered pair
(a,b) with a,b ∈ {1, . . . ,n} such that

a < b and σ (a)> σ (b) .

Let R(σ) denote the following set:

R(σ) =
{
(a,b) ∈ {1, . . . ,n}2 : (a,b) is a reversal of σ

}

Proposition 3.8. For any σ ∈ Sn, we have 0 ≤ |R(σ)| ≤
(

n
2

)
.

Definition 3.14 (sign homomorphism). The sign homomorphism of Sn is the map
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ε : Sn →{±1} defined as follows:

for any σ ∈ Sn we have ε (σ) = (−1)|R(σ)|

=

1 if σ has an even number of reversals;

−1 if σ has an odd number of reversals.

Definition 3.15. The permutation σ ∈ Sn is called an even permutation if ε (σ) = 1,
and it is an odd permutation if ε (σ) =−1.

Example 3.33. Clearly, R(1) = /0. Also, ε (1) = 1.

Example 3.34. Let σ = (i j). Then,

R(σ) = {(i j)}⊔{(ib) : i < b < j}⊔{(a j) : i < a < j} .

Hence, R(σ) collects all transpositions related to (i j) in the sense that they either directly
swap i with j, or involve one of the endpoints (i or j) and another element in the interval
(i, j). Moreover, we have ε (σ) =−1.

Example 3.35. Let

σ =

(
1 2 . . . n
n n−1 . . . 1

)
.

Then,

R(σ) =
{
(a,b) ∈ {1, . . . ,n}2 : a < b

}
.

We also have

ε (σ) =

1 if n ≡ 0,1 (mod4) ;

−1 if n ≡ 2,3 (mod4) .

Definition 3.16 (alternating group). The alternating group of degree n is the kernel
of the sign homomorphism ε , i.e.

An = kerε ⊴Sn.

In simpler terminologies, An is the set of even permutations on n letters.

Example 3.36. A3 = {(1),(1,2,3),(1,3,2)}

Proposition 3.9. For n > 1,

An is a proper normal subgroup of Sn and |An|=
1
2

n!.
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Proof. For the first result, we will only prove that An ≤ Sn as An being a normal subgroup
follows from there. Since (1) = (12)(12), it implies that (1) ∈ An so An ̸= /0. Suppose

σ and τ can be expressed as a product of an even number of permutations

Then, τ−1 can also be expressed as a product of an even number of permutations. Hence,
the same can be said for στ−1, implying that στ−1 ∈ An. By Proposition 2.1, the first
result follows.

For the second result, define

ϕ : An → Sn \An such that ϕ (σ) = (12)σ , which

has inverse ϕ
−1 : Sn \An → An such that ϕ

−1 (τ) = (12)τ

Since ϕ is bijective, then |An|= |Sn|− |An| and the result follows.

Lemma 3.4. An is generated by 3-cycles.

Proof. It suffices to prove that a product of two transpositions can be expressed as a
product of 3-cycles. For 1 ≤ a < b < c < d ≤ n, we have

(a,b)(c,d) = (a,b,c)(b,c,d) and (a,b)(a,c) = (a,c,b)

and the result follows.

Example 3.37. Prove that An is generated by {(1,2,3),(1,2,4), . . . ,(1,2,n)}.

Solution. Motivated by Lemma 3.4, observe that

(1,2,3)(1,2,4) = (1,3)(2,4) and (1,2,5)(1,2,6) = (1,5)(2,6) and so on.

In general,

(1,2,k)(1,2,k+1) = (1,k)(2,k+1) for all k ≥ 3.

Hence, (1,2,3),(1,2,4), . . . ,(1,2,n) is a product of 2n transpositions which is even and
so it generates An. □

Example 3.38 (classic counterexample to converse of Lagrange’s theorem). We note that
|A4| = 12 but A4 does not contain any subgroup of order 6. This is a classic counterex-
ample to the converse of Lagrange’s theorem. Let us see why this is so.

By Lemma 3.4, we know that An is generated by 3-cycles. In particular, A4 is generated
by 3-cycles (for those interested in the elements of A4, please refer to Example 3.39). For
example,

(13)(24) is an even permutation in A4 and (13)(24) = (123)(124)
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which is a product of 3-cycles. Suppose there exists H ≤ A4 such that |H|= 6. We claim
that H contains all 3-cycles, which would imply that H = A4, a contradiction. To see why,
suppose σ ∈ A4 \H is a 3-cycle. Then,

σH ̸= H is in the quotient group AH/H so σ
2H = (σH)(σH) must be H in AH/H.

So, σ2 ∈ H. Since σ is a 3-cycle, then σ−1 ∈ H, so σ ∈ H since H is a subgroup so it is
closed under multiplication, i.e. σ = σ2 ·σ−1. Hence, all 3-cycles are contained in H, so
H = A4, resulting in a contradiction.

Example 3.39 (MA2202S AY24/25 Sem 2 Tutorial 2).

(i) List all the elements of A4.

(ii) Let H be a subgroup of S4 with the property that σ2 ∈ H, for any σ ∈ S4. Show that
H contains A4, and further deduce that H is either A4 or S4.

Solution.

(i) A4 contains all even permutations on four letters, so they are as follows:

(1) ()

(2) (123)

(3) (124)

(4) (132)

(5) (134)

(6) (142)

(7) (143)

(8) (234)

(9) (243)

(10) (12)(34)

(11) (13)(24)

(12) (14)(23)

One can easily check that each permutation mentioned is even.

(ii) We first prove that A4 ⊆ H. Choose some arbitrary permutation τ ∈ A4. Then,
there exists σ ∈ S4 such that τ = σ2 (by Definition of the alternating group). So,
τ = σ2 ∈ H, implying that A4 ⊆ H.

For the second part, we note that [S4 : A4] = 2 by considering the orders of each
group. Recall Lemma 3.1, which states that if H ≤ G such that [G : H] = 2, then
H ⊴G. As such, A4 ⊴S4. From the first part of (ii), we deduced that

A4 ⊆ H ⊆ S4

so by the tower theorem (Theorem 3.4), we have

[S4 : A4] = [S4 : H] · [H : A4] so 2 = [S4 : H] · [H : A4] .

As such, either [S4 : H] = 1 or 2. If the index is 1, then H = S4; if the index is 2,
then [H : A4] = 1, implying that H = A4.





Chapter 4
Group Actions

4.1 Group Actions and Permutation Representations
When we discuss the problems from the Dummit and Foote textbook, the set A is taken
to be non-empty.

Definition 4.1 (action map and action homomorphism). Let G be a group and A
be a set. An action map of G on A is a map

α : G×A → A where (g,a) 7→ ga

satisfying the following properties:

(i) Associativity of ·: For all g1,g2 ∈ G and a ∈ A, we have g1 ·(g1 ·a) = (g1g2) ·
a

(ii) 1G acts as identity for ·: for al a ∈ A, we have 1G ·a = a

An action homomorphism of G on A is a homomorphism

ϕ : G → SA = {all bijections A → A} .

Lemma 4.1. Suppose

α : G×A → A is an action map.

For any g ∈ G, define

σg : A → A to be the map a 7→ σg (a) = α (g,a) = ga.

Define the map

ϕα : G → SA by setting g 7→ σg.

Then, ϕα is a well-defined homomorphism called the action homomorphism in-
duced by α .

111
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Proof. We first prove that ϕa is well-defined. It suffices to show that for any g ∈ G, the
map σg is in SA. Indeed, σg : A → A is a bijection with inverse σg−1 : A → A, where
σg−1 : a 7→ g−1a. To see why, one can verify that

σg−1 ◦σg = a and σg ◦σg−1 = a.

We then prove that ϕa is a homomorphism. It suffices to prove that

for any g1,g2 ∈ G, we have ϕa (g1g2) = ϕ (g1)◦ϕa (g2) .

Indeed, this is true because

σg1g2 : a 7→ (g1g2) ·a and σg1 ◦σg2 : a 7→ g1 · (g2a)

which are equal in SA.

Lemma 4.2. Suppose ϕ : G → SA is a homomorphism. For any g ∈ G and a ∈ A,
define g ·a = ϕ (g)(a) ∈ SA. Define the map

αϕ : G×A → A by setting (g,a) 7→ g ·a = ϕ (g)(a) .

Then, αϕ is an action map called the action map induced by ϕ .

Proposition 4.1. The maps

{action maps of G on A}↔ {action homomorphism of G on A}

where

α 7→ ϕα and αϕϕ are bijections, inverses of each other.

Proof. We only prove the forward direction as the proof of the reverse direction is similar.
Start with an action map α . Then, we obtain an action homomorphism ϕα , which induces
an action map αϕα

. So, for any g ∈ G and any a ∈ A, we have

αϕα
(g,a) = ϕα (g)(a) = α (g,a)

which is an action homomorphism on a ∈ A.

Example 4.1 (trivial action). For any group G and any set A, the trivial action of G on A
is defined by

the trivial action homomorphism G → SA where g 7→ idA and

the trivial action map G×A → A where (g,a) 7→ a

Example 4.2 (tautological action). For any set A, the tautological action of the group SA

on A is defined by

the identity action homomorphism SA → SA where g 7→ g and

the tautological action map SA ×A → A where (g,a) 7→ g(a)
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Example 4.3. For any n ∈ Z≥0, the symmetric group Sn acts tautologically on {1, . . . ,n}.

To see why, given an arbitrary permutation σ ∈ Sn, we can apply σ directly to any el-
ement i ∈ {1, . . . ,n}, resulting in a new element σ (i) from the same set. Hence, Sn

defines a group action on {1, . . . ,n} by mapping each i to σ (i) for every σ ∈ Sn. The
explanation tautological action is due to the fact that the action uses the definition of Sn

directly without any further modifications —

the elements of Sn are precisely the maps that permute {1, . . . ,n} ,

and the action on {1, . . . ,n} is exactly what these maps are designed to do.

Definition 4.2 (multiplication action). Let R be a ring. This ring need not be com-
mutative, i.e.

for any x,y ∈ R it is not necessary that x · y = y · x.

The multiplicative group A× is defined as follows:

A× = {a ∈ A : there exists b ∈ A such that ab = 1A = ba}

The multiplication action of A× on A is defined by

restricting the multiplication map A×A → A to A××A → A.

We shall see several examples of Definition 4.2 in action.

Example 4.4. Note that Z,R,C are rings. We have

the group Z× = {±1} acts by multiplication on Z

the group R× = R\{0} acts by multiplication on R

the group C× = C\{(0,0)} acts by multiplication on C

Example 4.5. For any n ∈ Z≥0,

the group (Z/nZ)× acts by multiplication on Z/nZ.

Example 4.6. For any n ∈ Z and any commutative ring R,

the group GLn (R) = (Mn×n (R))
× acts by multiplication on Mn×n (R) .

To see why, recall from Definition 1.18 that GLn (R) refers to the general linear group of
degree n over a commutative ring R. This group consists of all invertible n× n matrices
with entries from R. More formally,

GLn (R) = {A ∈Mn×n (R) : there exists B ∈Mn×n (R) such that AB = BA = In} ,

where Mn×n (R) denotes the set of all n × n matrices with entries in R and In is the
n×n identity matrix. The notation (Mn×n (R))

× denotes the group of invertible elements
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within the ring Mn×n (R), which is precisely GLn (R) because an element in Mn×n (R) is
invertible if and only if it is in GLn (R).

GLn (R) acts on Mn×n (R) by left (or right) matrix multiplication. Specifically, for any
invertible matrix A ∈ GLn (R) and any matrix B ∈ Mn×n (R), the action of A on B is
given by:

A ·B = AB for which the action is well-defined since AB ∈Mn×n (R) .

Example 4.7. We have

R× acts on any R-vector space by scalar multiplication

C× acts on any C-vector space by scalar multiplication

4.2 Groups acting on themselves by Left Multiplica-
tion

Definition 4.3 (left multiplication action). For any group G, the left multiplication
action of G on itself is defined by

the group multiplication map G×G → G where (g,a) 7→ g ·a.

The corresponding action homomorphism

G → Perm(G) which is g 7→ (a 7→ g ·a)

is injective. By the first isomorphism theorem, it induces an isomorphism of G with
its image in Perm(G).

Theorem 4.1 (Cayley’s theorem). Let G be a finite group of order n. Then,

G ∼= H where H ≤ Sn.

4.3 Groups acting on themselves by Conjugation

Definition 4.4 (inner automorphism). An inner automorphism of G is an automor-
phism σ ∈ Aut(G) such that there exists g ∈ G with σ = a 7→ gag−1. The subgroup
of Aut(G)

consisting of all inner automorphisms is denoted by Inn(G) .
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Definition 4.5 (conjugation action). For any group G, the conjugation action of G
on itself is defined by

the conjugation map G×G → G where (g,a) 7→ g ·a ·g−1.

The corresponding action homomorphism

G → Aut(G)⊆ Perm(G) which is g 7→
(
a 7→ gag−1)

with kernel Z (G). Thus, the following diagram commutes:

G[r][d, twoheads]Aut(G)G/Z(G)[r]Inn(G)[u,hookrightarrow]

We give some examples of groups acting on themselves by conjugation and the asso-
ciated inner automorphism groups (Examples 4.8, 4.9, 4.10, and 4.11).

Example 4.8 (conjugation action on S3). Let G= S3, the symmetric group on 3 elements,
i.e.

S3 = {e,(12) ,(13) ,(23) ,(123) ,(132)} .

Then, the center Z (S3) = {e} since no non-trivial element commutes with all others. As
such, Inn(S3)∼= S3/Z (S3)∼= S3. Also, the conjugacy classes are

{e} and {(12) ,(13) ,(23)} and {(123) ,(132)} .

This conjugation action permutes elements within each conjugacy class.

Example 4.9 (conjugation action on Z). Let G =Z, the additive group of integers. Since
Z is Abelian, then conjugation is trivial, i.e.

g∗a∗g−1 = g+a+(−g) = a for all g,a ∈ Z.

As such, every conjugation map is the identity. Also, inn(Z) = {e} and Z (Z) = Z. In
fact, for any Abelian group, Inn(G) is trivial.

Example 4.10 (conjugation action on D8). Consider G = D8, the dihedral group of order
8, which has presentation

D8 =
〈
r,s | r4 = s2 = e and rs = sr−1〉 .

Note that Z (D8) =
{

e,r2} (by manually verifying). As such, Inn(D8)∼= D8/Z (D8)∼=V4,
where V4 is the Klein four-group. Also, the conjugacy classes are

{e} ,
{

r,r3} ,{r2} ,{s,sr2} ,{sr,sr3} .
The conjugation action reflects the group’s rotational and reflectional symmetries.

Example 4.11 (conjugation action on GLn (R)). Let G = GLn (R). Conjugation here
refers to matrix similarity — elements in the same conjugacy class are similar matri-
ces (i.e. they represent the same linear transformation up to basis change). Note that
Z (GLn (R)) are the scalar matrices λ I, where λ ̸= 0.
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A fun fact is that the projective general linear group PGLn (R) is defined as follows:

PGLn (R) = GLn (R)/Z (GLn (R)) ,

i.e. to obtain PGLn (R), we mod out non-zero multiples of the identity matrix. Some
applications of the projective linear group can be found in areas like Number Theory,
Algebraic Geometry and Dynamical Systems.

4.4 Orbits and Stabilisers

Proposition 4.2. Let G be a group acting on a set A. The relation ∼ on A is defined
as follows:

a ∼ b if and only if there exists g ∈ G such that ga = b.

The relation ∼ is an equivalence relation.

For any a ∈ A, define the G-orbit of a to be the ∼ equivalence class contain-
ing a, which is denoted by

G ·a = {g ·a ∈ A : g ∈ G} .

The set of G-orbits of A form a partition of A.

Proof. We first verify that ∼ is an equivalence relation. Note that

∼ is reflexive as 1G ·a = a

∼ is symmetric as ga = b implies g−1b = a

∼ is transitive as g1a = b and g2b = c implies (g2g1)a = c

so it follows that ∼ is an equivalence relation.

We then prove the second part of the proposition. Note that a subset X ⊆ A is an ∼-
equivalence class if and only if there exists a ∈ A such that X = {b ∈ A : a ∼ b} = G ·a.
It follows that the ∼-equivalence classes in A, i.e. the G-orbits in A, form a partition of
A.

Definition 4.6 (transitive action). The action of G on A is transitive if and only if
there is only one orbit, which is A itself, i.e. if and only if

there exists a ∈ A such that A = G ·a.
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Definition 4.7 (stabilizer). For any a ∈ A, the stabilizer of a is the subgroup

Ga = {g ∈ G : ga = a} of G.

Example 4.12. For the trivial action of G on A, the G-orbits in A are {a} for every a ∈ A.
So, the action is not transitive unless |A|= 1. The stabilizer of any a ∈ A is Ga = G.

Example 4.13. For the tautological action of the group Perm(A) on A, its action is transi-
tive, i.e. the only orbit is A. Also, the stabilizer of any a ∈ A is the subgroup Perm(A){a}.

Example 4.14. For the left multiplication action of G on itself, the action is transitive as
the only orbit is G ·1G = G. The stabilizer of any a ∈ G is the trivial subgroup {1G}.

Example 4.15. For the left multiplication of G on G/H, where H ≤ G, the action is tran-
sitive as the only orbit is G · 1GH = G/H. The stabilizer of 1GH is the subgroup H; the
stabilizer of xH is the subgroup xHx−1.

For the latter, to see why, we see that gxH = xH is equivalent to x−1gxH = H, so
x−1gx ∈ H, and we conclude that g ∈ xHx−1.

Example 4.16. For the conjugation of G on itself, the G-orbit of 1G is {1G}, so the action
is not transitive unless |G| = 1. The orbit of a ∈ G is the conjugacy class of a. Recall
from Definition 2.6 that this is precisely the set of conjugates of a in G, which is{

gag−1 ∈ G : g ∈ G
}
.

The stabilizer of a ∈ G is the centralizer of a in G, i.e.

CG (a) =
{

g ∈ G : gag−1 = a
}
.

Example 4.17. For the conjugation action of G on the subsets of G, the G-orbit of a subset
A ⊆ G is the set of conjugates of A in G, i.e.{

gAg−1 : g ∈ G
}
.

The stabilizer of A is the normalizer of A in G, i.e.

NG (A) =
{

g ∈ G : gAg−1 = A
}
.

Example 4.18 (Dummit and Foote p. 96 Question 15). Let G = Sn and for fixed i ∈
{1, . . . ,n}, let Gi be the stabiliser of i. Prove that Gi ∼= Sn−1.

Solution. Consider some permutation σ ∈ Gi. Then, σ is the product of disjoint cycles.
Note that if i ̸∈ σ as i needs to be fixed. So, Gi consists of {1, . . . ,n}\{i} so |Gi|= |Sn−1|.
The result follows. □

Example 4.19 (Dummit and Foote p. 116 Question 1). Let G act on the set A. Prove
that

if a,b ∈ A and b = g ·a for some g ∈ G then Gb = gGag−1 (Ga is the stabilizer of a).



118 CHAPTER 4. GROUP ACTIONS

Deduce that if G acts transitively on A then the kernel of the action is⋂
g∈G

gGag−1.

Solution. Recall that for any a ∈ A, the subgroup Ga is the stabilizer of a in G, i.e. Ga =

{g ∈ G : ga = a}. Suppose x ∈ Gb. Then, xb = b, so

g−1xg ·a = g−1xb = g−1b = a

which shows that g−1xg ∈ Ga, so x ∈ gGag−1.

Next, suppose x ∈ Ga. Then, xa = a, so

gxg−1 ·b = gxg−1b = gxa = ga = b

which shows that gxg−1 ∈ Gb. We conclude that Gb = gGag−1.

Recall that if G acts transitively on A, then there exists only one orbit, which is A itself.
Let K denote the kernel of this action. We wish to prove that

K =
⋂

g∈G

gGag−1.

We first prove the forward inclusion. Suppose x ∈ K. Then, x · a = a for all a ∈ A. One
can show that g−1xg = a so that g−1xg ∈ Ga for all g ∈ G. As such, x ∈ gGag−1 for all
g ∈ G, which implies

x ∈
⋂

g∈G

gGag−1.

We then prove the reverse inclusion. Suppose x is contained in the intersection. Then,
x = gGag−1 for some g ∈ G. Since the group action is transitive, then there exists b ∈ A
such that b = g ·a for some g ∈ G. As such,

x ·b = gyg−1b for some y ∈ Ga

= gyg−1ga

= gya

= ga since y ∈ Ga

which is equal to b. Since x ·b = b, then x stabilizes b, implying that x ∈ K. So, the kernel
K is indeed the aforementioned intersection. □

Example 4.20 (Dummit and Foote p. 116 Question 2). Let G be a permutation group
on the set A (i.e., G ≤ SA), let σ ∈ G and let a ∈ A. Prove that σGaσ−1 = Gσ(a). Deduce
that if G acts transitively on A then ⋂

σ∈G

σGaσ
−1 = 1.



4.4. ORBITS AND STABILISERS 119

Solution. Suppose x ∈ σGaσ−1. Then, there exists y ∈Ga such that x = σyσ−1. As such,

x ·a = σyσ
−1

σ ·a = σy ·a = σ ·a = σ (a) .

So, x ∈ Gσ(a).

Conversely, suppose x ∈ Gσ(a). Then, x ·a = σ (a). As such,

σ
−1xσ ·a = σ

−1x ·σ (a) = σ
−1 ·σ (a) = a.

So, σ−1xσ ∈ Ga, which implies x ∈ σGaσ−1.

Next, suppose G acts transitively on A. Recall Definition 4.6, which states that for any
x,y ∈ A, there exists g ∈ G such that y = g · x. By Example 4.19, we must have

kernel of action =
⋂

σ∈G

σGaσ
−1.

As such, it suffices to prove that the kernel is trivial. Since G ≤ SA, then the homomor-
phism ϕ : G → SA is injective, so its kernel is trivial. □

Example 4.21 (Dummit and Foote p. 116 Question 3). Assume that G is an abelian,
transitive subgroup of SA. Show that σ(a) ̸= a for all σ ∈ G−{1} and all a ∈ A. Deduce
that |G|= |A|. (Hint: Use Example 4.20)

Solution. Suppose G ≤ SA and G acts transitively on A. So, we have

1 =
⋂

σ∈G

σGaσ
−1 by Example 4.20

=
⋂

σ∈G

σσ
−1Ga since G is Abelian

=
⋂

σ∈G

Ga

which is independent of σ . So, 1 = Ga, i.e. the stabilizer of a in G is trivial. So, σ (a) ̸= a
for all σ ∈ G\{1} and for all a ∈ A.

We then prove |G| = |A|. Since the action of G on A is transitive, then for any a,b ∈ A,
there exists σ ∈G such that b=σ ·a. Suppose τ ∈G such that σ ·a= τ ·a, so τ−1σ ·a= a,
i.e. τ−1σ ∈ Ga = 1. This implies σ = τ . As such, if we define a map ϕ : A → G, we must
have kerϕ = 1, i.e. ϕ is injective, so |A| ≤ |G|.

Conversely, if a ∈ A is fixed, we can define a map ψ : G → A via ψ (σ) = σ · a. Again,
this map is injective, so |G| ≤ |A|, so we conclude that |G|= |A|. □

Example 4.22 (Dummit and Foote p. 117 Question 10). Let H and K be subgroups of
the group G. For each x ∈ G define the HK double coset of x in G to be the set

HxK = {hxk | h ∈ H,k ∈ K}.
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(a) Prove that HxK is the union of the left cosets x1K, . . . ,xnK where {x1K, . . . ,xnK}
is the orbit containing xK of H acting by left multiplication on the set of left cosets
of K.

(b) Prove that HxK is a union of right cosets of H.

(c) Show that HxK and HyK are either the same set or are disjoint for all x,y ∈ G.
Show that the set of HK double cosets partitions G.

(d) Prove that |HxK|= |K| · |H : H ∩ xKx−1|.

(e) Prove that |HxK|= |H| · |K : K ∩ x−1Hx|.

Solution.

(a) Suppose hxk ∈ HxK. Then,

hxK = h · xK ∈ H · xK and hxk ∈ hxK.

As such,

hxk ∈
⋃

yK∈H·xK

yK which implies HxK ⊆
⋃

yK∈H·xK

yK.

Conversely, let

g ∈
⋃

yK∈H·xK

yK.

Then, g ∈ yK for some yK ∈ H · xK. So, yK = h · xK for some h ∈ H. As such,
g = hxk for some k ∈ K. We have⋃

yK∈H·xK

yK ⊆ HxK so we conclude that HxK =
⋃

yK∈H·xK

yK.

(b) Proof is similar to (a).

(c) Observe that every element is in some double coset, i.e. x ∈ HxK for all x ∈ G. As
such,

G =
⋃

x∈G

HxK.

Note that if y ∈ HxK, then HyK ⊆ HxK.

Next, suppose x,y ∈ G such that HxK ∩HyK = /0. Then, there exist hi ∈ H,ki ∈ K
such that h1xk1 = h2yk2. As such,

x = h−1
1 h2yk2k−1

1 ∈ HyK.

This implies HxK ⊆ HyK. Similarly, HyK ⊆ HxK. As such, the two double cosets
are either disjoint or equal. It follows that the set of HK double cosets partitions G.
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(d) We recall (a). Also, we shall use stabH (xK) to denote the stabilizer of xK in H. It
suffices to show that stabH (xK) = H ∩ xKx−1.

We first prove the forward inclusion. Suppose h∈ stabH (xK). Then, hxK = h ·xK =

xK and we have x−1hx ∈ K. So, h ∈ xKx−1, and we conclude that h ∈ H ∩ xKx−1.

To prove the reverse inclusion, suppose h ∈ H ∩ xKx−1. Then, x−1hx ∈ K, so
that h · xK = hxK = xK. As such, h ∈ stabH (xK). It follows that stabH (xK) =

H ∩ xKx−1.

In (a), we showed that

HxK =
⋃

yK∈H·xK

yK.

In fact, this union is disjoint since the yK are distinct left cosets of K, each of order
|K|. Hence,

|HxK|= |K| · |H · xK|= |K| · [H : stabH (xK)] = |K| ·
[
H : H ∩ xKx−1]

and the result follows.

(e) Proof is similar to (d).

Corollary 4.1. Let G be a finite group. Let p be the smallest prime dividing |G|.
Then, any subgroup of G of index p is normal.

Proof. Suppose H ≤ G and [G : H] = p. Consider the left multiplication action of G on
G/H. Let K be the kernel of

the action homomorphism G → Perm(G/H) where g 7→ (xH 7→ gxH) .

By the first isomorphism theorem, G/K is isomorphic to a subgroup of Perm(G/H)∼= Sp.
Since

∣∣Sp
∣∣= p!, then

[G : K] | p! by Lagrange’s theorem.

Since K ⊆ H ⊆ G, by the tower theorem (Theorem 3.4), we have

[H : K] =
[G : K]

[G : H]
divides

p!
p
= (p−1)!.

By Lagrange’s theorem, [H : K] | |G|, so its prime divisors must be ≥ p. This forces
[H : K] = 1, so H exactly one coset of K, implying that K = H ⊴G.

Proposition 4.3. Let G be a group acting on a set A. For any a ∈ A, the map

G/Ga → G ·a where gGa 7→ g ·a is a well-defined bijection.
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In particular, |G ·a|= [G : Ga].

Proof. Suppose g1,g2 ∈ G are such that g1Ga = g2Ga in G/Ga. We need to show that
g1 ·a = g2 ·a in G ·a. To see why this holds, there exists h ∈ Ga such that g1h = g2 in G,
so

g2 ·a = g1h ·a = g1 · (h ·a) = g1 ·a.

Hence, the map is well-defined. By definition of G · a as the G-orbit of a, the map is
surjective. It now suffices to prove that the map is injective. Suppose for any g1,g2 ∈ G,
we have g1 ·a = g2 ·a in G ·a.

Then,

g−1
2 g1 ·a = g−1

2 · (g1 ·a) = g−1
2 · (g2a) = g−1

2 g2 ·a = a.

Hence, g−1
2 g1 ∈ Ga, which implies g1Ga = g2g−1

2 g1Ga = g2Ga in G/Ga. We conclude
that the map is injective.

Example 4.23. The number of conjugates of a subset S in G is

[G : NG (S)] which is the index of the normalizer of S in G.

The number of conjugates of an element s in G is

[G : CG (s)] which is the index of the centralizer of s in G.

Corollary 4.2 (orbit-stabilizer theorem). Let G be a group acting on a finite set A.
Let {ai ∈ A} be representatives of the distinct G-orbits in A. Then,

A =
⊔

i

G ·ai is in bijection with
⊔

i

G/Gai.

Definition 4.8 (fixed point). A fixed point of A under the action of G is an element
a ∈ A such that

for any g ∈ G we have g ·a = a in A.

The subset of fixed points of A is denoted by

AG = {a ∈ A : for any g ∈ G, we have ga = a} ⊆ A.

Remark 4.1. The fixed points of an interesting action are usually also interesting.

Example 4.24. For the left multiplication action of a finite subgroup H ≤ G on the coset
space G/H,

xH ∈ G/H is a fixed point under H if and only if x ∈ NG (H) .
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Example 4.25. For the conjugation action of G on itself,

a ∈ G is a fixed point under G if and only if a ∈ Z (G) .

Example 4.26. For the conjugation action of G on the subgroups of G,

H is a fixed point under G if and only if H ⊴G.

We then discuss an important theorem, known as the class equation (Theorem 4.2).
To obtain it, we use the fact that each element g ∈ G belongs to exactly one conjugacy
class. The class equation expresses the order of G by summing the sizes of these conju-
gacy classes.

We first discuss the elements in the center Z (G). These form a conjugacy class of size 1
(since each element commutes with all elements of G, making its conjugacy class trivial).
So, the contribution from Z(G) to the order of G is |Z(G)|.

On the other hand, for each conjugacy class not contained in Z(G), we select a repre-
sentative gi. The size of the conjugacy class of gi is given by [G : CG(gi)], the index of
the centralizer CG(gi) in G, because the elements conjugate to gi are precisely those in G
that can be obtained by conjugating gi by elements of G. Thus, [G : CG(gi)] measures the
size of the conjugacy class of gi.

Theorem 4.2 (the class equation). Let G be a finite group. Let g1, . . . ,gr be repre-
sentatives of the distinct conjugacy classes of G not contained in Z (G). Then,

|G|= |Z (G)|+
r

∑
i=1

[G : CG (gi)] .

Example 4.27 (Burnside’s theorem for p-groups). Let G be a finite p-group. We will
formally introduce p-groups when talking about the Sylow theorems (Definition 4.9) but
we briefly discuss its definition here. We say that a finite p-group is a group of order pn,
where p is prime and n > 0. Then, prove that G has a non-trivial center1.

Solution. Note that the order of any conjugacy class of G must divide the order of G. To
see why, we have

CG (gi)≤ G so [CG (gi)] | |G| by Lagrange’s theorem.

So, our claim is established. As such, the conjugacy class Hi that is not in the center also
has order some power of pki , where 0 < ki < n, i.e. |Hi|= [G : CG (gi)] = pki . By the class
equation (Theorem 4.2), we have

|G|= pn = |Z (G)|+
r

∑
i=1

pki which implies |Z (G)|=−pn +
r

∑
i=1

pki.

So, p | |Z (G)|, which implies |Z (G)| > 1, i.e. the center is non-trivial since it contains
more than 1 element. □

1One will encounter this result again in MA5218 Representation Theory.
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Theorem 4.3 (Cauchy’s theorem). Let G be a finite group. Let p be a prime divid-
ing |G|. Then, there exists an element in G of order p.

After learning about Sylow p-subgroups (Definition 4.10) and Sylow’s first theorem
(Theorem 4.4), you would come to realise that Sylow’s first theorem is a stronger state-
ment compared to Cauchy’s theorem. Briefly speaking, if we have a group |G| of order
pαm, where α ≥ 1 and p does not divide m, then there exists a subgroup of order pα .
In contrast, Cauchy’s theorem only tells us that there exists a subgroup of order p (use
Lagrange’s theorem to deduce this statement from Theorem 4.3).

4.5 The Sylow Theorems

Definition 4.9 (p-group). Let p be a prime. A p-group is a finite group of order
pα , where α ≥ 1.

Definition 4.10 (p-subgroup and Sylow p-subgroup). Let G be a finite group.

(i) A p-subgroup of G is a subgroup of G which is a p-group

(ii) A Sylow p-subgroup of G is a p-subgroup of G of index prime to p, i.e. if

|G|= pαm where α ≥ 1 and p does not divide m,

then a Sylow p-subgroup of G is a subgroup of order pα .

Sylp (G) denotes the set of Sylow p-subgroups of G, and np (G) is the number of
Sylow p-subgroups of G when G is clear from the context.

Theorem 4.4 (Sylow’s theorems). Let G be a finite group of order pαm, where p
does not divide m and a ≥ 1.

(1) Sylow p-subgroups of G exist, i.e. Sylp (G) ̸= /0.

(2) Any two Sylow p-subgroups of G are conjugate in G, i.e.

for any P,Q ∈ Sylp (G) there exists g ∈ G such that gPg−1 = Q

(3) np (G) | m and np (G)≡ 1 (mod p)

Sylow’s theorems (Theorem 4.4) are very important to the extent that each of the in-
dices (1), (2), and (3) are given the names Sylow’s first theorem, Sylow’s second theorem,
and Sylow’s third theorem respectively. Moreover, it is crucial to know how Sylow’s the-
orems can be applied, compared to their proofs.

We then see how Sylow’s theorems can be applied.
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Corollary 4.3. For the same prime p, any two Sylow p-subgroups of a group G are
isomorphic.

Proof. Direct consequence of Sylow’s second theorem (Theorem 4.4) and the fact that if
K ≤ G and g ∈ G, then K ∼= gKg−1. The latter simply means that conjugate elements and
conjugate subgroups have the same order.

I highly recommend the reader to read Nathan Carter’s ‘Visual Group Theory’ for
great explanations of the applications of Sylow’s theorems. We first classify groups of
order 8 using Sylow’s theorems (Theorem 4.4).

Example 4.28 (groups of order 8). By Sylow’s first theorem, there exists at least one
subgroup of order 4 (since 8 = 23 and 22=4, where 2 ≤ 3). Note that such subgroups
must be isomorphic to the Klein four-group V4 or C4 (isomorphic to Z/4Z. If all the sub-
groups were ∼= V4, then the group would have no elements of order 4 (recall the identity
a2 = b2 = (ab)2 = e in V4), and therefore only elements of order 2.

If the subgroup only has elements of order 2, then it must be Abelian. This is easy to
see by the definition of V4. Since C4 is not Abelian, then any non-Abelian group of order
8 has a copy of C4 in it. For this copy of C4, say it is generated by a. As such, we can
deal with the subgroup ⟨a⟩ and its one left coset, which together form all eight elements
of the group. Call the coset b⟨a⟩ for some b ̸∈ ⟨a⟩. We wish to determine the possibilities
for how a and b relate, and so determine the structures possible in non-Abelian groups of
order 8. At this juncture, we only know that the order of b is either 2 or 42.

• Case 1: Suppose b has order 2. Consider the following diagram. We wish to
determine where the arrows involving b (in blue) send the element a to. Any such
decision can be expressed as an equation relating a and b.

e

a

a2

a3

b

ba

ba2

ba3

First, note that the arrow for b (in blue) cannot send a to the top row of the diagram
because there are already b arrows touching both such elements. Similarly, because

2A possible misconception is that people might think it is not permissible for b to be of order 4. In the
first place, an order of 2 or 4 is valid by Lagrange’s theorem (Theorem 3.1) since the order of any element
must divide 8. However, as b ̸∈ ⟨a⟩, then b cannot have order 1 or 4 coming from a. Moreover, b is outside
the cyclic group C4 so it is perfectly fine if b generates a different cyclic subgroup of order 4.
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b ̸∈ ⟨a⟩, the b arrow cannot send a within the left column.

Next, if the b arrow were to send a to ba, then we would have ab = ba, but this
means that the group is Abelian. As we have already listed the Abelian groups, we
are now only seeking the non-Abelian ones. If the b arrow were to connect a to
ba2, we would have ab = ba2. This means that the paths ab and ba2 should lead to
the same output regardless of where in the diagram we start. Say we start from a.
This requires drawing a b arrow from a2 to b. However, b already has an oncoming
b arrow from e, so we cannot have ab = ba2.

The only remaining choice is to connect a to ba3, and all other b connections are
then determined by the equation ab = ba3. As such, we obtain the Cayley diagram
of the dihedral group D8 as follows:

e

a

a2

a3

b

ba

ba2

ba3

We can determine the relationship between a and b by asking where the b cycle
continues from b. By process of elimination, we shall determine which element is
= b2. Note that b2 is not any of the elements in the right column because b ̸∈ ⟨a⟩
so b2 ̸∈ ⟨a⟩. Moreover, b2 ̸= e, otherwise it would imply |b| and we already con-
sidered this. Next, b2 ̸= a, otherwise b8 = a4 = e so b is of order 8. The group is
cyclic, hence Abelian, for which we have already considered. Lastly, if b2 = a3,
then b8 = a12 =

(
a4)3

= e so b is of order 8, which is a contradiction again.

We are only left with the relation b2 = a2. We obtain the following Cayley dia-
gram of Q8.

e

a

a2

a3

b

ba

ba2

ba3
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• Case 2: Then, suppose b has order 4. We leave this as an exercise.

One can conclude that the two non-Abelian groups of order 8 are D8 and Q8. There are
three Abelian groups C2 ×C2 ×C2, C4 ×C2, and C8 — in fact, one can deduce this using
the fundamental theorem of finitely generated Abelian groups too (Theorem ??, so there
are 5 groups of order 8 up to isomorphism.

Most of the applications of Sylow’s Theorem use it to prove that a group of a particular
order is not simple.

Definition 4.11 (simple group). A simple group is a group G with |G|> 1 such that
the only normal subgroups of G are 1 and G.

For Examples 4.29 to 4.35 3, let p,q,r denote distinct primes and n be a positive
integer. We shall discuss a broad classification of groups of order ≤ 200.

Order of group Simple
p Yes (Example 4.29)
pn with n > 1 No (Example 4.30)
mpn No (Example 4.31)
p2q No (Example 4.32)
pqr No (Example 4.33)
2n ·3 with n > 1 No (Example 4.34)
3n ·4 with n > 1 No (Example 4.35)

Table 4.1: Simplicity of groups of certain orders

For groups of order ≤ 200, Table 4.1 takes care of all orders except the following:

40,56,60,66,72,80,84,90,112,120,126,132,140,144,150,160,168,176,180,196,198,200

We will discuss some of these in due course.

Order of group Simple Order of group Simple
40 No (Example 4.36) 132 No
56 No (Example 4.37) 140 No
60 Depends (Example 4.38) 144 No
66 No 150 No
72 No 160 No
80 No 168 Depends
84 No 176 No
90 No 180 No
112 No 196 No
120 No 198 No
126 No 200 No

Table 4.2: Simplicity of groups of certain orders

3These are taken from Aryaman Maithani’s GitHub’s post. It offers a concise compilation of the broad
classifications of groups of certain order, but we will explain them here in greater detail.
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Example 4.29 (groups of order p). This is merely an application of Lagrange’s theorem
(Theorem 3.1). Suppose p is a prime and |G| p. Let H ≤ G. Then, by Lagrange’s theo-
rem, either |H|= 1 or |H|= p. In either case, H is a trivial subgroup of G (Example 1.4),
which implies that G is simple and there is no non-trivial normal subgroup of G.

We conclude that any group of prime order is simple.

Example 4.30 (groups of order pn with n > 1). Let G be be a group of order pn, where
n ≥ 2 and p is prime. We will prove that G is not simple. Recall Example 4.27 on Burn-
side’s theorem for p-groups, where we used the class equation (Theorem 4.2) to deduce
that if a finite p-group is of order pn, then Z (G) ̸= {e} (i.e. the center is non-trivial).

We shall consider two cases — namely if Z (G) ̸= G and Z (G) = G. For the first case, we
note that Z (G) is a proper non-trivial normal subgroup of G so G is not simple (Definition
4.11).

For the second case, suppose Z (G) = G. This means that G is Abelian (in fact, this
is an ‘if and only if’ statement) since every element in the group commutes with every
other element. Let 1 ̸= x ∈ G. Then, |x|= pm for some 1 ≤ m ≤ n. Choose y = xpm

. Then
|y|= p. Let H = ⟨y⟩, which implies that H is a proper non-trivial subgroup of G which is
normal as G is Abelian.

Example 4.31 (groups of order mpn). Let G be a group of order mpn, where p is prime
and 1 < m < p. We will prove that G is not simple. By Sylow’s third theorem (Theorem
4.4), np |m and np ≡ 1 (mod p). This means that there exists λ ∈Z such that np = λ p+1.
Since (λ p+1) | m and m < p, then λ = 0. As such, np = 1, so there is 1 Sylow p-
subgroup of G. By Sylow’s second theorem (Theorem 4.4), this subgroup is normal since
any two Sylow p-subgroups of G are conjugate in G.

Example 4.32 (groups of order p2q). Let p and q be distinct primes. If |G| = p2q, then
we claim that G is not simple.

First, consider the case where p > q. By Sylow’s third theorem (Theorem 4.4), np | q
and np ≡ 1 (mod p). The latter implies that there exists λ ∈ Z such that np = λ p+1. As
(λ p+1) | q and p > q, then λ = 0, which implies np = 1, so by Sylow’s second theorem,
G is not simple.

Next, consider the case where p < q (slightly longer argument). By Sylow’s third theo-
rem (Theorem 4.4), nq ∈

{
1, p, p2}. If nq = 1, then G is not simple. If nq = p, then as

nq ≡ 1 (modq), then q | (p−1) which is impossible since p < q.

As such, we consider the case where nq = p2. This means that there are p2 Sylow q-
subgroups of G. Since each of these subgroups is of order q, which is prime, the intersec-
tion of any two Sylow q-subgroups is trivial. To see why, let these subgroups be P and Q.
By defining H = P∩Q, note that H ≤ P and H ≤ Q. By Lagrange’s theorem (Theorem
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3.1), we must have |H| | q. As such, either |H|= 1 or |H|= q. However, if |H|= q, then
both Sylow q-subgroups are equal, contradicting the fact that they are distinct.

At this juncture, recall that we are still working with the case nq = p2 but we established
that the intersection of any Sylow q-subgroups is trivial. Since each Sylow q-subgroup
contains q elements (including the identity), then their union contains p2 (q−1) non-
identity elements. Since |G| = p2q, then there are p2q− p2 (q−1) = p2 elements not
contained in the union of the Sylow q-subgroups. We know that np ≥ 1 and none of the
p2 (q−1) elements can be part of a Sylow p-subgroup. Thus, the remaining p2 elements
must form a Sylow p-subgroup, which implies np = 1. Again, by Sylow’s second theorem
(Theorem 4.4), G is not simple.

Example 4.33 (groups of order pqr). Let p,q,r be distinct primes. Without loss of gen-
erality, assume that p < q < r. Suppose G is a group such that |G| = pqr. By Sylow’s
third and second theorems (Theorem 4.4), if np = 1 or nq = 1 or nr = 1, then G is not
simple.

Suppose on the contrary that nr > 1. As nr | pq and p < q < r, then nr = pq (also
because nr > 1). That is, there are pq Sylow r-subgroups of G. Similar to Example
4.32, as each such Sylow r-subgroup is of order r, which is prime, then the intersection
of any two Sylow r-subgroups is trivial. Hence, the number of elements of order r is
pq(r−1). Now, recall that nq > 1 and by Sylow’s third theorem (Theorem 4.4), nq | pr.
Hence, nq ∈ {p,r, pr}. Since nq ≡ 1 (modq), then nq ̸= p. This implies nq ≥ r, i.e. the
number of elements of order q is ≥ r (q−1). Lastly, as np ≡ 1 (mod p) and np | qr, then
np ∈ {q,r,qr}. Since np ≥ q, then the number of elements of order p is ≥ q(p−1).

Combining the red parts and noting that they are counting distinct non-identity elements,
we have

|G| ≥ pq(r−1)+ r (q−1)+q(p−1)+1

where the 1 on the rightmost side denotes the identity element. Hence,

pqr = |G| ≥ pqr+qr−q− r+1 = pqr+(q−1)(r−1)> pqr

which is a contradiction as |G|= pqr!

Example 4.34 (groups of order 2n ·3 with n > 1). We shall prove that such groups G are
not simple. By Sylow’s third theorem (Theorem 4.4), n2 | 3 and n2 ≡ 1 (mod2), so either
n2 = 1 or n2 = 3. If n2 = 1, then by a similar argument as the previous examples using
Sylow’s second and third theorems (Theorem 4.4), G is not simple.

If n2 = 3, then let Syl2 (G) denote the set of Sylow 2-subgroup of G. Naturally, G acts on
Syl2 (G) = {P1,P2,P3} via conjugation. A natural trick for examples on Sylow theory is
to consider a natural homomorphism ϕ : G → S3 (codomain will always be a symmetric
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group Sn, where n is the number of Sylow p-subgroups). By Sylow’s second theorem
(Theorem 4.4), any two Sylow 2-subgroups are conjugates in G, i.e.

there exists g ∈ G such that gPig−1 = Pj for distinct i, j ∈ {1,2,3} .

Note that the group action is transitive so kerϕ ̸= G. Suppose on the contrary that kerϕ =

{e}. Then, ϕ is injective (simple fact from MA2001) which implies ϕ (G) has 2n ·3 ≥ 12
elements (since n ≥ 2). Since ϕ (G) ≤ S3 and |S3| = 6, then we have a contradiction.
Hence, kerϕ is a proper non-trivial subgroup of G. As kerϕ ⊴G (recall Example 2.41),
then we conclude that G is not simple.

Example 4.35 (groups of order 3n · 4 with n > 1). The idea here is similar to Example
4.34. By Sylow’s third theorem (Theorem 4.4), we have n3 | 4 and n3 ≡ 1 (mod3), so
either n3 = 1 or n3 = 4. If n3 = 1, then G is not simple.

On the other hand, if n3 = 4, then let Syl3 (G)= {P1, . . . ,P4} denote the Sylow 3-subgroups
of G. Let G act on Syl3 (G) via conjugation, which is a transitive action so kerϕ ̸= G.
Consider the natural corresponding homomorphism ϕ : G → S4. Suppose on the contrary
that kerϕ = {e}. Then, ϕ is injective which implies |ϕ (G)|= |G| ≥ 32 ·4 = 36. However,
|S4| = 24 which is a contradiction as there does not exist an injective map from a group
of order ≥ 36 into S4.

We now discuss the simplicity of some groups of specific orders in Table 4.2.

Example 4.36 (groups of order 40). Let G be a group of order 40. We will prove that G
is not simple Since 40 = 23 · 5, by Sylow’s third theorem (Theorem 4.4), we have n5 | 8
and n5 ≡ 1 (mod5). By considering the divisors of 8, it follows that n5 = 1 so by Sylow’s
second theorem (Theorem 4.4), G is not simple.

Example 4.37 (groups of order 56). Let G be a group of order 56. We will prove that G
is not simple. Note that 56 = 23 · 7. By Sylow’s third theorem (Theorem 4.4), we have
n7 | 8 and n7 ≡ 1 (mod7), so n7 = 1 or n7 = 8. If n7 = 1, then by Sylow’s second theorem
(Theorem 4.4), G is not simple.

We then consider the case when n7 = 8. Since each Sylow 7-subgroup is of order 7,
which is prime, then the intersection of any two Sylow 7-subgroups is trivial. Thus, there
are 8 · (7−1) = 48 elements of order 7. Since |G| = 56, then there are 56− 48 = 8 ele-
ments not contained in any Sylow 7-subgroup. By Sylow’s first theorem (Theorem 4.4),
n2 ≥ 1. However, no non-identity element can belong to a Sylow 2-subgroup or a Sylow
7-subgroup. As such, the remaining 8 elements belong to a Sylow 2-subgroup, so n2 = 1,
and we are done.

It is interesting to note that there exist some groups of order 60 which are simple
(Example 4.38).

Example 4.38 (groups of order 60). Let G be a group of order 60. Then, it is possible for
G to not be a simple group. Take for example G = Z/60Z and we can easily verify that
H = {0,30}⊴G because G is Abelian.
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Having said that, let G = A5, i.e. the alternating group on 5 elements. It is known that An

is simple for n ≥ 5, so G is simple and is of order 5!/2 = 60. Interestingly, one can show
that A5 is the only simple group of order 60 up to isomorphism.
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