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Chapter 1
Combinatorial Analysis

1.1 The Basic Principle of Counting
Many problems in Probability Theory can be solved simply by counting the number of
different ways that a certain event can occur. Effective methods for counting would then
be useful in our study of probability. The mathematical theory of counting is formally
known as combinatorial analysis. Most of the concepts in this chapter have already been
covered in high school or Olympiad Mathematics. Hopefully, they would be a breeze.

Proposition 1.1 (addition principle). If there are r choices for performing a partic-
ular task, and the number of ways to carry out the kth choice is nk, for 1 ≤ k ≤ r,
the total number of ways of performing the particular task is equal to the sum of the
number of ways for all the r different choices, i.e.

n1 +n2 + . . .+nr.

The different choices cannot occur at the same time.

Proposition 1.2 (multiplication principle). If one task can be performed in m ways,
and following this, a second task can be performed in n ways (regardless of which
way the first task was performed), then the number of ways of performing the 2
tasks in succession is mn.

Naturally, we can extend Proposition 1.2. That is to say, it can be applied to 2 or more
tasks performed independently in succession. If the kth task can be performed in mk ways,
where 1 ≤ k ≤ r, then the number of ways of performing the r tasks in succession is

m1m2 . . .mn.

Example 1.1 (ST2131 AY24/25 Sem 1 Lecture 1). A 4-digit code is to be formed using
the digits 0,1,2, . . . ,9. By the multiplication principle (Propostion 1.2), the number of
codes that can be formed is 104 = 10000. If the digits may not be repeated, then we can
form 10 ·9 ·8 ·7 = 5040 codes.

1



2 CHAPTER 1. COMBINATORIAL ANALYSIS

Example 1.2 (handshaking lemma; ST2131 AY22/23 Sem 2 Tutorial 1). Consider a
group of 20 people. If everyone shakes hands with everyone else, how many handshakes
take place?

Solution. First, we label the 20 people as P1,P2, . . . ,P20. Then, P1 can shake the hands of
P2,P3, . . . ,P20, so there are 19 ways to do so. P2 can shake the hands of P3,P4, . . . ,P20, so
there are 18 ways to do so. Repeat this till P19, who can only shake P20’s hand. By the
addition principle (Proposition 1.1), the required number of ways is

19+18+ . . .+1 =
19 ·20

2
(1.1)

so there are 190 ways to do so. Note that (1.1) used the formula for the sum to n terms of
an arithmetic progression. □

We can formulate a similar question (compare with Example 1.2) with an identical line
of reasoning. Given a regular n-sided polygon, how many ways are there to connect the
vertices? This is closely tied to a mathematics branch known as Graph Theory. In general,
if there are n people, there are a total of

n(n−1)
2

=

(
n
2

)
handshakes. In Graph Theory, there is a similar idea to this known as the handshaking
lemma. For example, in the complete graph on 6 vertices (denoted by K6), every vertex
is adjacent to the other 5, so the graph has 15 interior edges (Figure 1.1).

1

2

3

4

5

6

Figure 1.1: Complete graph K6

1.2 Permutations and Combinations

Definition 1.1 (permutation). A permutation is an ordered arrangement of objects.

When we are dealing with permutations, order matters, i.e. the 3-letter arrangement of
ABC and ACB are considered.
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Example 1.3 (ST2131 AY24/25 Sem 1 Lecture 1). 6 boys and 4 girls compete in a
running race (no tie). If the boys and the girls run together, there are 10! = 3628800
different finishing orders. If the boys and the girls run separately, there are 6! ·4! = 17280
different finishing orders.

Proposition 1.3. Given n distinct objects, the total number of ways of arranging all
these n objects in a line is n!.

Proof. There are n ways to put the first object in the first slot, n−1 ways to put the second
object in the second slot. Repeating this process up to the last slot, by the multiplication
principle (Proposition 1.2), we have only 1 way to put the last object there.

Proposition 1.4 (permutations involving identical objects). Given n objects, of
which n1 are identical, n2 are identical, and all the way up to nr are identical, the
number of different permutations of the n objects is

n!
n1!n2! . . .nr!

where n1 + . . .+nr = n.

We then discuss circular permutations. If we have n people sitting in a circle, there are

n!
n
= (n−1)!

ways to arrange them. A simple way to understand this is that a circle has no beginning
and no end, so we divide the number of linear permutations by the number of people.

Definition 1.2 (combination). If there are n distinct objects, of which we choose a
group of r items, the number of groups, denoted by

(n
r

)
, can be written as(

n
r

)
=

n!
r!(n− r)!

.

Proposition 1.5 (symmetry of binomial coefficients). For any n ∈ Z≥0,(
n
r

)
=

(
n

n− r

)
for all 0 ≤ r ≤ n. (1.2)

A special case of Proposition 1.2 is the following identity:(
n
0

)
=

(
n
n

)
= 1, (1.3)

which can be obtained by considering the formula for r combinations out of n objects
(Definition 1.2). In particular, setting r = 0 and r = n will yield (1.3). As for the general
case of (1.2), the algebraic proof is simple but not as meaningful as its combinatorial
counterpart. As such, we provide a proof for the latter.
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Proof. There are two ways to select a group of r items from a group of n, which picking
the r items that you are going to include or picking the n− r items that you are going to
leave out. Either way, the number of ways of forming the collection using the first method
must be equal to the number of ways of forming the collection using the second.

Theorem 1.1 (Pascal’s identity). For any n,k ∈ N,(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
.

Proof. Consider picking one fixed object out of n objects. Then, we can choose k objects
including that one in

(n−1
k−1

)
ways. As our final group of objects either contains the speci-

fied one or doesn’t, we can choose the group in
(n−1

k−1

)
+
(n−1

k

)
ways. However, we already

know they can be picked in
(n

k

)
ways, so the result follows.

We now discuss Example 1.4, which demonstrates how the same counting problem can
be approached from three distinct combinatorial perspectives. Each part of the example
showcases a classic technique from basic counting principles, providing an elegant illus-
tration of how different decompositions of the same problem lead to equivalent algebraic
expressions. Note that we previously encountered an example of a combinatorial proof in
the proof of the symmetry of binomial coefficients (1.3).

Example 1.4 (Ross p. 30 Question 12). From a group of n people, suppose that we want
to choose a committee of k, where k ≤ n, one of whom is designated as chairperson.

(i) By focusing first on the choice of the committee and then on the choice of the chair,
argue that there are

(n
k

)
k possible choices.

(ii) By focusing first on the choice of the non-chair committee members and then the
choice of the chair, argue that there are

( n
k−1

)
(n− k+1) possible choices.

(iii) By focusing first on the choice of the chair and then the choice of the committee
members, argue that there are n

(n−1
k−1

)
possible choices.

There was originally a (iv) to this problem which asked the reader to deduce that(
n
k

)
k =

(
n

k−1

)
(n− k+1) = n

(
n−1
k−1

)
which follows from (i), (ii), and (iii) — it is just the same event viewed from three differ-
ent perspectives.

Solution.

(i) There are
(n

k

)
ways to form the committee of k, and

(k
1

)
= k ways to assign a chair-

person. Then, apply the multiplication principle (Proposition 1.2).

(ii) We form the non-chair committee members, so there are
( n

k−1

)
ways. Then, we

choose one chairperson from the remaining n− (k−1) people, for which there are(n−k+1
1

)
= n− k+ 1 ways. Lastly, apply the multiplication principle (Proposition

1.2).
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(iii) We first choose the chairperson, for which there are
(n

1

)
= n ways. Then, we choose

the k−1 committee members from n−1 persons, for which there are
(n−1

k−1

)
ways.

Lastly, apply the multiplication principle (Proposition 1.2).

Example 1.5 (modified Ross p. 33 Question 17). Give an analytic verification of

k
(

n
k

)
= (n− k+1)

(
n

k−1

)
= n
(

n−1
k−1

)
where 1 ≤ k ≤ n.

Now, give a combinatorial proof for this identity.

Solution. We first give an analytic representation. We have

k
(

n
k

)
= k · n!

k!(n− k)!
= (n− k+1) · n!

(k−1)!(n− k+1)!
= (n− k+1)

(
n

k−1

)
.

We then prove the second equality. We have

k
(

n
k

)
= k · n!

k!(n− k)!
= n · (n−1)!

(k−1)!(n− k)!
= n
(

n−1
k−1

)
which shows that the identity holds.

We then give a combinatorial proof of the identity. Say we have a group of n persons.
Say we wish to choose k students to be part of a committee, and elect 1 person to be the
President. There are

(n
k

)(k
1

)
= k
(n

k

)
ways to do so.

Another way of formulating this is to choose the President first in
(n

1

)
= n ways, then

form the committee (which requires k−1 persons) in
(n−1

k−1

)
ways. It follows that

k
(

n
k

)
= n
(

n−1
k−1

)
.

Alternatively, we choose the non-Presidents first in
( n

k−1

)
ways, then from the remaining

n− (k−1) persons, we choose the President, which shows that

k
(

n
k

)
= (n− k+1) .

The result follows. □

Example 1.6 (Ross p. 33 Question 17). Give an analytic verification of(
n
2

)
=

(
k
2

)
+ k(n− k)+

(
n− k

2

)
where 1 ≤ k ≤ n.

Now give a combinatorial argument for this identity.

Solution. The analytic verification is trivial. We now give a combinatorial interpretation.
The binomial coefficient

(n
2

)
represents the number of ways to choose 2 numbers in 1 ≤

k ≤ n. We then classify a chosen pair according to how many of the two elements lie in
the first k numbers and the last n− k numbers.
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• Case 1: Suppose both numbers chosen are in [1,k]. Then, there are
(k

2

)
ways.

• Case 2: Suppose both numbers chosen are in [k+1,n]. Then, there are
(n−k

2

)
ways.

• Case 3: Suppose the first number is chosen in [1,k] and the second number is
chosen in [k+1,n]. Then, there are k (n− k) ways.

The three cases are disjoint so the result follows by the addition principle (Proposition
1.1). □

We then introduce the binomial theorem1.

Theorem 1.2 (binomial theorem). Let n ∈ Z≥0. Then,

(x+ y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

The term
(n

k

)
is referred to as the binomial coefficient.

Corollary 1.1 (sum of binomial coefficients).

n

∑
k=0

(
n
k

)
= 2n (1.4)

Proof. For an analytic proof, we set x = y = 1 in the binomial theorem formula (Theorem
1.2) and we are done. Combinatorially, we can also view (1.4) as follows. If a set has n
elements, then the number of subsets, including the empty set /0 and itself, is 2n. This is
because every element can be chosen or not chosen during the selection process. Since
there are n elements, the result follows.

Corollary 1.2 (alternating sum of binomial coefficients).

n

∑
k=0

(
n
k

)
(−1)k = 0

Proof. Set x = 1 and y =−1 in the binomial theorem formula (Theorem 1.2).

Example 1.7 (ST2131 AY22/23 Sem 2 Tutorial 2). Consider the combinatorial iden-
tity (1.5). Present a combinatorial argument for this identity by considering a set of n
people, in two ways, the number of possible selections of a committee of any size and a
chairperson for the committee.

n

∑
k=1

k
(

n
k

)
= n2n−1 (1.5)

1Pascal’s triangle is a triangular array of the binomial coefficients that arises in Probability Theory.
There are interesting patterns which arise due to the features of the triangle such as the Pascal’s identity
(Theorem 1.1) and the binomial coefficients (Proposition 1.5) as mentioned, and others involving the trian-
gular numbers and Fibonacci numbers. You can find some fascinating patterns here.

https://w.mav.vic.edu.au/files/2017/MAV17-Conference/MAV17_presentations/Pascals_Triangle_MAV17.pdf
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Solution. We focus on the right side of (1.5) first. Say we wish to form a committee
of size 3 (start with a small number other than 1 or 2 to illustrate) and one of them is
the chairperson. There are

(n
3

)
ways to form the committee, and thereafter,

(3
1

)
ways to

choose one of the 3 persons to be the chairperson.

Hence, the number of ways to form a committee of size k, where 1 ≤ k ≤ n, such that
1 of the persons in the committee of k is the chairperson, is(

n
k

)(
k
1

)
= k
(

n
k

)
.

We take the sum as k runs from 1 to n, which yields the left side of (1.5).

On the right side of the equation, we select the chairperson first. There are
(n

1

)
= n ways

to do so. We then choose any subset of the remaining n−1 people in 2n−1 ways. As such,
the two quantities in (1.5) are equal. □

Theorem 1.3 (hockey-stick identity). For any n,r ∈ N where r ≤ n,

n

∑
k=r

(
k
r

)
=

(
n+1
r+1

)
.

Proof. Use induction or repeatedly apply Pascal’s identity (Theorem 1.1).

Theorem 1.4 (Vandermonde’s identity). Any combination of r objects from a group
of m+n objects must have some 0 ≤ k ≤ r objects from group m and the remaining
from group n. That is,

r

∑
k=0

(
m
k

)(
n

r− k

)
=

(
m+n

r

)
. (1.6)

We provide a combinatorial proof of this result2.

Proof. Consider a group of m men and n women. Suppose we wish to form a group
of size r. Then, we can select k men out of the r, and consequently, r − k women will
be chosen. We can vary k from 0 to r inclusive, and by combining this fact with the
multiplication principle (Proposition 1.2), we obtain the left side of (1.6). The right side
can be obtained by considering the fact that we have m+n men and women and we wish
to form a group of size r, thus there are

(m+n
r

)
ways to do so.

Corollary 1.3.
p

∑
k=0

(
p
k

)
=

(
2p
p

)

Proof. Set m = n = p in Vandermonde’s identity (Theorem 1.4).
2This question also appeared in ST2131 AY24/25 Sem 2 Tutorial 1.
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Example 1.8 (Ross p. 33 Question 21). Simplify

n−
(

n
2

)
+

(
n
3

)
− . . .+(−1)n+1

(
n
n

)
.

Solution. We see that the sum can be written as

n

∑
k=1

(−1)k+1
(

n
k

)
.

By the binomial theorem (Theorem 1.2),

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k.

We can set a =−1 and b = 1 to obtain

n

∑
k=0

(−1)k
(

n
k

)
= 0.

Multiplying both sides by −1, then subtracting the term when k = 0, we see that the
original sum is equal to 1. □

1.3 Multinomial Coefficients
Many real-world situations require dividing a set into multiple distinct groups or analysing
outcomes involving more than two types of events. While the binomial theorem handles
expansions of expressions like (x+ y)n, it falls short when more than two variables are
involved. This is where the multinomial theorem comes into play — it generalises the
binomial expansion to sums with any number of terms. In particular, multinomial coef-
ficients arise naturally when counting the number of ways to distribute n identical items
into r distinguishable boxes, or when assigning labels or roles across multiple partitions
(see Chapter 1.4).

Theorem 1.5 (multinomial theorem). For any r ∈ N and n ∈ Z≥0, the multinomial
theorem describes how a sum with m terms expands when raised to an arbitrary
power n, i.e.

(x1 + . . .+ xr)
n = ∑

k1+...+kr=n

(
n

k1, . . . ,kr

)
xk1

1 . . .xkr
r (1.7)

where
( n

k1,...,kr

)
is a multinomial coefficient.

Note that the binomial theorem (Theorem 1.2) is a special case of the multinomial the-
orem — the former can be obtained by setting n = 2. Combinatorially, the multinomial
coefficient

( n
k1,...,kr

)
in (1.7) counts the number of ways to divide a set of n distinct objects

into r distinct groups, where the first group has k1 objects, the second has k2 objects, and
so on, such that k1 + . . .+ kr = n.
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Example 1.9 (ST2131 AY24/25 Sem 1 Lecture 2). A group of 9 gamers are playing
computer games.

(a) The first game consists of three different tasks presented at the same time. The
gamers divide themselves into three groups of 3 to work on the problems simulta-
neously. How many divisions are possible?

(b) The second game requires three teams to play simultaneously, each team against
the other two. The gamers divide themselves into three groups of 3 to play this
game. How many divisions are possible?

Solution.

(a) Distribute the 9 people into 3 ordered groups, which yields
( 9

3,3,3

)
. This is precisely

the definition of the multinomial coefficient.

(b) Now that the tasks are not involved, the order does not matter, i.e. the groups are
the same. The possible number of divisions is 1

3!

( 9
3,3,3

)
.

Example 1.10. A group of 15 students — 5 in Mathematics, 5 in Physics, and 5 in Com-
puter Science, are divided into 5 teams of 3.

(a) What is the probability that all teams have exactly 1 student from each field?

(b) If we randomly pick a group of n students, what is the minimal value of n such that
there is > 75% chance to have 1 student from each field?

Solution.

(a) The probability is
(5!)3 · 1

5!( 15
3,3,3,3,3

)
· 1

5!

=
72

7007
.

(b) Perform casework and see that the smallest value of n is 6.

Example 1.11 (ST2131 AY24/25 Sem 1 Lecture 2). A standard deck of 52 cards is dealt
out randomly to 4 players, each getting 13 cards. The picture cards are the J, Q, K of each
suit. What is the probability that each player receives exactly three picture cards?

Solution. The total number of ways to deal 52 distinct cards evenly to 4 players (13 each)
is given by the multinomial coefficient

( 52
13,13,13,13

)
. This counts all possible ways to as-

sign 13 cards to each of the 4 players, treating the players as distinct (labelled).

To satisfy the condition that each player gets exactly 3 picture cards, observe that there
are 12 picture cards, and we want to distribute them so that each player gets exactly 3.
As such, we divide 12 distinct picture cards into 4 labelled players, each getting 3. The
number of such ways is

( 12
3,3,3,3

)
. The remaining 40 cards (non-picture cards) must also be
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dealt evenly: 10 to each player. Again, the number of such ways is
( 40

10,10,10,10

)
. Hence,

the answer is (
12

3,3,3,3

)(
40

10,10,10,10

)
(

52
13,13,13,13

) .

□

Example 1.12 (ST2131 AY24/25 Sem 1 Lecture 3). In an office of workers, there are 4
men and 4 women.

(a) If the 8 workers are randomly divided into 4 pairs, what is the probability that
exactly 2 pairs are of mixed gender?

(b) If the 8 workers are randomly divided into 2 teams of four, what is the probability
that in every team the four workers are of the same gender?

Solution.

(a) We are asked to find the probability that exactly two of these pairs are mixed-gender
(i.e. consist of 1 man and 1 woman), while the other two pairs are same-gender (i.e.
one pair of two men and one pair of two women). We first compute the total num-
ber of ways to divide 8 distinct people into 4 unlabelled pairs. The number of such
partitions is 1

4!

( 8
2,2,2,2

)
. To see why, the multinomial coefficient counts the number

of ways to divide 8 people into ordered groups of 2 (i.e. 4 labelled pairs), and di-
viding by 4! corrects for the fact that the order among the 4 pairs does not matter.

We leave it to the reader to count the number of favourable outcomes and even-
tually conclude that the desired probability is

(
4
2

)2

·2! ·
(

2
2

)2

(
8

2,2,2,2

)
/4!

.

(b) There are a total of 1
2!

( 8
4,4

)
outcomes. For the favourable outcomes, it is a simple

calculation of
(4

4

)(4
4

)
. The desired probability is

(
4
4

)2

1
2!

(
8

4,4

) .
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1.4 Distribution Problems
Many classical counting problems can be framed as the distribution of objects into boxes
under various constraints — such as whether the objects or boxes are distinct, and whether
each box must receive at least one object. These problems are best understood using tools
such as the stars and bars method, multinomial coefficients, and Stirling numbers.

A surprising and powerful link emerges when we observe that many of these distribu-
tion problems are equivalent to solving linear Diophantine equations — equations where
the variables must take integer values. For example, finding the number of non-negative
integer solutions to the equation x1 + . . .+ xn = r is the same as counting the number
of ways to distribute r identical objects into n distinct boxes, possibly with or without
restrictions like non-emptiness.

Proposition 1.6 (distribution of identical objects into distinct boxes). We consider
two cases.

(i) Case 1: To distribute r identical objects into n distinct boxes, where r,n ∈ N,
the number of ways is (

r+n−1
n−1

)
.

(ii) Case 2: To distribute r identical objects into n distinct boxes, where r,n ∈ N,
such that no box is empty, the number of ways is(

r−1
n−1

)
.

Proof. We only prove (ii). We distribute 1 object into each of the n boxes. In total, we
distribute n objects and have r−n objects left. Now, the problem translates to distributing
r−n identical objects into n distinct boxes without restrictions, which is simply(

r−n+n−1
n−1

)
=

(
r−1
n−1

)
.

Example 1.13. Consider a problem in which we are attempting to find the number of
distributions of 8 identical objects among 5 distinct bins, and bins cannot be left empty.
How many ways are there to do this?

Solution. Modelling the problem as stars and bars, it would start off by looking like as
follows:

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

The objects are represented by the stars and the gaps between the bars are represented by
the bins. In other words, we regard the bars as a partition. Note that each bin is non-empty,
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so we distribute 5 of the 8 objects into each bin, so each bin receives one object. Now,
this becomes the usual stars and bars problem, so the required answer is

(7
4

)
= 35.3 □

Proposition 1.7 (distribution of distinct objects into distinct boxes). We consider
three cases. Let r,n ∈ N.

(i) Case 1: To distribute r distinct objects into n distinct boxes such that each
box can hold at most 1 object, where r ≤ n, the number of ways is

n!
(n− r)!

.

(ii) Case 2: To distribute r distinct objects into n distinct objects such that each
box can hold any number of objects, the number of ways is nr.

(iii) Case 3: To distribute r distinct objects into n distinct objects, where r ≥ n
such that no box is empty, the number of ways is

S (r,n)n! =
n

∑
i=0

(−1)i
(

n
i

)
(n− i)r.

S (r,n) is known as the Stirling numbers of the second kind (Definition 1.4).

Proof. We first prove (i). The first object goes into the first box. There are n ways to
do this. The second object goes into the second box and there are n− 1 ways to do so.
Repeating to the rth object, there are n− r+ 1 ways for it to go into the nth box. By the
multiplication principle (Proposition 1.2), the number of ways is

n(n−1)(n−2) . . .(n− r+1)

which yields the desired expression.

As for (ii), the first object can go into the first box and there are n ways to do it. The
same can be said for the remaining objects. We will not discuss the proof of (iii) but
anyway, it would rely on the principle of inclusion and exclusion (Proposition 2.1).

Before we discuss the Stirling numbers of the second kind, we shall start with the Stirling
numbers of the first kind! We denote the latter by s(r,n) and the former by S (r,n). These
types of numbers are named after the Scottish mathematician James Stirling. He is known
for Stirling’s approximation which involves an asymptotic formula for n! for large values
of n. That is,

n! ∼
√

2nπ

(n
e

)n
.

Definition 1.3 (Stirling numbers of the first kind). Given r,n ∈ Z such that
0 ≤ n ≤ r, let s(r,n) be the number of ways to arrange r distinct objects around
n indistinguishable circles such that each circle has at least one object.

3Alternatively, we can directly apply Case 2 of Proposition 1.6.
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Proposition 1.8. We have some obvious results.

(i) For r ≤ 1, s(r,0) = 0

(ii) For r ≥ 0, s(r,r) = 1

(iii) For r ≥ 2, s(r,1) = (r−1)!

(iv) For r ≥ 2, s(r,r−1) =
(r

2

)
Proposition 1.9. A useful recurrence relation for s(r,n) is

s(r,n) = s(r−1,n−1)+(r−1)s(r−1,n) .

Proof. Fix an object a1. Then, we have two cases, which are namely (i) a1 is the only
object in a circle and (ii) a1 is mixed with other objects.

For (i), we shift our focus to the remaining r − 1 objects. We distribute these objects
around the remaining n−1 objects, and there are s(r−1,n−1) ways to do so by defini-
tion. For (ii), we have r−1 objects left to distribute around n tables. a1 can be placed in
either one of the r− 1 distinct spaces to the immediate right of the corresponding r− 1
distinct objects.

As the two cases are mutually exclusive, the result follows by the addition principle
(Proposition 1.1).

Definition 1.4 (Stirling numbers of the second kind). Given r,n ∈ Z≥0 where 0 ≤
n ≤ r, the Sitrling numbers of the second kind, S (r,n), is defined as the number of
ways of distributing r objects into n identical boxes such that no box is empty.

Proposition 1.10. Here are some obvious results.

(i) S (r,1) = S (r,r) = 1

(ii) For 1 ≤ r < k, S (r,k) = 0

(iii) For r,k ≥ 1, S (r,0) = S (0,k) = 0

(iv) For r ≥ 1, S (r,2) = 2r−1 −1

(v) For r ≥ 1, S (r,r−1) =
(r

2

)
Proof. We will only prove (iv). The complement of the case where no box is empty is
that one box is empty. The number of ways to distribute r distinct objects into 1 box is 1.
Since each object can go into either box, there are 2r ways to distribute, but we also have
to consider that the boxes are identical, so we have to divide by 2. Thus, there are 2r−1

ways to distribute r distinct objects into 2 identical boxes without restrictions. The result
follows.
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Similar to the Stirling numbers of the first kind, we have a similar recurrence relation
for the Stirling numbers of the second kind (Proposition 1.11), which is slightly easier to
derive since we are not considering circular permutations.

Proposition 1.11. A useful recurrence relation for S (r,n) is

S (r,n) = S (r−1,n−1)+nS (r−1,n) .

Proof. Fix an object a1. Then, we have two cases, which are namely (i) a1 is the only
object in a box and (ii) a1 is mixed with other objects.

For (i), we shift our focus to the remaining r − 1 objects. We distribute the remaining
r−1 objects into the n−1 boxes, and there are S(r−1,n−1) ways to do so by definition.
For (ii), we have r−1 objects left to distribute into n identical boxes. a1 can be distributed
into either of the boxes, and so there are a total of nS(r−1,n) ways to do so.

As the two cases are mutually exclusive, the result follows by the addition principle
(Proposition 1.1).

Proposition 1.12 (distribution of distinct objects into identical boxes). Suppose
r,n ∈ Z≥0, where 0 ≤ n ≤ r. We have two cases.

(i) Case 1: S (r,n) is defined as the number of ways of distributing r objects into
n identical boxes such that no box is empty.

(ii) Case 2: If we have r objects and n boxes and each box can hold any number
of objects, the number of ways to distribute the objects is

S (r,1)+ . . .+S (r,n) .

Before we discuss the distribution of identical objects into identical boxes, we first define
a partition of an integer (Definition 1.5).

Definition 1.5 (partition). We define a partition of a positive integer r into n parts
to be a set of n positive integers whose sum is r.

Note that the ordering of the integers in the collection in Definition 1.5 is immaterial
since the integers are regarded as identical objects. We denote the number of such distinct
partitions by P(r,n).

Proposition 1.13 (distribution of identical objects into identical boxes). Given r,n∈
Z≥0, where 0 ≤ n ≤ r, P(r,n) is the number of ways of r identical objects into n
identical boxes.
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Proposition 1.14. Here is a useful recurrence relation for P(r,n), which is

P(r,n) = P(r−1,n−1)+P(r−n,n) ,

where r,n ∈ N, 1 < n ≤ r and r ≥ 2n.

Proof. We consider two cases, namely (i) at least one box has exactly one object and (ii)
all the boxes have more than one object.

For (i), we place one object in one box. Then we distribute the remaining r − 1 ob-
jects into the remaining n− 1 boxes such that no boxes are empty. The number of ways
this can be done is P(r−1,n−1). For (ii), we place one object into each of the n boxes.
Then we distribute the remaining r−n objects into the n boxes such that each box has at
least two objects. The number of ways this can be done is P(r−n,n). By the addition
principle (Proposition 1.1), the result follows.

We now discuss some applications to linear Diophantine equations. A Diophantine equa-
tion is a polynomial equation, usually involving two or more unknowns, such that the
only solutions of interest are the integer ones. A linear Diophantine equation equates to a
constant the sum of two or more monomials, each of degree one. That is, for constants ai

and b and variables xi, where 1 ≤ i ≤ n,

aixi +a2x2 + . . .+anxn = b.

There are
(n−1

r−1

)
distinct positive integer-valued vectors (x1,x2, . . . ,xr) that satisfy the

equation
x1 + x2 + . . .+ xr = n where xi > 0 for 1 ≤ i ≤ r.

Note that this is the equivalent of the distribution of r identical objects into n distinct
boxes, where r,n ∈ N, such that no box is empty (recall Proposition 1.6).

Proposition 1.15. There are
(r+n−1

r−1

)
distinct non-negative integer-valued vectors

(x1,x2, . . . ,xr) that satisfy the equation

x1 + x2 + . . .+ xn = r where xi ≥ 0 for 1 ≤ i ≤ r.

Proof. Let yi = xi +1, then each of the yi’s is positive, implying that the number of non-
negative solutions to

x1 + x2 + . . .+ xn = r

is the same as the number of positive solutions to

(y1 −1)+(y2 −1)+ . . .+(yr −1) = n,

or equivalently,
y1 + y2 + . . .+ yr = n+ r,

which is
(r+n−1

r−1

)
.
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Here is a relatively easy problem.

Example 1.14 (SMO Open 2022 Question 18). Find the number of integer solutions to
the equation x1 + x2 − x3 = 20 with x1 ≥ x2 ≥ x3 ≥ 0.

Solution. We proceed with some casework. First, set x3 = 0. Then, we have x1+x2 = 20,
where x1 ≥ x2 ≥ 0. There are 10 solutions for this case, namely

(x1,x2) = (20,0),(19,1), . . . ,(10,10).

For the second case, set x3 = 1. Then, we have x1 + x2 = 21. There are 10 solutions for
this case, namely

(x1,x2) = (20,1),(19,2), . . . ,(11,10).

We repeat this process until x3 = 20, which implies that x1+x2 = 40, where x1 ≥ x2 ≥ 20.
There is only one solution for this. If one considers the cases in between these, you can
spot a pattern, which implies that the total number of solutions is 11+2 ·10+2 ·9+ . . .+

2 ·1 = 121. □

Example 1.15 (SMO Open 2007 Question 6). Find the number of non-negative solutions
to the following inequality:

x+ y+ z+u ≤ 20

Solution. Using the substitution v = 20− (x+ y+ z+u), then v ≥ 0 if and only if x+y+
z+ u ≤ 20. The required answer is the number of non-negative integer solutions to the
equation

x+ y+ z+u+ v = 20,

which is
(24

4

)
= 10626. □

Example 1.16 (Ross p. 31 Question 15). Let Hk(n) be the number of vectors (x1, . . . ,xk)

for which each xi is a positive integer satisfying x1 ≤ x2 ≤ ·· · ≤ xk ≤ n.

(i) Prove that H1(n) = n, and

Hk(n) =
n

∑
i=1

Hk−1(i) for k ≥ 2.

(ii) Give a direct combinatorial proof that Hk(n) =
(n+k−1

k

)
.

Solution.

(i) H1(n) denotes the number of vectors (x1) for which 1 ≤ x1 ≤ n. Tthere are n
choices, so H1(n) = n. We then establish the recurrence relation. Suppose xk = i.
Then, (x1, . . . ,xk−1) satisfies 1 ≤ x1 ≤ x2 ≤ . . .≤ xk−1 ≤ i. Hence, there are Hk−1(i)
choices for (x1, . . . ,xk−1). Summing over the possible values of xk = i from 1 to n
gives

Hk(n) =
n

∑
i=1

Hk−1(i).
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(ii) Observe that specifying a vector 1 ≤ x1 ≤ . . . ≤ xk ≤ n is equivalent to choosing a
multiset of size k from {1, . . . ,n}. The number of k-element multisets selected from
an n-element ground set is (

n+ k−1
k

)
,

which yields the required result.





Chapter 2
Axioms of Probability

2.1 The Kolmogorov Axioms

The basic terminologies of Probability Theory, including experiment, outcomes, sample
space, events, have already been covered in secondary school so we shall not discuss
them here. We will define the probability of an event and show how it is computed using
a variety of examples.

The Kolmogorov axioms (Axiom 2.1) are named after Russian mathematician Andrey
Kolmogorov. There are numerous Russian mathematicians who contributed to Probabil-
ity Theory and Statistics. Some include Andrey Markov, who is known for Markov’s in-
equality and Markov chains, Nikolai Smirnov, for which the Kolmogorov-Smirnov test1,
as well as Pafnuty Chebyshev. Chebyshev’s inequality (Theorem 8.2) and the Chebyshev
polynomials of the first kind and the second kind are named after him. He also contributed
to the much celebrated prime number theorem.

Axiom 2.1 (Kolmogorov axioms).

(i) Axiom 1: For any event A, 0 ≤ P(A)≤ 1.

(ii) Axiom 2: Let S be the sample space. Then, P(S) = 1.

(iii) Axiom 3 (countable additivity on disjoint sets): For any sequence of mu-
tually exclusive events A1,A2, . . . (i.e. Ai ∩A j = /0 whenever i ̸= j),

P

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Ai).

Example 2.1 (ST2131 AY24/25 Sem 1 Lecture 1). A six-sided die is biased, with the
even numbers being equally likely to appear but each odd number is twice as likely to
appear as any of the even numbers.

1This non-parametric test may be covered in ST2132 Mathematical Statistics.

19
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(a) Find the probability of obtaining a 3.

(b) Find the probability of obtaining a 1 or 6.

Solution.

(a) Let Po and Pe denote the probability of an odd and an even value showing up re-
spectively. Since the die ranges from 1-6, by the Kolomogorov axioms (Axiom
2.1),

Po = 2Pe and 3Po +3Pe = 1.

Solving the above system of equations yields Po = 2/9.

(b) We have Po +Pe = 1/9+2/9 = 1/3.

Example 2.2 (ST2131 AY24/25 Sem 1 Lecture 1).

(a) Three fair coins are tossed. What is the probability that exactly two heads appear?

(b) Four fair coins are tossed. What is the probability that at least two heads appear?

Solution. Some students might recognise this setup modelling that of a binomial random
variable (see Chapter 4.4).

(a) There are a total of 23 = 8 possible outcomes. Choose two of the three coins to be
fixed as heads, then the last coin must be a tail. Since any two of the three coins
could be chosen to be heads, there are

(3
2

)
possible cases. The required probability

is
(3

2

)
/23 = 3/8.

(b) The total number of outcomes is 24. The desired outcomes are 2,3 or 4 heads.
Hence, the required probability is(4

2

)
+
(4

3

)
+
(4

4

)
24 =

11
16

.

Example 2.3 (Ross p. 68 Question 3). A deck of cards is dealt out.

(a) What is the probability that the 14th card dealt is an ace?

(b) What is the probability that the first ace occurs on the 14th card?

Solution.

(a) Note that a regular deck of cards has 52 cards. We first compute the probability that
the 14th card dealt is an ace. By symmetry, any card is equally likely to be dealt, so
the required probability is 4

52 = 1
13 .

(b) The probability that the first ace occurs on the 14th card is

48
52

· 47
51

· . . . · 36
40

· 4
39

=
48!/35!
52!/38!

·4 =
38 ·37 ·36

52 ·51 ·50 ·49
·4 ≈ 0.312.
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Example 2.4 (Ross p. 68 Question 5). An ordinary deck of 52 cards is shuffled. What is
the probability that the top four cards have

(a) different denominations?

(b) different suits?

Solution. We will first compute the total outcomes, which is(
52
4

)
= 270725.

(a) Let A be the event the top 4 cards will be of different domination, then we have

P(A) =

(13
4

)
·44

270725
≈ 0.676.

(b) Let B be the event the top 4 cards will be of different suits, then we have

P(B) =
134

270725
≈ 0.105.

Example 2.5. A standard deck of 52 cards is dealt out randomly to 4 players, each getting
13 cards. The picture cards are the J, Q, K of each suit. What is the probability that each
player receives exactly three picture cards?

Solution. The probability that player 1 receives exactly three picture cards is(
12
3

)(
40
10

)
(

52
13

) .

The probability that player 2 receives exactly three picture cards is(
9
3

)(
30
10

)
(

39
13

)
and so on. As such, the desired probability is(

12
3

)(
9
3

)(
6
3

)(
3
3

)
·
(

40
10

)(
30
10

)(
20
10

)(
10
10

)
(

52
13

)(
39
13

)(
26
13

)(
13
13

) =

12!

(3!)4 ·
40!

(10!)4

52!

(13!)4

≈ 0.0324.

□

Example 2.6 (Ross p. 69 Question 19). Ten cards are randomly chosen from a deck of
52 cards that consists of 13 cards of each of 4 different suits. Each of the selected cards
is put in one of 4 piles, depending on the suit of the card.
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(a) What is the probability that the largest pile has 4 cards, the next largest has 3, the
next largest has 2 and the smallest has 1 card?

(b) What is the probability that two of the piles have 3 cards, one has 4 cards and one
has no cards?

Solution.

(a) Define the sample space to be all ways to choose 10 cards out of 52, which has
cardinality

(52
10

)
. We must assign the counts {4,3,2,1} to the 4 suits. There are

4! = 24 ways to assign the counts to the suits. Letting A denote the desired event,
one can deduce that

P(A) =

(
13
4

)(
13
3

)(
13
2

)(
13
1

)
·4!(

52
10

) .

(b) Let B denote the desired event. We are now assigning the counts {4,3,3,0} to the
4 suits. Since the two 3’s are indistinguishable, the number of ways to assign is 4!

2! .
Then, one can deduce that

P(B) =

(
13
3

)(
13
3

)(
13
4

)(
13
0

)
· 4!

2!(
52
10

) .

Example 2.7 (Ross p. 69 Question 18). 4 red, 8 blue, and 5 green balls are randomly
arranged in a line.

(a) What is the probability that the first 5 balls are blue?

(b) What is the probability that none of the first 5 balls is blue?

(c) What is the probability that the final 3 balls are of different colours?

(d) What is the probability that all the red balls are together?

Solution.

(a) The number of arrangements without restriction is 17!
4!8!5! . We then fix 5 blue balls

in front in
(8

5

)
ways, then arrange the remaining balls in 12!

4!3!5! ways. The required
probability is

12!8!
3!17!

=
2

221
.

(b) To have no blue there, you must choose all five from the 9 non-blue balls (4 red and
5 green), which can be done in

(9
5

)
ways. So, the desired probability is(

9
5

)
(

17
5

) =
9

442
.
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(c) The number of arrangements is 3! · 14!
3!7!4! . So, the desired probability is 4

17 .

(d) The number of ways to arrange such that the red balls are together is 14!
8!5! . The

desired probability is
14!4!8!5!
8!5!17!

=
1

170

Example 2.8 (Ross p. 69 Question 17). Five balls are randomly chosen without replace-
ment from an urn that contains 5 red, 6 white and 7 blue balls. Find the probability that
at least one ball of each colour is chosen.

Solution. The partitions of 5 into three distinct parts are

(R,W,B) = (3,1,1) ,(2,2,1) ,(1,2,2) ,(2,1,2) ,(1,3,1) ,(1,1,3) .

So the probability is(
5
3

)(
6
1

)(
7
1

)
(

18
5

) + . . .+

(
5
1

)(
6
1

)(
7
3

)
(

18
5

) ≈ 0.707.

□

Example 2.9. A committee of 4 persons is to be formed from a group of 5 men and 4
women, among which there is a husband-wife couple.

(i) How many committees are possible?

(ii) If the committee must have 2 men and 2 women, how many committees are possi-
ble?

(iii) If the committee must have 2 men and 2 women, and the couple is not allowed to
serve together, how many committees are possible?

Solution.

(i) The number of committees is
(9

4

)
= 126.

(ii) By the multiplication principle (Proposition 1.2), the number of possible commit-
tees is

(5
2

)(4
2

)
= 60.

(iii) We use the principle of complementation. Consider the case when we choose 2 men
and 2 women, where one of the men-women pairs is the husband-wife couple. To
do this, there are

(4
1

)(3
1

)
= 12 ways, so the desired number of ways is 60−12 = 48,

where we used (ii).

Example 2.10 (Ross p. 69 Question 8). From a group of 3 first-year students, 4 sopho-
mores, 4 juniors, and 3 seniors, a committee of size 4 is randomly selected. Find the
probability that the committee will consist of

(a) 1 from each class
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(b) 2 sophomores and 2 juniors

(c) only sophomores or juniors

Solution.

(a) We will first compute the total outcomes, which is(
14
4

)
= 1001.

Let A be the event 1 from each class is chosen, then we have

P(A) =

(3
1

)
·
(4

1

)
·
(4

1

)
·
(3

1

)
1001

≈ 0.144.

(b) Let B be the event 2 sophomores and 2 juniors are chosen, then we have

P(B) =

(4
2

)
·
(4

2

)
1001

≈ 0.0360.

(c) Let C be the event only sophomores or juniors chosen, then we have

P(C) =

(8
4

)
1001

= 0.0699

Example 2.11 (ST2131 AY24/25 Sem 2 Tutorial 2). A closet contains 10 pairs of shoes.
If 8 shoes are randomly selected, what is the probability that there will be

(a) no complete pair;

(b) exactly 1 complete pair?

Solution.

(a) From the 10 pairs of shoes, we choose 8. Within each pair, we choose one of the
shoes each time so by the multiplication principle (Definition 1.2), there are(

10
8

)
·28

ways to obtain no complete pairs. As such, the desired probability is(
10
8

)
·28(

20
8

) .

(b) We first fix the pair of shoes that is a complete pair. There are
(10

1

)
ways to choose

such a pair. Thereafter, we have 9 pairs of shoes left and we wish to choose 6.
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Within each pair, we choose one of the shoes each time so by the multiplication
principle (Definition 1.2), there are(

10
1

)(
9
6

)
·26 ways

to obtain exactly one complete pair. The desired probability is(
10
1

)(
9
6

)
·26(

20
8

) .

Example 2.12 (Ross p. 69 Question 12). A basketball team consists of 6 frontcourt and
4 backcourt players. If the players are divided into roommates at random, what is the
probability that there will be exactly two roommate pairs made up of a backcourt and a
frontcourt player?

Solution. The possible number is pairs is(
10
2

)(
8
2

)
. . .

(
2
2

)
· 1

5!
= 945.

To have exactly two roommate pairs made up of a backcourt and a frontcourt player, the
number of ways is (

6
1

)(
4
1

)(
5
1

)(
3
1

)
·
(

4
2

)(
2
2

)(
2
2

)
· 1

2!2!
= 540.

The required probability is 540
945 = 4

7 . □

2.2 Probability Properties
Using Kolmogorov’s axioms (Axiom 2.1), we can derive a few useful properties such as
de Morgan’s laws and the probability of the complement of an event, where the comple-
ment is usually denoted by A′ or Ac such that P(A)+P(A′) = 1. In particular, we shall
discuss the principle of inclusion and exclusion (Proposition 2.1).

Proposition 2.1 (principle of inclusion and exclusion). If we have n events
A1,A2, . . . ,An,

P

(
n⋃

i=1

Ai

)
=

n

∑
i=1

P(Ai)− ∑
1≤i< j≤n

P(Ai ∩A j)+ . . .+(−1)n+1P

(
n⋂

i=1

Ai

)
.

One would generally be more familiar with the principle of inclusion and exclusion for
two events. Say we have two events A and B. Then,

P(A∪B) = P(A)+P(B)−P(A∩B) . (2.1)
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This can be illustrated using a Venn diagram (Figure 2.1).

A B

Figure 2.1: Principle of inclusion and exclusion for 2 sets

If we have three events A, B and C, then as shown in Figure 2.2,

P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C). (2.2)

A B

C

Figure 2.2: Principle of inclusion and exclusion for 3 sets

Example 2.13 (ST2131 AY24/25 Sem 1 Lecture 1). In a large sports club, 40% of members
play badminton, 35% of members play squash, 10% of members play both. Find the probability
that a randomly selected member plays neither of the two sports mentioned above.

Solution. We first calculate the probability that a member plays either badminton or squash or
both. This can be done using the principle of inclusion and exclusion (Proposition 2.1), which
tells us that the probability of a member playing either badminton or squash is equal to the sum of
the probabilities of playing each sport individually, minus the probability of playing both sports.
By (2.1), the answer is 1− (0.4+0.35−0.1) = 0.35. □

Example 2.14 (ST2131 AY24/25 Sem 1 Lecture 1). Suppose you assess that there is more than
85% chance that the weather will be nice tomorrow, and there is more than 65% chance that the
weather will be nice the day after tomorrow. Is it valid to infer that there is more than a fair chance
that the weather will be nice on both days?

Solution. It is valid. Let E and F denote the first and second events written above respectively.
By the principle of inclusion and exclusion (Proposition 2.1),

P(E ∪F) = P(E)+P(F)−P(E ∩F)

which implies
P(E ∩F) = P(E)+P(F)−P(E ∪F) .

Since P(E)> 0.85, P(F)> 0.65, and P(E ∪F)≤ 1, it follows that P(E ∩F)> 0.5. □
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Example 2.15 (ST2131 AY24/25 Sem 1 Lecture 1). Similar to Example 2.14, suppose you
assess that there is more than 80% chance that the weather will be nice tomorrow and there is
more than 80% chance that the weather will be nice the day after tomorrow. Is it valid to infer that
there is more than 80% chance that the weather will be nice on both days?

Solution. It is invalid. Again, let E and F denote the first and second events written above respec-
tively. Then, by the principle of inclusion and exclusion (Proposition 2.1),

P(E ∩F)> 0.8+0.8−1 = 0.6.

However, we cannot conclude that there is more than an 80% chance that the weather will be nice
on both days. □

Example 2.16. In a large language school where students take classes in Chinese, Japanese, Ko-
rean, and other languages,

• 51% of students are enrolled in the Chinese class;

• 40% of students are enrolled in the Japanese class;

• 32% of students are enrolled in the Korean class;

• 14% of students are enrolled in both Chinese and Japanese classes;

• 17% of students are enrolled in both Chinese and Korean classes;

• 10% of students are enrolled in both Japanese and Korean classes;

• 3% of students are enrolled in Chinese, Japanese, and Korean classes

A student of the school is randomly selected. What is the probability that the selected student is
enrolled in none of the three languages mentioned above?

Solution. Let C,J,K denote the events that a student is enrolled in the Chinese, Japanese, and
Korean class respectively. The trick is to first invoke de Morgan’s law before using the principle
of inclusion and exclusion. By de Morgan’s law,

P
(
C′∩ J′∩K′)= 1−P(C∪ J∪K) .

We then use the principle of inclusion and exclusion (Proposition 2.1), or rather (2.2), so

P(C∪ J∪K) = P(C)+P(J)+P(K)−P(C∩ J)−P(C∩K)−P(J∩K)+P(C∩ J∩K) .

At this juncture, we realise that the incorporation of the principle of inclusion and exclusion usu-
ally involves de Morgan’s law right before it. Substituting the relevant probabilities yields

P(C∪ J∪K) = 0.51+0.40+0.32−0.14−0.17−0.10+0.03 = 0.85

so the desired probability is 0.15. □

We then discuss Example 2.17, which involves a classic counting problem in Combinatorics. It is
a problem on enumerating surjective functions.
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Example 2.17 (enumerating surjective functions; H3 Mathematics 2020). Let

X = {1,2, . . . ,m} and Y = {1,2, . . . ,n} be sets of positive integers

and f be a function mapping from X to Y . f is called onto if each element of Y is the image of an
element of X . For m ≥ n, we wish to find an expression for the number of functions mapping X to
Y which are onto.

Solution. Let Ai be the event denoting the element ni ∈ Y which does not get mapped from any
element in X , where 1 ≤ i ≤ n. We wish to find∣∣A′

1 ∩A′
2 ∩ . . .∩A′

n

∣∣ ,
which is equivalently, by de Morgan’s law,

n(S)−

∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣ .
Note that

n

∑
i=1

|Ai|=
(

m
1

)
(m−1)n

∑
1≤i< j≤n

∣∣Ai ∩A j
∣∣= (m

2

)
(m−2)n

∑
1≤i< j<k≤n

∣∣Ai ∩A j ∩Ak
∣∣= (m

3

)
(m−3)n

and so on. It is clear that n(S) = mn. Using the general form of the principle of inclusion and
exclusion (Proposition 2.1),∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣= n

∑
i=1

|Ai|− ∑
1≤i< j≤n

∣∣Ai ∩A j
∣∣+ ∑

1≤i< j<k≤n

∣∣Ai ∩A j ∩Ak
∣∣+ . . .+

(
m
m

)
(m−m)n

so ∣∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣∣= m

∑
r=0

(−1)r+1
(

m
r

)
(m− r)n

This implies that ∣∣A′
1 ∩A′

2 ∩ . . .∩A′
n

∣∣= m

∑
r=0

(−1)r
(

m
r

)
(m− r)n

which is the required expression. □

Definition 2.1 (derangement). A derangement is a permutation of the elements of a set,
such that no element appears in its original position. If a set has n elements, then its de-
rangement is denoted by Dn or !n.

Example 2.18 (hat-check problem). A group of n men enter a restaurant and check in their hats
at the reception. The hat-checker is absent-minded, and upon leaving, he redistributes the hats
to the men randomly. Suppose Dn is the number of ways such that no men get his own hat. For
n ≥ 3, prove that Dn satisfies the following recurrence relation:

Dn = (n−1)(Dn−1 +Dn−2) with initial conditions D1 = 0 and D2 = 1. (2.3)
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Solution. Suppose the first person receives the ith person’s hat, where i ̸= 1. There are n−1 ways
to do so. We consider two cases, namely (i) the ith person received hat 1 and (ii) the ith person
received a hat that is not hat 1.

For (i), ignoring the first and ith person, there are Dn−2 ways to arrange the n− 2 hats among
the n−2 people such that no one received his own hat. For (ii), treating the ith person as the first
person, this is equivalent to arranging the n−1 hats among n−1 people such that no one received
his own hat. There are Dn−1 ways to do so. The result follows. □

Let us ponder over Example 2.18 further. By repeatedly applying the recurrence relation (2.3) or
simply using induction, we can establish that

Dn = nDn−1 +(−1)n for n ≥ 2.

We can find a formula for Dn in terms of a sum. This involves ingeniously considering a new
expression, namely Dn = n!Pn. Thus, n!Pn = n!Pn−1 +(−1)n. By the method of difference for
summing telescoping series,

Pn =
n

∑
i=2

(−1)i

i!

In conclusion,

Dn = n!
n

∑
i=0

(−1)i

i!
. (2.4)

We can also prove this result by the principle of inclusion and exclusion (Proposition 2.1). In fact,
see Examples 2.19 and 2.20 for examples using this method, though the latter may be slightly
more complicated. Note that for large values of n, Pn tends to e−1. This can be proven by the
series expansion of ex, namely

ex =
∞

∑
i=0

xi

i!
.

Example 2.19 (derangement). Five couples are being seated at a long table. The five women are
seated first, along one side of the table. The five men are then assigned seats along the other side,
at random. What is the probability that none of the couples end up facing each other?

Solution. Let Ei denote the event where the ith couple end up facing each other. Let A denote the
event where none of the couples face each other, then A = E ′

1 ∩ . . .∩E ′
5. The complement of A is

A′ = E1 ∪ . . .∪E5. By the principle of inclusion and exclusion,

P(A) = 1−
(

1
1!

− 1
2!

+
1
3!

− 1
4!

+
1
5!

)
.

□

Example 2.20 (ST2131 AY24/25 Sem 1 Lecture 3). Four couples are seated randomly at a round
table. What is the probability that at least one of the couples end up sitting next to each other?

Solution. There are a total of (8−1)! = 7! possible outcomes. Define Ei to be event where the ith

couple sits next to each other. Let A = E1 ∪ . . .∪E4. By the principle of inclusion and exclusion
(Proposition 2.1), we have

P(A) = ∑
i=1

P(Ei)−∑
i< j

P(Ei ∩E j)+ ∑
i< j<k

P(Ei ∩E j ∩Ek)−P(E1 ∩E2 ∩E3 ∩E4) .
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In general, we have

P(Ei1 ∩ . . .∩Ein) =
(7−n)! ·2n

(8−1)!
.

Hence,

P
(
A′)= 1−

(
4

∑
i=1

(−1)i+1
(

4
i

)
(7− i)! ·2i

(8−1)!

)
=

31
105

.

□

We can generalise Example 2.20. The number of ways cn to seat n couples around a round table
with no spouses next to each other is given by

cn =
n

∑
i=0

(−1)i 2i
(

n
i

)
(2n− i−1)!.

The first few values of cn for n = 1, . . . ,8 are

0,2,32,1488,112 512,12 771 840 which appears as sequence A129348 in the OEIS.

This sequence is known as the number of directed Hamiltonian circuits in the cocktail party graph
(appears in the handshake lemma) of order n. We now recall Example 2.17 and explore a nice
application of derangements.

Example 2.21 (H3 Mathematics 2020). Let

X = {1,2, . . . ,m} and Y = {1,2, . . . ,n} be sets of positive integers

and f be a function mapping from X to Y . f is called one-to-one if no two elements of X map
to the same element of Y . Now, for m = n = 5, find the number of one-to-one functions mapping
from X to Y which map no element to itself.

Solution. We shall use the principle of inclusion and exclusion (Proposition 2.1). Let Ai be the
set of permutations in which the ith element goes into the correct position, where 1 ≤ i ≤ 5. Note
that |Ai|= 4!, |Ai∩A j|= 3! and so on. Using the principle of inclusion and exclusion (Proposition
2.1), the number of derangements, D5, is

D5 = 5!−

∣∣∣∣∣ 5⋃
i=1

Ai

∣∣∣∣∣
= 5!−

5

∑
i=1

|Ai|+
5

∑
1≤i< j≤5

∣∣Ai ∩A j
∣∣+ . . .+(−1)5

∣∣∣∣∣ 5⋂
i=1

Ai

∣∣∣∣∣
= 5!−

(
5
1

)
4!+

(
5
2

)
3!−

(
5
3

)
2!+

(
5
4

)
1!−

(
5
5

)
0!

= 44

Alternatively, using the derangement formula (2.4) will yield the same result. □

Example 2.22 (birthday problem/paradox). The birthday problem asks for the probability that,
in a set of n randomly chosen people, at least two will share a birthday. The birthday paradox
is that, counter-intuitively, the probability of a shared birthday exceeds 50% in a group of only
23 people. The probability that at least two of the n persons share the same birthday, denoted by
p(n), can be expressed as

p(n) = 1− 365!
365n (365−n)!

= 1− n!
365n

(
365
n

)
.
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Note that n ≤ 365; if n ≥ 366, we obtain a contradiction by the pigeonhole principle. As p(22) =
0.47569 and p(23) = 0.50729, it asserts that the statement is true.

To see why, A person can have his/her birthday on any of the 365 days. There are a total of
365n outcomes. Let A denote the event that there at least two people among the n people sharing
the same birthday. Then, A′ is the event that none of them shares the same birthday. Without a
loss of generality, treating each person as an object and each date as a box, the first person can go
into the first day in 365 ways. The second person can go into the second day in 364 ways and so
on, till the nth person goes into the nth day in 366−n ways. Hence,

P(A′) =
365 ·364 ·363 · . . . · (366−n)

365n .

Since 1−P(A′) = P(A) = p(n), then

p(n) = 1− 365 ·364 ·363 · . . . · (366−n)
365n = 1− 365!

365n (365−n)!
= 1− n!

365n

(
365
n

)
.

Example 2.23 (ST2131 AY24/25 Sem 1 Lecture 2; modified birthday paradox). Assume that
the students in a large class are equally likely to have their birthdays fall on any of the 7 days of
the week.

What is the smallest integer n such that, in a group of n students randomly selected from this
class, there is more than 60% chance for at least two of them to have their birthdays fall on the
same day of the week?

Solution. We have a trivial upper bound of n ≤ 8 because there are only 7 days in a week. We
find P(A′

n), which is the probability that each student in a group of n students has a different day
in a week for their birthday.

For n = 1, it is trivial. Also,

P
(
A′

2
)
=

7 ·6
72 and P

(
A′

3
)
=

7 ·6 ·5
73 .

One can generalise the above — for any n ≤ 8,

P
(
A′

n
)
=

7 · . . . · (7−n+1)
7n .

We accept this without proof (recalll our discussion in Example 2.22 for a proof). Then by com-
putation, we find that n ≥ 4 satisfies the inequality 1−P(A′

n)> 0.6. □

Example 2.24 (ST2131 AY24/25 Sem 1 Lecture 2; modified birthday paradox). Assume that
the students in a large class are equally likely to have their birthdays fall on any of the 12 months
of the year.

What is the smallest integer n such that, in a group of n students randomly selected from this
class, there is more than 60% chance for at least two of them to have their birthdays fall on the
same month for their birthday?
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Solution. Likewise (compare with Example 2.23), we should have an upper bound of n ≤ 13. We
use a similar strategy — consider the event where n students all have different months of their
birthday. Then,

P
(
A′

n
)
=

12 · . . . · (12−n+1)
12n for any n ≤ 13.

Solving the inequality 1−P(A′
n)> 0.6 gives us n ≥ 5. □

2.3 Probability as a Continuous Set Function
In Probability Theory, events are often organised into sequences that either grow larger (increas-
ing) or shrink (decreasing) as n progresses. Studying such sequences is important because many
real-world phenomena are modelled by limits of events. For example, the occurrence of an event
eventually or infinitely often. The continuity property of probability ensures that probabilities
behave consistently with these limits, i.e. probabilities of sequences converge to the probabil-
ity of the limiting event. This principle is foundational for more advanced results such as the
Borel–Cantelli lemma (you would encounter it in courses like MA4262 Measure and Integration)
and the laws of large numbers (Theorems 8.4 on the weak law and 8.5 on the strong law).

Definition 2.2 (increasing and decreasing sequences). A sequence of events En, n ≥ 1, is
an increasing sequence if

E1 ⊆ E2 ⊆ . . .⊆ En ⊆ En+1 ⊆ . . .

whereas it is a decreasing sequence if

E1 ⊇ E2 ⊇ . . .⊇ En ⊇ En+1 ⊇ . . .

If En, n ≥ 1, is an increasing sequence of events, then we define the following new event:

lim
n→∞

En =
∞⋃

i=1

Ei

Similarly, if En, n ≥ 1, is a decreasing sequence of events, then we define the following new event:

lim
n→∞

En =
∞⋂

i=1

Ei

Example 2.25 (increasing sequence of events). Suppose we repeatedly flip a fair coin, and define
En to be the event that at least one head appears among the first n coin tosses. Then, E1 =

{H in toss 1}, E2 = {H in toss 1 or toss 2} and so on. We can construct an increasing sequence
E1 ⊆ E2 ⊆ . . .. The expression

lim
n→∞

En =
∞⋃

i=1

Ei

denotes the event that a head eventually appears at some point in the infinite sequence of coin
tosses. So,

lim
n→∞

En = at least one head occurs in the infinite sequence.

Since the probability of getting all tails forever is 0, we conclude that

P
(

lim
n→∞

En

)
= 1.
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Proposition 2.2. If En, where n ≥ 1, is either an increasing or a decreasing sequence of
events, then

lim
n→∞

P(En) = P
(

lim
n→∞

En

)
.

Theorem 2.1 (Boole’s inequality). For a countable set of events A1,A2, . . .,

P

(
∞⋃

i=1

Ai

)
≤

∞

∑
i=1

P(Ai).

The generalisation of Boole’s inequality (Theorem 2.1) is Bonferroni’s inequality.

Proof. For each n ≥ 1, the trick is to define

B1 = A1 and Bn = An \
n−1⋃
k=1

Ak for n ≥ 2.

Then the sets Bn are pairwise disjoint and

∞⋃
i=1

Ai =
∞⋃

i=1

Bi.

By countable additivity on disjoint sets (third Kolomogorov axiom in Axiom 2.1), we have

P

(
∞⋃

i=1

Ai

)
= P

(
∞⋃

i=1

Bi

)
=

∞

∑
i=1

P(Bi).

But Bi ⊆ Ai for each i, so by monotonicity, P(Bi)≤ P(Ai). Hence,

P

(
∞⋃

i=1

Ai

)
=

∞

∑
i=1

P(Bi)≤
∞

∑
i=1

P(Ai).

This proves the claim.





Chapter 3
Conditional Probability and

Independence

3.1 Conditional Probabilities
In many real-world situations, we often have some partial information about the outcome
of a random experiment, and we want to update our beliefs based on this information.
This naturally leads to the notion of conditional probability, which tells us how likely an
event is to occur given that another event has already occurred.

Definition 3.1 (conditional probability). Let A and B be two events. The conditional
probability of A given B is defined as

P(A | B) =
P(A∩B)

P(B)
provided that P(B) ̸= 0.

P(A | B) can also be read as the conditional probability of A occurring given that B has
occurred. Since we know that B has occurred, we can now think of A as our new or
reduced sample space.

Example 3.1 (Ross p. 128 Question 6). An urn contains b black balls and r red balls.
One of the balls is drawn at random, but when it is put back in the urn, c additional balls
of the same colour are put in with it. Now, suppose that we draw another ball. Show that
the probability that the first ball was black, given that the second ball dawn was red is

b
b+ r+ c

.

Solution. Let A denote the event that the first ball was black and B denote the event that
the second ball drawn was red. By Definition 3.1,

P(A | B) =
P(A∩B)

P(B)
.

We have
P(A∩B) =

b
b+ r

· r
b+ r+ c

.

35
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Next,

P(B) =
b

b+ r
· r

b+ r+ c
+

r
b+ r

· r+ c
b+ r+ c

=
r

b+ r
.

The result follows. □

Proposition 3.1 (generalised multiplication rule). If A1,A2, . . . ,An are events, then

P(A1 ∩ . . .∩An) = P(A1)P(A2 | A1)P(A3 | A1 ∩A2) . . .P(An | A1 ∩ . . .∩An−1) . (3.1)

Proof. Apply the definition of conditional probability (Definition 3.1) to the right side of
(3.1) to get the following expression:

P(A1) ·
P(A2 ∩A1)

P(A1)
· P(A3 ∩A2 ∩A1)

P(A2 ∩A1)
· . . . · P(A1 ∩ . . .∩An)

P(A1 ∩ . . .∩An−1)

which is clear that it is equal to the left side of (3.1) after some cancellation.

Example 3.2 (ST2131 AY24/25 Sem 2 Tutorial 3). Suppose that an ordinary deck of 52
cards is shuffled and the cards are then turned over one at a time until the first ace appears.
Given that the first ace is the 20th card to appear, what is the conditional probability that
the card following it is the ace of spades?

Solution. Let B be the event that the 21st card is the ace of spades and A be the event
that the 20th card is the first ace. We wish to compute P(B | A). By Definition 3.1, this is
equal to

P(B∩A)
P(A)

.

P(B∩A) is the probability that the 20th card is the first ace and the 21st card is the ace
of spades. We proceed with casework. If the 20th card is the ace of spades, then this
contributes 0 to the probability. On the other hand, if the 20th card is some other type of
ace (i.e. diamonds, clubs, hearts), then the first 19 cards must be non aces. Hence, this
contributes a probability of

48
52

· 47
51

· . . . · 30
34

.

For the 20th card to be an ace but of some other type, we then multiply by 3/33. Lastly,
for the 21st card to be the ace of spades, we multiply by 1/32. As such,

P(B∩A) = 0+
(

48
52

· 47
51

· . . . · 30
34

)
· 3

33
· 1

32
.

P(A) is the probability that the 20th card is the first ace, which is(
48
52

· . . . · 30
34

)
· 4

33
.

Hence, P(B | A) = 3/128. □

Example 3.3. From a standard deck of cards, we take the twelve picture cards (i.e. the
J, Q, K of each suit) and leave out the other cards. These 12 cards are then shuffled at
random and dealt out to 4 players (each getting 3 cards).
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(a) What is the probability that the king of spades and the king of clubs are with differ-
ent players?

(b) What is the probability that the king of spades, the king of clubs and the king of
hearts are with different players?

(c) What is the probability that the four king cards are with different players?

Solution.

(a) Think of the 12 cards arranged as 4 hands of 3 cards each as follows:

(A1,A2,A3) , . . . ,(D1,D2,D3)

Place K♠ anywhere, say in a slot belonging to A. Then, K♣ can go into any of
B1, . . . ,D3, which has 9 favourable outcomes. So, the required probability is 9

11 .

(b) We first keep K♠ and K♣ in different hands with probability 9
11 . Given that there are

10 slots left, the two used hands have 2+ 2 = 4 slots, so the other By Proposition
3.1),

P(K♡ in a third hand | first two different) =
6

10
=

3
5
.

Hence, the probability required is

9
11

· 3
5
=

27
55

.

(c) Repeat this one last time — with three kings all in distinct hands, the remaining
slots are 9 total, which the one untouched hand has 3. Thus, by Proposition 3.1),

P(K♢ in fourth hand | first three different) =
3
9
=

1
3
.

The required probability is
9
11

· 3
5
· 1

3
=

9
55

.

Proposition 3.2. Let A be an event such that P(A) > 0. Then, the following three
statements hold:

(i) For any event B, 0 ≤ P(B | A)≤ 1.

(ii) P(S | A) = 1

(iii) Let B1,B2, . . . be a sequence of mutually exclusive events. Then,

P(B1 ∪B2 ∪ . . . | A) =
∞

∑
i=1

P(Bi | A).

Proof. We first prove (i). As P(A∩B) ≥ 0 and P(A) > 0, we prove the lower bound for
P(B | A). To prove P(B | A)≤ 1, note that B | A ⊆ A, implying that P(A∩B)≤ P(A), and
the result follows.
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For (ii), this follows from Definition 3.1 that

P(S | A) =
P(A∩S)

P(A)

and since P(A∩S) = P(A), the result follows.

Lastly, for (iii),

P(B1 ∪B2 ∪ . . . | A) =
1

P(A)
·P(A∩ (B1 ∪B2 ∪ . . .)) =

1
P(A)

∞

∑
i=1

P(Bi ∩A)

which simplifies to the desired result.

We now discuss an interesting concept in Probability known as Penny’s game. This refers
to a two-player combinatorial game in which one player, X , selects a sequence of heads
and tails of a given length (i.e. three coin flips), and the other player, B, selects a different
sequence of the same length. A fair coin is then flipped repeatedly, and the first player
whose sequence appears in the sequence of flips wins.

This game is particularly interesting because it demonstrates a surprising non-transitive
property. That is, for any sequence chosen by A, B can always pick a sequence that has a
higher probability of appearing first, despite both sequences having the same length. The
optimal strategy in Penny’s game relies on overlapping patterns in sequences.

Example 3.4 (Penny’s game). Say we are given the following 8 patterns:

HHH,HHT,HT H,T HH,HT T,T HT,T T H,T T T

Player X picks one of the patterns, and Player Y then picks one of the remaining 7 patterns.
A fair coin is tossed repeatedly until either Player X’s pattern appears (X wins) or Player
Y ’s pattern appears (Y wins).

(i) Find P(X wins) if X picks HHT and Y picks T HH.

(ii) Find P(X wins) if X picks HT H and Y picks HHT .

Solution. Note that the solution to this problem implicitly uses the law of total probability
(Proposition 3.3), but we will eventually state it in due course.

(i) Let

pX = probability X wins

pH = probability X wins given that previous outcome was H

pHT = probability X wins given that previous outcomes were H then T
... =

...
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We note that

pX =
1
2

pH +
1
2

pT and pH =
1
2

pHH +
1
2

pHT .

Also, pHT = pT . To see why, the first two outcomes that X and Y pick are HH
are T H respectively. Since neither outcome is HT , then we can effectively ignore
the first outcome, which is H, and analyse the remaining sequence from that point
onward. Hence,

pH =
1
2

pHH +
1
2

pT =
1
2
+

1
2

(
1
2

pT H +
1
2

pT T

)
since pHH = 1

so

pH =
1
2
+

1
4

pT H +
1
4

pT T . (3.2)

We shall talk our way through these coloured probabilities. Before that, note we
mentioned that pHH = 1. This is because

pHH =
1
2

pHHH +
1
2

pHHT =
1
2

pHH +
1
2
·1 =

1
2
+

1
2

pHH .

Here, we used the fact that pHHT = 1. As such, pHH = 1. Intuitively, once X obtains
the sequence HH, in the long run, no matter the subsequent outcomes, there exists
a sequence of HHT .

• We have pT H = 1
2 pT HT + 1

2 pT HH . Since Y wins (so X loses) upon obtaining
the sequence T HH, then pT HH = 0. Also, pT HT = pT H = pT . As such,
pT H = 1

2 pT .

• We have

pT T =
1
2

pT T T +
1
2

pT T H =
1
2

pT +
1
2

pT H =
1
2

pT +
1
4

pT =
3
4

pT

Substituting these into (3.2),

pH =
1
2
+

1
4
· 1

2
pT +

1
4
· 3

4
pT =

1
2
+

5
16

pT .

We leave it to the reader to prove that Note that

pT =
1
2

pT H +
1
2

pT T =
5
8

pT

which involves many intermediate steps. So, pT = 0. As such,

pH =
1
2
+

5
16

·0 =
1
2

so we conclude that pX = 1/4.

(ii) We use the same notation in (i). Similarly, we have

pX =
1
2

pH +
1
2

pT .
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Hence,

pX =
1
2

(
1
2

pHH +
1
2

pHT

)
+

1
2

(
1
2

pT H +
1
2

pT T

)
Note that pHH = 0 since no matter what sequence of outcomes appear after HH,
there eventually exists a sequence of HHT , making Y win. So,

pX =
1
4

pHT +
1
4

pT H +
1
4

pT T

=
1
4

(
1
2

pHT H +
1
2

pHT T

)
+

1
4

(
1
2

pT HH +
1
2

pT HT

)
+

1
4

(
1
2

pT T H +
1
2

pT T T

)
=

1
4

(
1
2
·1+ 1

2
pT

)
+

1
4

(
1
2
·0+ 1

2
pHT

)
+

1
4

(
1
2

pH +
1
2

pT

)
=

1
8
+

1
4

pT +
1
8

pHT +
1
8

pH

Note that
pHT =

1
2

pHT H +
1
2

pHT T =
1
2

pH +
1
2
·1 =

1
2

pH +
1
2
.

So,

pX =
1
8
+

1
4

pT +
1
8

(
1
2

pH +
1
2

)
+

1
8

pH .

In the process, we deduced that pH = pT = 1/3 (check this). These imply pH = 2/7
and pT = 1/7. As such, pX = 1/3.

3.2 Bayes’ Theorem
In many practical problems, we are often interested in reversing conditional probabilities.
That is, rather than computing the probability of an event B given that another event A
has occurred, we wish to determine the probability of A given that B has been observed.
Situations of this nature arise frequently in medical testing, quality control, etc. where
the observable evidence is the effect and the underlying cause is unknown.

Bayes’ theorem (Theorem 3.1) provides a systematic way to update probabilities when
new information becomes available. It relates forward probabilities such as P(B | A) to
reverse probabilities such as P(A | B).

Theorem 3.1 (Bayes’ theorem). If A and B are two different events with P(B) ̸= 0,
then

P(A | B)P(B) = P(B | A)P(A) .

Proof. This is a direct application of Definition 3.1.

We introduce the notion of the partition of a sample space S. We say that A1,A2, . . . ,An

are partitions of S if they are mutually exclusive and collectively exhaustive. The term
mutually exclusive is studied at both O-Level and A-Level Mathematics. It simply means

Ai ∩A j = /0 for all i ̸= j.
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In relation to probabilities,

P(A∪B) = P(A)+P(B) or equivalently P(A∩B) = 0.

The term collectively exhaustive means that

n⋃
i=1

Ai = S.

Example 3.5 (Ross p. 128 Question 8).

(a) Show that

P(H | E)
P(G | E)

=
P(H)P(E | H)

P(G)P(E | G)
.

(b) Suppose that before new evidence is observed, the hypothesis H is three times as
likely to be true as is the hypothesis G. If the new evidence is twice as likely when
G is true than it is when H is true, which hypothesis is more likely after the evidence
has been observed?

Solution. (a) is trivial by repeatedly applying the definition of conditional probability
(Definition 3.1). We will only solve (b). It is given that

P(H)

P(G)
= 3 before new evidence and

P(E | H)

P(E | G)
=

1
2

after new evidence.

By (a),
P(H | E)
P(G | E)

=
P(H)

P(G)
· P(E | H)

P(E | G)
= 3 · 1

2
> 1

which implies that H is still more likely after observing the evidence. □

We now introduce an important result known as the law of total probability (Proposition
3.3), which allows us to compute the probability of an event B by conditioning on a set
of mutually exclusive and collectively exhaustive events. The idea is that if the sample
space can be partitioned into disjoint events A1,A2, . . . ,An — each representing a possible
underlying cause, then the total probability of B can be computed by summing over the
conditional probabilities of B given each Ai, weighted by the probabilities of each Ai

occurring. This result is especially useful when the direct computation of P(B) is difficult,
but the conditional probabilities P(B | Ai) are more accessible.

Proposition 3.3 (law of total probability). Suppose the events A1,A2, . . . ,An are
partitions of S. Assume further that P(Ai)> 0 for all 1 ≤ i ≤ n. Let B be any event.
Then,

P(B) = P(B | A1)P(A1)+P(B | A2)P(A2)+ . . .+P(B | An)P(An) .

Example 3.6 (Ross p. 128 Question 11). A type C battery is in working condition with
probability 0.7, whereas a type D battery is in working condition with probability 0.4. A
battery is randomly chosen from a bin consisting of 8 type C and 6 type D batteries.
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(a) What is the probability that the battery works?

(b) Given that the battery does not work, what is the conditional probability that it was
a type C battery?

Solution.

(a) Let W be the event that the battery works. By the law of total probability (Proposi-
tion 3.3),

P(W ) = P(W |C)P(C)+P(W | D)P(D) = 0.7 · 8
14

+0.4 · 6
14

=
4
7
.

(b) By Definition 3.1, we have

P
(
C |W ′)= P(C∩W ′)

1−P(W )
=

P(W ′ |C)P(C)

1−4/7
.

Example 3.7. Identical twins are always of the same sex. Fraternal twins are equally
likely to be of the same sex as to be of different sex. Data collected in a city shows that
55% of twins are of the same sex. What is the probability that a randomly selected twin
in the city is a pair of identical twins?

Solution. Let A be the event that the twins are of same sex, and I be the event that the
twins are identical. So, P(I) = p, P(I′) = 1− p, P(A) = 0.55, P(A | I) = 1, P(A | I′) =
0.5. By the law of total probability (Proposition 3.3),

P(A) = P(A | I)P(I)+P
(
A | I′

)
P
(
I′
)
.

Substituting the probabilities yields p = 0.1. That is, there is a 0.1 probability that a
randomly selected twin in the city is a pair of identical twins. □

Example 3.8 (Ross p. 128 Question 9). You ask your neighbour to water a sickly plant
while you are on vacation. Without water, it will die with probability 0.8; with water, it ill
die with probability 0.15. You are 90 percent certain that your neighbour will remember
to water the plant.

(a) What is the probability that the plant will be alive when you return?

(b) If the plant is dead upon your return, what is the probability that your neighbour
forgot to water it?

Solution:

(a) Let event A be the event that the plant is alive and event B denote that the plant was
watered. Then, by the law of total probability (Proposition 3.3), we have

P(A) = P(A | B)P(B)+P
(
A | B′)P

(
B′)= 0.05 ·0.9+0.2 ·0.1 = 0.785.
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(b) By By Definition 3.1, we have

P
(
B′ | A′)= P(A′ | B′)

P(A′)
=

P(A′ | B′)P(B′)

1−P(A)
=

0.8 ·0.1
1−0.785

.

To apply Bayes’ theorem effectively, it is often helpful to break the sample space into
simpler, mutually exclusive scenarios. As such, we state Corollary 3.1, which can be
seen as a consequence of Bayes’ theorem (Theorem 3.1) and the law of total probability
(Proposition 3.3).

Corollary 3.1. For 1 ≤ i ≤ n,

P(Ai | B) =
P(B | Ai)P(Ai)

P(B | A1)P(A1)+ . . .+P(B | An)P(An)
. (3.3)

Example 3.9. The police in a city administer a breath analyzer test to catch drunk drivers.
A drunk driver taking the test will always get a positive result (for alcohol). However, 5%
of sober drivers taking the test will still get a positive result. One in a thousand drivers in
that city drive while they are drunk. The police stops a driver at random and administers
the test. The test gives a positive result. What is the probability that this driver is drunk?

Solution. Let A be the event that the driver is drunk and B be the event that we have a pos-
itive result. By applying Bayes’ theorem (Theorem 3.1) and the law of total probability
(Proposition 3.3) in succession, we have

P(A | B) =
P(B | A)P(A)

P(B)
=

P(B | A)P(A)
P(B | A)P(A)+P(B | A′)P(A′)

.

Observe that this matches the expression in (3.3). Substituting the respective probabilities,
we have

1 · 1
1000

1 · 1
1000 +0.05 · 999

1000

= 0.02.

□

Example 3.10 (ST2131 AY24/25 Sem 1 Lecture 7). A student applying to a graduate
program asks his professor for a letter of recommendation. He estimates that his chances
of getting a strong, average, weak recommendation are 30%, 20%, and 10%, and lastly a
40% chance of not receiving a recommendation letter.

He also estimates that his chances of getting accepted by the graduate programme would
be 90%, 40%, and 10% if the recommendation is strong, average, and weak respectively.

(a) Based on these estimates, what is his probability of getting accepted by the graduate
program?

(b) If he gets accepted by the graduate programme, what is the probability that his letter
of recommendation was a strong one?
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Solution.

(a) We can split the event into disjoint events. Let S,A,W,N denote the event that he
gets a strong, average, weak, and no recommendation letter respectively. Also, let
⋆ denote the event where he gets accepted. Then, by the law of total probability
(Proposition 3.3),

P(⋆) = P(⋆∩S)+P(⋆∩A)+P(⋆∩W )

= P(⋆ | S)P(S)+P(⋆ | A)P(A)+P(⋆ |W )P(W )

= 0.9 ·0.3+0.4 ·0.2+0.1 ·0.1 = 0.36

(b) We use the definition of conditional probability on the event P(S | ⋆) (Definition
3.1). Hence,

P(S | ⋆) = P(⋆∩S)
P(⋆)

=
P(⋆ | S)P(S)

P(⋆)
=

0.9 ·0.3
0.36

= 0.75.

Example 3.11 (Ross p. 129 Question 14). A coin having probability 0.8 of landing on
heads is flipped. A observes the result — either heads or tails, and rushes off to tell B.
However, with probability 0.4, A will have forgotten the result by the time he reaches B.
If A has forgotten, then rather than admitting this to B, he is equally likely to tell B that
the coin landed on heads or that it landed tails. If he does remember, then he tells B the
correct result.

(a) What is the probability that B is told that the coin landed on heads?

(b) What is the probability that B is told the correct result?

(c) Given that B is told that the coin landed on heads, what is the probability that it did
in fact land on heads?

Solution:

(a) Let H be the event the coin is heads, T be the event the coin is tails and F be the
event A forgets and R be the event B is told heads. Then, P(H) = 0.8, P(T ) = 0.2,
P(F) = 0.4, and P(F ′) = 0.6. By the law of total probability (Proposition 3.3),

P(R) = P(R | H)P(H)+P(R | T )P(T )

= (0.6 ·1+0.4 ·0.5)(0.8)+(0.6 ·0+0.4 ·0.5)(0.2)

which evaluates to 0.68.

(b) Let C be the event that B is told the correct result. By the law of total probability
(Proposition 3.3),

P(C) = P(C | H)P(H)+P(C | T )P(T )

= (0.6 ·1+0.4 ·0.5)(0.8)+(0.6 ·1+0.4 ·0.5)(0.8)

which evaluates to 0.8.
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(c) By Bayes’ theorem (Theorem 3.1),

P(H | R) =
P(R | H)P(H)

P(R)
=

(0.6 ·1+0.4 ·0.5)(0.8)
0.68

which evaluates to 0.941.

Example 3.12 (Ross p. 125 Question 4). A ball is in any one of n boxes and is in the ith

box with probability Pi. If the ball is in box i, a search of that box will uncover it with
probability αi. Show that the conditional probability that the ball is in the box j, given
that a search of box i did not uncover it, is

Pj

1−αiPi
if j ̸= i and

(1−αi)Pi

1−αiPi
if j = i.

Solution. Let B j be the event that ball is in box j and Ni be the event that search box i
does not uncover the ball. Then

P(Ni | B j) =

1−αi if j = i;

1 if j ̸= i.

By the law of total probability (Proposition 3.3), we have

P(Ni) =
n

∑
j=1

P
(
Ni | B j

)
P
(
B j
)
= (1−αi)Pi +∑

j ̸=i
P
(
Ni | B j

)
P
(
B j
)

Note that

∑
j ̸=i

P
(
Ni | B j

)
P
(
B j
)
= ∑

j ̸=i
P
(
B j
)
= 1−Pi.

Hence,
P(Ni) = (1−αi)Pi +1−Pi = 1−αiPi.

We then use Bayes’ theorem (Theorem 3.1) which states that

P
(
B j | Ni

)
=

P
(
Ni | B j

)
P
(
B j
)

P(Ni)
.

If j ̸= i, then

P
(
B j | Ni

)
=

Pj

1−αiPi
.

On the other hand, if j = i, then

P
(
B j | Ni

)
=

(1−αi)Pi

1−αiPi

which completes the proof. □

Example 3.13 (Ross p. 129 Question 19). Three players simultaneously toss coins. The
coin tossed by A,B,C turns up heads with respective probabilities P1,P2,P3. If one person
gets an outcome different from those of the other two, then he is the odd man out. If there
is no odd man out, the players flip again and continue to do so until they get an odd man
out. What is the probability that A will be the odd man?
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Solution. At each stage, everyone can obtain heads with probability P1P2P3 or tails with
probability Q1Q2Q3, where Qi = 1−Pi. Let k ∈ N be arbitrary. Consider a finite run of
length 3k consisting of blocks of the form P1P2P3 and Q1Q2Q3 . We can then arrange
the blocks as follows:

P1P2P3 Q1Q2Q3 Q1Q2Q3 . . . Q1Q2Q3 P1P2P3︸ ︷︷ ︸
run of length 3n

So, the probability required is

∞

∑
k=0

(P1P2P3 +Q1Q2Q3)
k (Q1P2P3 +P1Q2Q3) =

Q1P2P3 +P1Q2Q3

1−P1P2P3 −Q1Q2Q3
.

□

Example 3.14 (Ross p. 129 Question 21). If A flips n+ 1 fair coins and B flips n fair
coins, what is the probability that A gets more heads than B? A hint is to condition on
which player has more heads after each has flipped n coins.

Solution. We shall proceed using brute force — that is we will ignore the hint. If A
obtains k heads, then we wish to find the probability that B gets either 1, . . . ,k−1 heads,
where 1 ≤ k ≤ n+1. We have

P(A obtains k heads) =
(

n+1
k

)(
1
2

)k(1
2

)n+1−k(n+1
k

)
1

2n+1 .

Then,

P(B obtains 1, . . . ,k−1 heads) =
k−1

∑
j=1

(
n
j

)(
1
2

) j(1
2

)n− j

=
k−1

∑
j=1

(
n
j

)
1
2n .

By independence and taking the sum over all 1 ≤ k ≤ n+1, the required probability is

n+1

∑
k=1

k−1

∑
j=1

(
n+1

k

)(
n
j

)
1

22n+1 =
1

22n+1

n+1

∑
k=1

(
n+1

k

) k−1

∑
j=1

(
n
j

)
(3.4)

Recall Pascal’s identity (Theorem 1.1), which states that(
n+1

k

)
=

(
n
k

)
+

(
n

k−1

)
.

This can be easily proven by writing each binomial coefficient out using factorials. Hence,
(3.4) becomes

1
22n+1

n+1

∑
k=1

((
n
k

)
+

(
n

k−1

)) k−1

∑
j=0

(
n
j

)
.

Upon expansion, we obtain

1
22n+1

n+1

∑
k=1

k−1

∑
j=0

(
n
k

)(
n
j

)
+

1
22n+1

n+1

∑
k=1

k−1

∑
j=0

(
n

k−1

)(
n
j

)
. (3.5)
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Note that
( n

n+1

)
= 0. We write the sum in teal as

∑
0≤ j<k≤n

aka j where ar =

(
n
r

)
for 0 ≤ r ≤ n.

Note the identity

∑
0≤ j<k≤n

a jak =
1
2

( n

∑
r=0

ar

)2

−
n

∑
r=0

a2
r

 .

Now
n

∑
r=0

(
n
r

)
= 2n and

n

∑
r=0

(
n
r

)2

=

(
2n
n

)
.

Here, we used (1.4) and Corollary 1.3 respectively. Hence,

n+1

∑
k=1

k−1

∑
j=0

(
n
k

)(
n
j

)
=

1
2

(
4n −

(
2n
n

))
.

In a similar fashion,

n+1

∑
k=1

k−1

∑
j=0

(
n

k−1

)(
n
j

)
=

1
2

(
4n +

(
2n
n

))
.

Substituting everything into (3.5), we see that the required probability is

1
22n+1

(
2 ·4n

2

)
=

1
2
.

□

3.3 Independent Events
Independence is a fundamental concept that describes the absence of influence between
events. Intuitively, two events are said to be independent if the occurrence of one does
not alter the likelihood of the other. For instance, when tossing two fair coins, the result
of the first toss does not affect the outcome of the second; the events are independent. We
now formally introduce the idea of independent events (Definition 3.2).

Definition 3.2 (independent events). Two events A and B are independent if

P(A∩B) = P(A)P(B).

If equality does not hold, then A and B are dependent.

In relation to conditional probability, suppose P(B)> 0. If A and B are independent, then
P(A | B) = P(A) if knowledge that B has occurred odes not change the probability that A
occurs. Again, this follows by the definition of conditional probability (Definition 3.1).

Example 3.15 (Ross p. 125 Question 9). In each of n independent tosses of a coin, the
coin lands on heads with probability p. How large does n need to be so that the probability
of obtaining at least one head is at least 1

2?
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Solution. We must have

P(at least one head)≥ 1
2

so P(all tails)≤ 1
2
.

So, (1− p)n ≤ 1
2 , which implies n ≥− ln2

ln(1−p) . □

Example 3.16 (Ross p. 192 Question 59). How many people are needed so that the
probability that at least one of them has the same birthday as you is greater than 1

2?

Solution. Assume that the birthdays are independent and uniform over 365 days (ignoring
leap years). Let n be the sample size and consider the probability that none shares the
same birthday as me, which is (

364
365

)n

.

As such, we want

1−
(

364
365

)
>

1
2

so n >
ln 1

2

ln 364
365

= 252.65

Hence, n = 253+1 = 254 (including myself). □

Example 3.17 (Ross p. 129 Question 20). Suppose that there are n possible outcomes of
a trial, with outcome i resulting with probability pi for i ∈ {1, . . . ,n} and

n

∑
i=1

pi = 1.

If two independent trials are observed, what is the probability that the result of the second
trial is larger than that of the first?

Solution. Let X1 and X2 denote the two events. We have

P(X2 > X1) = P(X1 > X2)

by symmetry. Then, note that

P(X1 > X2) = ∑
i< j

P(X1 = j and X2 = i) =
n

∑
i=1

n

∑
j=1

pi p j.

Here, we used the fact that X1 and X2 are independent events. Moreover,

P(X1 = X2) =
n

∑
i=1

P(X1 = i and X2 = i) =
n

∑
i=1

p2
i .

Since
P(X1 > X2)+P(X2 > X1)+P(X1 = X2) = 1,

then

P(X2 > X1) =
1
2

(
1−

n

∑
i=1

p2
i

)
.

□
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Example 3.18 (ST2131 AY24/25 Sem 2 Tutorial 4). Prove that if E1, . . . ,En are inde-
pendent events, then

P(E1 ∪ . . .∪En) = 1−
n

∏
i=1

[1−P(Ei)] .

Solution. Recall de Morgan’s law, which states that

P(A1 ∪A2) = 1−P
(
A′

1 ∩A′
2
)
.

We can generalise this to n sets, i.e.

P(E1 ∪ . . .En) = 1−P
(
E ′

1 ∩ . . .∩E ′
n
)
= 1−

n

∏
i=1

P
(
E ′

i
)

and the result follows, where we used the fact that E1, . . . ,En are independent (to be
precise, mutually independent; see Definition 3.3) in the last equality. □

We shall now discuss pairwise independence and mutual independence (Definition 3.3).

Definition 3.3 (pairwise independence and mutual independence). Given three
events A, B and C, we say that they are pairwise independent if

P(A∩B) = P(A)P(B), P(A∩C) = P(A)P(C) and P(B∩C) = P(B)P(C).

We say that A, B, and C are mutually independent if

P(A∩B∩C) = P(A)P(B)P(C).

If A, B, and C are pairwise independent, it does not necessarily imply that they are mu-
tually independent. The converse, however, is true. That is, if A, B and C are mutually
independent, then they are necessarily also pairwise independent. It follows that mutual
independence is a stronger condition than pairwise independence.

Example 3.19 (Ross p. 129 Question 23). Let A and B be events having positive prob-
ability. State whether each of the following statements is necessarily true, necessarily
false, or possibly true.

(a) If A and B are mutually exclusive, then they are independent

(b) If A and B are independent, then they are mutually exclusive

(c) P(A) = P(B) = 0.6, and A and B are mutually exclusive

(d) P(A) = P(B) = 0.6 and A and B are independent

Solution. Suppose P(A)> 0 and P(B)> 0.

(a) We are given that A and B are mutually exclusive, so P(A∪B) = P(A)+P(B). By
the principle of inclusion and exclusion (Proposition 2.1), P(A∩B) = 0. For A and
B to be independent, we must have P(A∩B) = P(A)P(B), but this forces either
P(A) or P(B) to be zero, which is a contradiction. So, the statement is necessarily
false.



50 CHAPTER 3. CONDITIONAL PROBABILITY AND INDEPENDENCE

(b) We have P(A∩B) = P(A)P(B). Same as (a), this leads to a contradiction so the
statement is necessarily false.

(c) By the principle of inclusion and exclusion (Proposition 2.1), P(A∪B) = 1.2−
P(A∩B). For A and B to be mutually inclusive, P(A∩B) = 0, but this implies
that P(A∪B) = 1.2, which is a contradiction. Hence, A and B are not mutually
exclusive. So, the statement is necessarily false.

(d) Let A and B both denote the event that a biased coin, which shows heads with prob-
ability 0.6, lands on heads. Then P(A) = P(B) = 0.6 but the events are dependent.
Hence, the statement is necessarily false.

Example 3.20 (Ross p. 125 Question 9). Consider two independent tosses of a fair coin.
Let A be the event that the first toss results in heads, let B be the event that the second toss
results in heads, and let C be the event that in both tosses, the coin lands on the same side.
Show that the events A,B,C are pairwise independent — that is A and B are independent,
A and C are independent, and B and C are independent, but A,B,C are not independent.

Solution. We have P(A) = 1
2 , P(B) = 1

2 , and P(C) = 1
2 . For A∩B, is the event that the

first and second toss result in heads, which has probability 1
4 . So, A and B are indepen-

dent. Next, A∩C is again the event that the first and second toss result in heads, which has
probability 1

4 . Lastly, B∩C is also the event that the first and second toss result in heads,
which has probability 1

4 . Indeed, A and B are independent, A and C are independent, and
B and C are independent.

Note that A∩B∩C denotes the event that both the first and second toss result in heads,
which has probability 1

4 . However, P(A∩B∩B) is not equal to P(A)P(B)P(C). □

Example 3.21 (Ross p. 129 Question 22). Prove or give counterexamples to the following
statements:

(a) If E is independent of F and E is independent of G, then E is independent of F ∪G

(b) If E is independent of F and E is independent of G and FG = /0, then E is indepen-
dent of F ∪G

(c) If E is independent of F , and F is independent of G, and E is independent of FG,
then G is independent of EF

Solution.

(a) The statement is false. Let S = {1,2,3,4}. Define E = {1,2}, F = {1,3}, and
G = {1,4}. Hence, E ∩F = {1} and E ∩G = {1}. By computation, we see that

P(E ∩F) = P(E)P(F) and P(E ∩G) = P(F ∩G) .

However, F ∪G = {1,3,4}, which implies E ∩ (F ∪G) = {1}. This shows that

P(E ∩ (F ∪G)) ̸= P(E)P(F ∪G) .
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(b) The statement is true. Suppose E is independent of F , and E is independent of G,
and F ∩G = /0. By distributivity of union over intersection, we have

P(E ∩ (F ∪G)) = P((E ∩F)∪ (E ∩G))

= P(E ∩F)+P(E ∩G)−P(E ∩F ∩G)

= P(E)P(F)+P(E)P(G)

= P(E)(P(F)+P(G)−P(F ∩G))

which is equal to P(E)P(F ∪G). This implies that E is independent of F ∪G.

(c) Suppose E is independent of F , F is independent of G, and E is inependent of
F ∩G. By the associativity and commutativity of intersection, we have

P(G∩ (E ∩F)) = P(E ∩ (F ∩G))

= P(E)P(F ∩G)

= P(E)P(F)P(G)

which is equal to P(G)P(E ∩F). This shows that G is independent of E ∩F .

The gambler’s ruin problem (Example 3.22) states that a gambler playing a game with
negative expected value will eventually go broke, regardless of their betting system.

Example 3.22 (gambler’s ruin problem). Consider a gambler’s situation, where his start-
ing fortune is $ j, in every game, the gambler bets $1 and the gambler decides to play until
he either loses it all (i.e. fortune is 0) or his fortune reaches $N and he quits. What is the
probability to win1?

Solution. We use the gambler’s ruin equation to help us. However, we have to set up the
equation first! Let A j be the event that the gambler wins if he starts with a fortune of $ j.
Then, we can let x j = P(A j). For every game, suppose

P(win) = p, P(lose) = q and P(draw) = r which implies p+q+ r = 1.

By using first-step analysis, we can set up a second-order linear homogeneous recurrence
relation. That is,

px j+1 − (p+q)x j +qx j−1 = 0 where x0 = 0 and xN = 1 (3.6)

This is known as the gambler’s ruin equation. We shall prove this result. It suffices to
show that

(p+q)x j = px j+1 +qx j−1

To transit from the x j to x j+1, the player needs to win, hence we multiply by the associated
probability p. The same can be said for the transition from x j to x j−1, where the player

1The interested reader can visit this link for more information on this interesting concept of the gam-
bler’s ruin problem.

https://people.math.umass.edu/~lr7q/ps_files/teaching/math456/Chapter4.pdf
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needs to lose, implying that we multiply by q. For the player to remain at the same state,
he needs to obtain a draw. That is, multiplying x j by r. As such,

x j = px j+1 +qx j−1 + rx j

(1− r)x j = px j+1 +qx j−1

(p+q)x j = px j+1 +qx j−1

The initial conditions x0 = 0 and xN = 1 are obvious because when he has a fortune of
$0, it is impossible for him to win, and similarly, when he reaches $N, he already won,
implying that P(AN) = xN = 1. One can solve the recurrence relation in (3.6) to obtain
the required probability

x j =
1−
(

q
p

) j

1−
(

q
p

)N if p ̸= q.

To see why the above equation holds, given the gambler’s ruin equation

px j+1 − (p+q)x j +qx j−1 = 0,

we first find the auxiliary equation. That is, pm2−(p+q)m+q= 0. Solving yields m= 1
or m = q

p . The solution to the recurrence relation is of the form

x j = A+B
(

q
p

) j

.

Setting j = 0 gives A =−B. Setting j = N gives xN = 1, which implies

A−A
(

q
p

)N

= 1 so A =
1

1−
(

q
p

)N

Once we have found A, we can find B, and the rest is simple algebraic manipulation. □

Example 3.23 (gambler’s ruin problem). The gambler’s ruin problem is a fundamental
question in Probability Theory and it can be stated as follows. A person is playing a game
where they repeatedly win or lose $1, stopping to play either when they have no money
left or when they reach their pre-determined goal. We assume here that the probability to
win or lose $1 is the same, equal to 1

2 .

(a) Assuming that they start with $2 and have a goal of $4, how long on average do
they play this game?

(b) What happens if they instead start with $4 and have a goal of $8?

Solution.

(a) Let Ei denote the expected number of steps until absorption starting from i, where
i = 0,1,2,3,4. Note the boundary conditions E0 = 0 and E4 = 0. Next, for the
non-absorbing states, we have

Ei = 1+
1
2

Ei+1 +
1
2

Ei−1.
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As such,

E1 = 1+
1
2

E0 +
1
2

E2

E2 = 1+
1
2

E1 +
1
2

E3

E3 = 1+
1
2

E2 +
1
2

E4

By symmetry, E1 = E3. So, E2 = 1+E1. By taking the sum of E1 = 1+ 1
2E0+

1
2E2

and E3 = 1+ 1
2E2 +

1
2E4, we have

2E1 = 2+E2 = 2+1+E1.

Hence, E1 = 3 so E2 = 4.

(b) We now provide a faster method. Note that

Ei = 1+
1
2

Ei+1 +
1
2

Ei−1 with boundary conditions E0 = 0 and E8 = 0.

The solution to the homogeneous recurrence relation Ei+1−2Ei+Ei−1 = 0 is Ei =

Ai+B. Suppose a particular solution is Ei =Ci2. Then, one can deduce that C =−1
by substituting this into the recurrence relation. Hence,

Ei = Ai+B− i2.

When i = 0, we have E0 = 0 so B = 0. Since E8 = 0, then 8A− 64 = 0 so A = 8.
As such, Ei = 8i− i2. To conclude, E4 = 16.

Example 3.24 (Markov chain). Consider the 3 possible weather options in Singapore:
hot and comfortable, hot and humid, and hot and rainy. Looking at the weather for every
hour, we observe the following pattern: if it is comfortable, it becomes humid in the next
hour with probability 1

4 , rainy with probability 1
5 , and stays comfortable otherwise; if it

is humid, it becomes rainy with probability 1
2 and remains humid otherwise; and if it is

rainy, it becomes comfortable with probability 2
3 , humid with probability 1

4 , and remains
rainy otherwise.

If it is currently humid, on average how long should we wait before it becomes com-
fortable again?

Solution. Let tC, tH and tR denote the expected number of hours to hit comfortable starting
from C, H and R respectively. From the transition rules, we have

tH = 1+
1
2

tH +
1
2

tR and tR = 1+
1
4

tH +
1

12
tR.

Solve the system to obtain tH = 17
4 . □

Example 3.25 (ST2131 AY24/25 Sem 2 Tutorial 4). If 0 ≤ ai ≤ 1, where i = 1,2, . . .,
show that

∞

∑
i=1

[
ai

i−1

∏
j=1

(
1−a j

)]
+

∞

∏
i=1

(1−ai) = 1.
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Hint: Suppose that an infinite number of coins are to be flipped. Let ai be the probability
that the ith coin lands heads, and consider when the first head occurs.

Solution. Let ai denote the probability that the ith coin lands heads, so 1−ai denotes the
probability that the ith coin lands tails. We first investigate this problem by constructing
some example, i.e. replace ∞ by some positive integer, say 2 (the term on the left is
defined if the upper index in the sum ≥ 2). So, we wish to justify that

2

∑
i=1

[
ai

i−1

∏
j=1

(
1−a j

)]
+

2

∏
i=1

(1−ai) = 1.

Equivalently, we have

a1︸︷︷︸
H

+a2 (1−a1)︸ ︷︷ ︸
T H

+(1−a1)(1−a2)︸ ︷︷ ︸
T T

= 1.

Note that

a1 = a1

0

∏
j=1

(
1−a j

)
= a1 ·1 = a1.

We mentioned the respective outcomes too. For example, a2 (1−a1) denotes the proba-
bility that the first coin lands heads and the second coin lands tails. In fact, although ‘a1

denotes heads’ feels like a lack of information, it actually implies that the second outcome
can be either heads or tails, i.e.

a1 = a1a2︸︷︷︸
HH

+a1 (1−a2)︸ ︷︷ ︸
HT

.

So, for the case when the mentioned upper index in the sum is 2, it means that in a se-
quence of two tosses, the probability of obtaining either HH,HT,T H,T T is 1. When the
upper index is some N ∈ N, it means that in a sequence of N tosses, the probability of
obtaining either of the 2N outcomes is 1. Naturally, when we let N → ∞, we obtain the
desired identity.

We shall prove this formally. In the expression

∞

∑
i=1

[
ai

i−1

∏
j=1

(
1−a j

)]
,

the product of 1−a j over all 1 ≤ j ≤ i−1 denotes the probability that the first i−1 flips
are tails. Further multiplying this by ai, we see that for the case when i = 1,

a1

i−1

∏
j=1

(
1−a j

)
denotes the probability of the first head occurring on the 1st trial. In general,

ai

i−1

∏
j=1

(
1−a j

)
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denotes the probability that the first head occurs on the ith trial. Summing over all i ∈ N,
we obtain the probability that the first head occurs on some arbitrary trial! Since

∞

∏
i=1

(1−ai)

denotes the probability that all tosses land on tails, summing the mentioned probabilities
yields 1. □

Example 3.26 (ST2131 AY24/25 Sem 2 Tutorial 4). Let S = {1,2, . . . ,n} and suppose
that A and B are, independently, equally likely to be any of the 2n subsets (including the
null set and S itself) of S.

Show that

P(A ⊆ B) =
(

3
4

)n

.

Solution. We condition on the number of elements of B. Suppose |B| = 0, i.e. B = /0.
Then, A = /0 trivially. On the other hand, if |B| = 1, then B = {1}. Then, there are two
possibilities for A — /0 or {1}. Continuing this process, if |B|= 2, then B = {1,2}. Then,
there are four possibilities for A — /0,{1} ,{2} ,{1,2}.

In general, if |B| = k, where k ≤ n, i.e. B = {1, . . . ,k}, there are 2k possible ways to
form our subset A ⊆ B since each of the k elements can either be chosen or not. Summing
over all 0 ≤ k ≤ n, the total number of ways to form sets A ⊆ B ⊆ S is

n

∑
k=0

(
n
k

)
2k.

Here, the term
(n

k

)
is the number of ways to form the sets B, i.e. k-element subsets. This

is equivalent to the number of ways to choose k objects out of n distinct ones. By the
binomial theorem,

n

∑
k=0

(
n
k

)
2k = (2+1)n = 3n.

We divide this quantity by 4n to obtain the desired probability. In fact, 4n = 2n · 2n can
be interpreted as the number of ways to form the n-element subsets A,B ⊆ S without
restrictions. □

Example 3.27 (Monty Hall problem). Suppose you are on a game show, and given the
choice of three doors: Behind one door is a car; behind the others, goats (Figure 3.1). You
pick a door, say No. 1, and the host, who knows what’s behind the doors, opens another
door, say No. 3, which has a goat. He then says to you, “Do you want to pick door No.
2?” Is it to your advantage to switch your choice?



56 CHAPTER 3. CONDITIONAL PROBABILITY AND INDEPENDENCE

Figure 3.1: The Monty hall problem

The answer is yes! Initially, the probability of winning a car is 1/3. After the host opens
Door 3, the probability of winning a car is surprisingly not 1/2, but instead 2/3! We can
prove this result using a tree diagram or in a more elegant manner, Bayes’ theorem.

Let A be the event that Door No. 1 has a car behind it and B be the event that the host has
revealed a door with a goat behind it. By Corollary 3.1, we have

P(A | B) =
P(B | A)P(A)

P(B | A)P(A)+P(B | A′)P(A′)
.

A is the event that Door No. 1 has a car behind it. B | A is the event that the host shows
a door with nothing behind, given that there is a car behind Door No. 1. Note that
P(A) = 1/3 and P(B | A) = P(B | A′) = 1. Putting everything together, P(A | B) = 1/3.
Hence, the probability that the car is behind Door No. 3 is 2/3 and so you, the contestant,
should make the switch.



Chapter 4
Discrete Random Variables

4.1 Discrete Random Variables

A random variable is discrete if the range of X is either finite or countably infinite. The
latter means that there exists a bijection f : X → N. Examples of discrete random vari-
ables include the binomial distribution (Chapter 4.4) covered in H2 Mathematics and the
geometric distribution and the Poisson distribution (Chapters 4.5 and 4.7 respectively)
covered in H2 Further Mathematics.

Here, we will study a few more distributions. For example, the Bernoulli distribution
(Chapter 4.3), named after Jacob Bernoulli, who came from an academically gifted family
that produced eight notable mathematicians and physicists. This can be seen as a special
case of the binomial distribution. Also, we will study the negative binomial distribution
(Chapter 4.6), which is closely related to the geometric distribution, and the last addition
is the hypergeometric distribution (Chapter 4.8), which is implicitly covered since one’s
O-Level days.

Definition 4.1 (discrete random variable). Suppose a random variable X is discrete,
taking values x1,x2, . . .. Then, the probability mass function of X is

PX (x) =

P(X = x) if x = x1,x2, . . . ;

0 otherwise

The probability mass function is abbreviated as PMF.

Proposition 4.1. Some properties of the probability density/mass function are as
follows:

(i) pX(xi)≥ 0 for i = 1,2, . . .

(ii) pX(x) = 0 for all other values of x

57
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(iii) Since X must take on one of the values of xi, then

∞

∑
i=1

pX(xi) = 1.

We use uppercase letters to denote random variables and use lowercase letters to denote
the values of random variables.

Example 4.1 (Ross p. 200 Question 31). Let X be the ith smallest number in a random
sample of n of the numbers 1, . . . ,n+m. Find the probability mass function of X .

Solution. For k to be the ith smallest number, we must have i−1 numbers in {1, . . . ,k−1},
then let the ith number be k, and n− i numbers in {k+1, . . . ,m+n}. Hence,

P(X = k) =

(
k−1
i−1

)(
m+n− k

n− i

)
(

m+n
n

) for k = i, i+1, . . . ,N − (n− i) .

Note that this looks similar to the probability mass function of a hypergeometric random
variable (Definition 4.9). □

Definition 4.2 (cumulative distribution function). The cumulative distribution
function of X , or CDF in short and denoted by FX , is defined as FX : R→ R, where

FX : R→ R where FX (x) = P(X ≤ x) .

Note that if x1 < x2 < x3 < .. ., then F is a step function. That is, F is constant in the
interval [xi−1,xi). Also, note that for any discrete random variable, the probability mass
function and cumulative distribution function are related as follows:

P(X = x) = P(X ≤ x)−P(X ≤ x−1) (4.1)

Example 4.2 (Ross p. 189 Question 19). If the distribution function of the random
variable X is given by

F(x) =



0 x < 1
1
4 1 ≤ x < 3
5
8 3 ≤ x < 4
3
4 4 ≤ x < 6
7
8 6 ≤ x < 7

1 x ≥ 7

,

calculate the probability mass function of X .

Solution. Given the distribution function F(x) of the random variable X , we compute the
probability mass function p(x) = P(X = x) by evaluating the jump in F(x) at each point.
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For example, P(X = 1)−F (1)−F (1−) which is equal to 1
4 . Repeat this for the other

probabilities to obtain the probability mass function as follows:

x 1 3 4 6 7
P(X = x) 1

4
3
8

1
8

1
8

1
8

□

Example 4.3 (Ross p. 199 Question 10). An urn contains n balls numbered 1 through
n. If you withdraw m balls randomly in sequence, each time replacing the ball selected
previously, find P(X = k) where k = 1, . . . ,n, where X is the maximum of the m chosen
numbers. A hint is to first find P(X ≤ k).

Solution. X ≤ k means every one of the m draws lies in {1, . . . ,k}. Each ball hits the set
with probability k

n . Hence, we have

P(X ≤ k) =
(

k
n

)m

.

Using (4.1), we see that

P(X = k) = P(X ≤ k)−P(X ≤ k−1) =
(

k
n

)m

−
(

k−1
n

)m

.

□

4.2 Expectation and Variance

Definition 4.3 (expectation). The expected value of X , or the expectation of X ,
denoted by E(X) or µX , is defined by

E(X) = ∑
all x

xP(X = x).

Sometimes, we will use E(X) or E [X ] to denote the expectation of the random variable
X .

Proposition 4.2. We state some properties of expectation. Let X and Y be random
variables and a and b be constants.

(i) E(aX) = aE(X)

(ii) E(a) = a

(iii) E(aX ±b) = aE(X)±b

(iv) E(aX ±bY ) = aE(X)±bE(Y )

(v) If X1,X2, . . . ,Xn are independent random variables, then

E

(
n

∑
i=1

Xi

)
=

n

∑
i=1

E (Xi) = nE(X).
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Given a random variable X , we are often interested about g(X) and E(g(X)). The ques-
tion is how do we compute the latter? One method is to find the what is known as the
probability density function of g(X) first before proceeding to compute E(g(X)) by defi-
nition. If X is a discrete random variable that takes values xi, where i ≥ 1, with respective
probabilities pX(xi), then for any real-valued function g,

E(g(X)) = ∑
all x

g(x)PX(x).

We can derive the four properties of expectation in Proposition 4.2 easily by definition.
Next, we see that by setting g(x) = x2, we have

E(X2) = ∑
all x

x2PX(x).

We call this the second moment of X (see Definition 4.4 for the definition of the moment
of a random variable). We can generalise this result to E(Xn) for n ∈ N, which is of
interest when we discuss the moment generating function of a random variable (Definition
7.7). As such,

E(Xn) = ∑
all x

xnPX(x) for all n ∈ N.

We can also define quantities like

E
(

1
X

)
= ∑

all x

1
x
·PX(x).

Example 4.4 (Ross p. 198 Question 2). Suppose that X takes on one of the values 0,1
and 2. If for some constant c, P(X = i) = cP(X = i−1) for i = 1,2, find E(X).

Solution. We have the following probability distribution table.

i 0 1 2
P(X = i) p cp c2 p

As such, we have E (X) = cp+2c2 p. □

Example 4.5 (Ross p. 195 Question 6). Let X be a random variable such that P(X =

1) = 1−P(X =−1). Find c ̸= 1 such that E
(
cX)= 1.

Solution. Trivial! □

Example 4.6 (Ross p. 189 Question 24). A and B play the following game: A writes down
either number 1 or 2, and B guesses which one. If A has written i and B also guesses i,
then B receives i dollars from A. If B makes a wrong guess, B pays $0.75 to A. Suppose
B randomizes his decision by guessing 1 with probability p and 2 with probability 1− p.

Let X and Y be the amount that B gains if A has written 1 and 2 respectively. Find
E[X ] and E[Y ] and the value of p such that the smaller value of E[X ] and E[Y ] attains the
maximum value.
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Solution. We have

E (X) = p−0.75(1− p) = 1.75p−0.75 and E(Y ) = 2(1− p)−0.75p = 2−2.75p.

We wish to find the value of p that maximises min{1.75p−0.75,2−2.75p}, which is the
p-coordinate of the intersection point of the graphs of y= 1.75p−0.75 and y= 2−2.75p.
One checks that it is p = 11/18. □

Example 4.7 (Ross p. 189 Question 23). You have $1000, and a certain commodity
presently sells for $2 per ounce. Suppose that after one week the commodity will sell for
either $1 or $4 an ounce, with these two possibilities being equally likely.

(a) If your objective is to maximize the expected amount of money that you possess at
the end of the week, what strategy should you employ?

(b) If your objective is to maximize the expected amount of the commodity that you
possess at the end of the week, what strategy should you employ?

Solution.

(a) Let X be the random variable denoting the price next week. Say we buy q ounces
now, leaving us with 1000−2q cash remaining. Hence, our wealth next week is

W (q) = 1000−2q+qX .

Hence,

E (W ) = 1000−2q+qE (X) = 1000−2q+q
(

1+4
2

)
= 1000+

q
2

which is increasing in q. To maximise the expectation, we should set q = 0.

(b) We now wish to maximise the expected amount of the commodity that we possess
at the end of the week. Let q be the number of ounces bought today. After one
week, say the price of the commodity is X , so define

C (q) = q+
1000−2q

X
.

The expectation is 5
4q + 5000

8 . To maximise the expected commodity, take q =

500.

Example 4.8 (ST2131 AY18/19 Sem 1 Midterm). Three coins each show heads with
probability 3/5 (and tails otherwise). However, for each coin, you receive a different
number of points according to whether it shows head or tail. Here is the table of points
allocation for each coin:

Coin Points when Heads Points when Tails
C1 10 2
C2 4 4
C3 3 20
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Suppose you and an opponent play a game. You will choose a coin each. Each of you
will then toss your coin once; the person with the greater number of points wins. Your
opponent gets to choose his/her coin first, and chooses C3. You then have two options
before you toss your coins: either pick C2 or C1. What do you do? Explain your decision
clearly. Hint: Should we think in terms of expected values or in terms of the probability
with which you can defeat his/her coin?

Solution. Suppose our opponent picks C3. The expected number of points our opponent
would obtain is

3 · 3
5
+20 · 2

5
= 9.8.

If we pick C1, our expected score is 6.8; if we pick C2, our expected score is 4. In both
cases, our expected score is less than our opponent, so using expectation is not a good
quantifier.

We use an alternative quantifier using the notion of condition probability.

P(I win | I picked C1) = P(me C1 heads and opponent C3 heads) =
(

3
5

)2

. (4.2)

On the other hand,

P(I win | I picked C2) = P(me C2 heads and opponent C3 heads)

+P(me C2 tails and opponent C3 heads)

=

(
3
5

)2

+

(
2
5

)(
3
5

)
which is obviously greater than the probability in (4.2), so picking C2 gives me a better
chance. □

Example 4.9 (Ross p. 195 Question 4). Suppose

P(X = n) =
4

n(n+1)(n+2)
where n ≥ 1. (4.3)

(a) Show that (4.3) is actually a probability mass function.

(b) Show that E(X) = 2.

(c) Show that E(X2) = ∞.

Solution.

(a) Use partial fraction decomposition. Then, recognise that the sum over all n ≥ 1 can
be interpreted as a telescoping series, so the sum of probabilities is equal to 1. That
is,

∞

∑
n=1

4
n(n+1)(n+2)

= 1

so indeed, (4.3) is indeed a probability mass function.
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(b) We have

E (X) =
∞

∑
n=1

nP(X = n) =
∞

∑
n=1

4
(n+1)(n+2)

for which by partial fraction decomposition again yields E (X) = 2.

(c) We have

E
(
X2)= ∞

∑
n=1

4n
(n+1)(n+2)

≥
∞

∑
n=1

1
n

where the sum on the right, known as the harmonic series, diverges. The result
follows. This exercise shows that E

(
X2) is infinite, thus Var(X) is also infinite.

Example 4.10 (modified from Ross p. 198 Question 4). There are four buses, carrying
40, 35, 25, 50 students respectively (not counting the drivers).

(a) From the 150 students, one of them is selected at random, and X denotes the number
of students on his/her bus. Find E(X).

(b) From the 4 bus drivers, one of them is selected at random, and Y denotes the number
of students on his/her bus. Find E(Y ).

In a completely new setup, suppose we have buses 1, . . . ,r with bus i having ni many
students. Let X be the random variable denoting the number of students in the bus when
the student is randomly selected, and Y is the random variable denoting the number of
students in the bus when the driver is randomly selected. Prove or disprove whether
E (Y )≤ E (X).

Solution.

(a) Picking a student uniformly from the 150 size-biases towards bigger buses. We
have

E (X) = ∑
x

xP(X = x) = 40 · 40
150

+ . . .+50 · 50
150

=
119
3

.

(b) Picking a driver uniformly from the 4 drivers gives a plain average. We have

E (Y ) = ∑
y

yP(Y = y) = 40 · 1
4
+ . . .+50 · 1

4
= 0.375.

As for the last (interesting) part where we are asked to prove or disprove whether E (Y )≤
E (X), let the total number of students be S. Then, n1 + . . .+nr = S. We have

E (X) = n1 ·
n1

S
+ . . .+

nr

S
=

1
S

r

∑
i=1

n2
i .

Next,

E (Y ) = n1 ·
1
r
+ . . .+nr ·

1
r
=

1
r

r

∑
i=1

ni =
S
r
.

By the Cauchy-Schwarz inequality,

r

(
r

∑
i=1

n2
i

)
≥

(
r

∑
i=1

ni

)2

so r

(
r

∑
i=1

n2
i

)
≥ S2.

Equivalently, E (X)≥ E (Y ), so the statement holds.
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Definition 4.4 (moment). In general, for n ≥ 1, E(Xn) is the nth moment of X . The
expected value of a random variable X , E(X), is also referred to as the first moment
or the mean of X .

Next, we define E [(X −µ)n] to be the nth central moment of X . Hence, the first central
moment is 0 and the second central moment is E(X −µ)2, which is called the variance of
X .

Proposition 4.3 (tail sum formula for expectation). For a non-negative integer-
valued random variable X ,

E(X) =
∞

∑
i=1

P(X ≥ i) =
∞

∑
i=0

P(X > i).

Proof. Let X be a non-negative integer-valued random variable, so X ∈{0,1,2, . . .}. Then
by definition of expectation (Definition 4.3), we have

E(X) =
∞

∑
k=0

k ·P(X = k).

Noting that we can start the sum at k = 1 since 0 ·P(X = 0) = 0 contributes nothing. Now,
for each k, write

k =
k

∑
i=1

1.

Hence, we can write

E(X) =
∞

∑
k=1

(
k

∑
i=1

1

)
·P(X = k) =

∞

∑
k=1

(
k

∑
i=1

P(X = k)

)
.

By changing the order of summation (justified because all terms are non-negative), we
obtain

E(X) =
∞

∑
i=1

∞

∑
k=i

P(X = k).

Since
∞

∑
k=i

P(X = k) = P(X ≥ i),

this proves the desired result.

Example 4.11 (ST2131 AY18/19 Midterm). Let X1,X2, . . . be independent and identi-
cally distributed discrete random variables with

pi = Pr(X j = i) and
∞

∑
i=1

pi = 1.

For a given pattern of length n, denoted by (i1, i2, . . . , in), let T be the number of variables
we need to observe until the pattern appears. For instance, if the pattern is (3,5,1), then
T = 8 if the following sequence is observed:

5,3,1,3,5,3,5,1,6,2, . . .

Assume the pattern has no overlaps (i.e. no proper prefix of the pattern equals a suffix).
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(a) Show that, for j = 0,1, . . .,

{T = j+n} if and only if {T > j, (X j+1, . . . ,X j+n) = (i1, . . . , in)}.

(b) Show that

E (T ) =
1

pi1 pi2 . . . pin
.

Solution.

(a) By definition, {T = j+n} if and only if the pattern first occurs ending at time j+n.
This means that the block

(
X j+1, . . . ,X j+n

)
= (i1, . . . , in). Note that the pattern does

not occur earlier. That is, T > j. So, we obtain the forward inclusion.

For the reverse inclusion, T > j implies that the pattern has not occurred in the
first j positions. The tuple equivalence

(
X j+1, . . . ,X j+n

)
= (i1, . . . , in) means that

we see the pattern occurring at j+1, . . . , j+n, thus ending at j+n.

(b) We have
∞

∑
j=0

P(T = j+n) = 1.

Equivalently by (a),
∞

∑
j=0

P
(
T > j and

(
X j+1, . . . ,X j+n

)
= (i1, . . . , in)

)
= 1.

By the law of total probability (Proposition 3.3),
∞

∑
j=0

P
(
T > j |

(
X j+1, . . . ,X j+n

)
= (i1, . . . , in)

)
· pi1 . . . pin = 1.

Note that the sum in red is E (T ) so the result follows.

Definition 4.5 (variance and standard deviation). If X is a random variable with
mean µ , then the variance of X , denoted by Var(X), is defined by

Var(X) = E(X −µ)2.

The standard deviation of X , denoted by σX , is defined by
√

Var(X).

An alternative formula for variance is

Var(X) = E(X2)− [E(X)]2. (4.4)

Proof.

Var(X) = E(X −µ)2

= E(X2 −2µX +µ
2)

= E(X2)−2µE(X)+E(µ2)

= E(X2)−2[E(X)]2 +µ
2

= E(X2)−2[E(X)]2 +[E(X)]2

and the result follows.
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Note that Var(X) ≥ 0 since it is the square of the standard deviation. Since standard
deviation is defined as the spread of data about the mean, then the result follows. Alter-
natively, we can think of it in a more mathematical way. By the definition of Var(X) in
Definition 4.5), we have Var(X) = E(X −µ)2. Note that the right side of the equation is
non-negative, and hence the result follows too.

Definition 4.6 (degenerate random variable). We say that Var(X) = 0 if and only
if X is a degenerate random variable.

Moreover, from (4.4), it follows that

E(X2)≥ [E(X)]2 ≥ 0.

Is it true that for all n ∈ N,
E(Xn)≥ [E(X)]n?

We will discuss this in Chapter 8.1, and to prove this result, we need to use a famous
inequality called Jensen’s inequality (Theorem 8.3). It turns out that the answer is true as
shown in Corollary 8.1.

Proposition 4.4. We state some properties of variance. Let X be a random variable
and a and b be constants. Then,

(i) Var(aX) = a2 Var(X)

(ii) Var(a) = 0

(iii) Var(aX +b) = a2 Var(X)

(iv) If X1,X2, . . . ,Xn are independent random variables, then

Var

(
n

∑
i=1

Xi

)
=

n

∑
i=1

Var(Xi) = nVar(X).

Example 4.12 (Ross p. 244 Question 8). Let X be a random variable that takes on values
between 0 and c. That is, P(0 ≤ X ≤ c) = 1. Show that

Var(X)≤ c2

4
.

Solution. Assume that X is a discrete random variable (note that our proof will still hold
even if X is a continuous random variable since an integral can be regarded as a continuous
analogue of a sum). Hence,

E (X) = ∑
0≤x≤c

xP(X = x) and E(X2) = ∑
0≤x≤c

x2P(X = x) .

Since Var(X) = E(X2)− [E(X)]2, then

Var(X) = ∑
0≤x≤c

x2P(X = x)−

[
∑

0≤x≤c
xP(X = x)

]2

.
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Since we wish to find an upper bound for Var(X), we need to find an upper bound for
E(X2). Since y = x2 is convex, then for any 0 ≤ x ≤ c, we have 0 ≤ x2 ≤ cx so

Var(X) = c ∑
0≤x≤c

xP(X = x)−

[
∑

0≤x≤c
xP(X = x)

]2

.

Let E (X) = k so Var(X) = ck−k2. The variance can be interpreted as a function in terms
of k, which is maximised at k = c/2. So, the maximum value for the variance is

c · c
2
−
(c

2

)2
=

c2

4

which completes the proof. □

Example 4.13 (ST2131 AY18/19 Sem 1 Midterm). A biased coin is tossed n times. On
each toss, it shows heads with probability p and tails with probability q= 1− p. Each toss
is independent of other tosses. A run is defined to be a sequence of tosses which result in
the same outcome. For instance, the sequence HHT HT T H contains five runs. Let I j be
the indicator function of the event that the outcome of the ( j+1)th toss is different from
the outcome of the jth toss. Then the number of distinct runs, R, can be written as

R = 1+
n−1

∑
j=1

I j.

(a) Find E (R).

(b) Show that E[(R−1)2] = 2(2n−3) pq+4(n−2)(n−3) p2q2.

(c) Hence, find Var(R).

Solution.

(a) By the linearity of expectation, we have

E (R) = 1+E (I1)+ . . .+E (In−1) .

Two successive tosses differ if the first is heads and the next tails, or the first is
tails and the next heads. So, the probability of obtaining different outcomes is
pq+qp = 2pq. So, E

(
I j
)
= 2pq for all 1 ≤ j ≤ n−1. Hence,

E (R) = 1+2(n−1) pq.

(b) We have

R−1 =
n−1

∑
j=1

I j.

So,

(R−1)2 =

(
n−1

∑
j=1

I2
j

)
+2 ∑

1≤i≤ j≤n−1
IiI j.
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By property of indicator random variables, we have I2
j = I j so

E

(
n−1

∑
j=1

I2
j

)
= E

(
n−1

∑
j=1

I j

)
= 2(n−1) pq.

Next, we compute E
(
IiI j
)
=E (Ii)E

(
I j
)
. For non-adjacent indicators, that is | j− k| ≥

2, the pairs involve disjoint tosses. So, we obtain four different coin flips. By inde-
pendence,

E (Ii)E
(
I j
)
= (2pq)2 = 4p2q2.

For adjacent indicators, that is, k = j + 1, the events share the ( j+1)th toss so
they are now not independent. For both I j = 1 and I j+1 = 1, we need toss j to
be ̸= j + 1, and toss j + 1 to be ̸= j + 2. This happens when the sequence of 3
consecutive tosses alternates, i.e. HT H or T HT . So,

P
(
I j = 1 and I j+1

)
= P(HT H)+P(T HT ) = p2q+q2 p = pq.

Putting everything together yields the desired result.

(c) We computed
E[(R−1)2] = E

(
R2)−2E (R)+1

in (b). Also, recall we obtained a formula for E (R) in (a). All that is left is to use
the standard formula for variance.

4.3 Bernoulli Distribution
Let us discuss the first special discrete random variable, known as the Bernoulli distribu-
tion. If X ∼ Bernoulli(p),

X =

{
1 if it is a success
0 if it is a failure

.

We refer p to be the probability of success and q to be the probability of failure. In
particular, we say that p is the parameter of the distribution since it is the only term
within the bracket. As such, p+q = 1. Then, P(X = 1) = p and P(X = 0) = 1− p = q.

Proposition 4.5. The expectation and variance of a Bernoulli random variable with
parameter p is

E(X) = p and Var(X) = pq.

We first prove the result for expectation, which is obvious.

Proof. E (X) = 0 ·q+1 · p = p

Next, we prove the result for variance.

Proof. E
(
X2)= 02 ·q+12 · p = p. As proven earlier, we have [E (X)]2 = p2. The result

follows.
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Even though the Bernoulli distribution is rather new in this context, it is actually not new
because it is closely related to the binomial distribution. We will discuss this in Chapter
4.4.

Example 4.14 (Ross p. 200 Question 21). Suppose

P(X = a) = p and P(X = b) = 1− p.

Here, a,b ∈R are distinct. One can easily prove that X−a
a−b is a Bernoulli random variable,

but we omit the details. Find Var(X).

Solution. We have

E (X) = ap+b−bp and E
(
X2)= a2 p+b2 −b2 p.

Then,

Var(X) = E
(
X2)− [E (X)]2 = a2 p+b2 −b2 p− (ap+b−bp)2 .

□

Example 4.15. Suppose X1, . . . ,X9 are Bernoulli random variables with parameters
1

1 ·2
,

1
2 ·3

, . . . ,
1

9 ·10
respectively.

(a) Find the value of E (X1 + . . .+X9).

(b) Find the value of E
(
X1 +X2

2 +X3
3 +X4

4
)
.

Solution.

(a) By the linearity of expectation,

E (X1 + . . .+X9) = E (X1)+ . . .+E (X9)

=
1

1 ·2
+

1
2 ·3

+ . . .+
1

9 ·10

=
9

∑
n=1

1
n(n+1)

By partial fraction decomposition, one can see this as a telescoping series, which
evaluates to 0.9.

(b) Again by the linearity of expectation,

E
(
X1 +X2

2 +X3
3 +X4

4
)
= E (X1)+E

(
X2

2
)
+E

(
X3

3
)
+E

(
X4

4
)

=
1

1 ·2
+

1
2 ·3

+
1

3 ·4
+

1
4 ·5

which evaluates to 0.8.

To summarise,

Random Variable PMF Parameter(s) E(X) Var(X)

Bernoulli(p) X =

{
1 if it is a success;
0 if it is a failure

p p pq
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4.4 Binomial Distribution
Suppose we perform an experiment n times and the probability of success for each trial
is p. We define X to be the number of successes in n Bernoulli(p) trials. Then, X takes
values between 0 and n inclusive and for 0 ≤ k ≤ n,

P(X = k) =
(

n
k

)
pkqn−k.

We can write it as X ∼ B(n, p) and we the values of k the random variable can take are
referred to as the support of X . Recall that there are k successes and hence, n−k failures.
The probability of success and probability of failure are p and q respectively. Thus, we
obtain the probability mass function for the binomial random variable.

Examples 4.16 and 4.17 give some elementary examples of the binomial distribution.

Example 4.16 (number of correct answers from multiple-choice questions). The proba-
bility of getting right answers out of 20 multiple-choice questions when one out of four
options were chosen arbitrarily. Here, X denotes the number of right answers. The prob-
ability of an answer being right is 1

4 . The binomial distribution can be represented as
X ∼ B

(
20, 1

4

)
.

Example 4.17 (coin toss). Suppose a coin is tossed 50 times and we wish to find out how
many heads we obtain. Here, X is the number of successes. That is the number of times
heads occurs. The probability of getting a head is 1

2 . The binomial distribution could be
represented as X ∼ B

(
50, 1

2

)
.

Example 4.18 (Ross p. 191 Question 50). When coin 1 is flipped, it lands on heads with
probability 0.4; when coin 2 is flipped, it lands on heads with probability 0.7. One of
these coins is randomly chosen and flipped 10 times

(a) What is the probability that the coin lands on heads on exactly 7 of the 10 flips?

(b) Given that the first of these 10 flips lands heads, what is the conditional probability
that exactly 7 of the 10 flips land on heads?

Solution. Let X denote the number of times coin 1 lands on heads and Y denote the
number of times coin 2 lands on heads. Then, X ∼ B(10,0.4) and Y ∼ B(10,0.7).

(a) Note that the probability of choosing either coin 1 or coin 2 is 1
2 . By the law of total

probability (Proposition 3.3), the desired probability is

1
2

P(X = 7)+
1
2

P(Y = 7) =
1
2

(
10
7

)
(0.4)7(0.6)3 +

1
2

(
10
y

)
(0.7)7(0.3)3 = 0.155.

(b) Let A be the event that the first of the 10 flips lands heads, and B be the event that
exactly 7 of the 10 flips land on heads. Then, we wish to find the value of P(B | A).
Then, A∩B is the event that we obtain the sequence

H T HHHHHHT T︸ ︷︷ ︸
some permutation of Hs and Ts

,
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which occurs with probability

1
2
·0.4 ·

(
9
6

)
(0.4)6 (0.6)3 +

1
2
·0.7 ·

(
9
6

)
(0.7)6 (0.3)3 .

Here, we used the law of total probability (Proposition 3.3). Next, and again using
the law of total probability (Proposition 3.3), we have

P(A) =
1
2
·0.4

9

∑
k=0

(
9
k

)
(0.4)k (0.6)9−k +

1
2
·0.7

9

∑
k=0

(
9
k

)
(0.7)k (0.3)9−k .

By the definition of conditional probability (Definition 3.1),

P(B | A) =
P(B∩A)

P(A)
=

0.108253341
0.55

= 0.197.

Example 4.19. A biased coin has a probability of 75% of showing head. The coin is
flipped 10 times independently.

(a) Given that a total of 6 heads appeared among the 10 flips, what is the conditional
probability that the first 3 flips are head, tail, tail?

(b) Given that a total of 6 heads appeared among the 10 flips, what is the conditional
probability that exactly 3 heads appear in the first 4 flips?

Solution.

(a) Let X be the random variable denoting the outcome of the biased coin. Then,
X ∼B(10,0.75), where heads denotes a positive outcome. The required probability
is

0.75 ·0.252 ·
(

7
5

)
0.755 ·0.252

P(X = 6)
= 0.0996.

(b) The probability is (
4
3

)
0.753 ·0.25 ·

(
6
3

)
0.753 ·0.253

P(X = 6)
= 0.380.

Example 4.20 (Ross p. 199 Question 13). Each of the members of a 7-judge panel
independently makes a correct decision with probability 0.7. If the panel’s decision is
made by majority rule, what is the probability that the panel makes the correct decision?
Given that 4 of the judges agreed, what is the probability that the panel made the correct
decision?
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Solution. Let X denote the number of judges that make the correct decision. So, X ∼
B(7,0.7). The panel is correct if and only if X ≥ 4. One works out that P(X ≥ 4)= 0.874.
Next, let A be the event that the panel is correct and B be the event that 4 of the judges
agreed. By Definition 3.1, we have

P(A | B) =
P(A∩B)

P(B)
=

P(X = 4)
P(X = 3)+P(X = 4)

= 0.7.

□

Example 4.21. There are 2 coins. Coin A has a 40% probability of showing heads, and
coin B has a 70% probability of showing heads. One of the coins is chosen at random and
flipped 10 times.

(a) What is the probability that we see 9 or more heads?

(b) If we do see 9 or more heads, what is the probability that coin B was the chosen
one?

Solution.

(a) By the law of total probability (Proposition 3.3),

P(9 or more heads) = P(9 or more heads | A)P(A)+P(9 or more heads | B)P(B)

which is equal to[(
10
9

)
0.49 ·0.6+

(
10
10

)
0.410

]
0.5+

[(
10
9

)
0.79 ·0.3+

(
10
10

)
0.710

]
0.5= 0.0755.

(b) From (a), we know that

P(9 or more heads | B) = 0.14930 and P(B) = 0.5.

Also, P(9 or more heads) = 0.075493. By Bayes’ theorem (Theorem 3.1),

P(B | 9 or more heads) =
0.14930 ·0.5

0.075493

which evaluates to 0.989.

Proposition 4.6 (binomial complement; Ross p. 200 Question 30). Let X ∼B(n, p)
be a binomial random variable. Define Y = n−X . Then, Y ∼ B(n,1− p).

Proof. Note that

P(Y = y) = P(n−X = y) = P(X = n− y) =
(

n
n− y

)
pn−y (1− p)y .

By the symmetry of binomial coefficients (1.2), this is equal to(
n
y

)
(1− p)y pn−y

which confirms our assertion that Y ∼ B(n,1− p).
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Example 4.22 (Ross p. 199 Question 8). Let B(n, p) represent a binomial random vari-
able with parameters n and p. Argue that

P(B(n, p)≤ i) = 1−P(B(n,1− p)≤ n− i−1) (4.5)

Solution. Let Y = n−X . By Proposition 4.6, we know that Y ∼ B(1, p). We wish to
prove that

P(X ≤ i) = 1−P(Y ≤ n− i−1) .

As such, we see that (4.5) is equivalent to

P(X ≤ i) = 1−P(n−X ≤ n− i−1)

which holds because P(X ≤ i)+P(X ≥ i+1) = 1. □

Example 4.23 (Ross p. 195 Question 16). Suppose that n independent tosses of a coin
having probability p of coming up heads are made. Show that the probability that an even
number of heads results is 1

2 [1+(q− p)n], where q = 1− p.

Solution. Let X ∼ B(n, p) be the number of heads and q = 1− p. Then,

P(even number of heads) =
⌊n/2⌋

∑
i=0

(
n
2i

)
p2iqn−2i.

We consider the binomial expansions

(p+q)n =
n

∑
j=0

(
n
j

)
p jqn− j and (q− p)n =

n

∑
j=0

(
n
j

)
(−1) j p jqn− j.

Adding them yields

(p+q)n +(q− p)n = 2 ∑
0≤ j≤n
j even

(
n
j

)
p jqn− j.

Dividing both sides by 2 and recognising that p+q = 1, the result follows. □

Proposition 4.7. Let X ∼ B(n, p). Then,

E(X) = np and Var(X) = npq.

We will only prove the formula for expectation.

Proof.

E(X) =
n

∑
k=0

k
(

n
k

)
pkqn−k =

n

∑
k=1

k
(

n
k

)
pkqn−k =

n

∑
k=0

n
(

n−1
k−1

)
pkqn−k

Using the substitutions m = n−1 and j = k−1,

np
n

∑
k=0

(
n−1
k−1

)
pk−1q(n−1)−(k−1) = np

m

∑
j=0

(
m
j

)
p jqm− j.
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We then note that

m

∑
j=0

(
m
j

)
p jqm− j is the sum of probabilities of the binomial random variable,

which is 1, and we are done.

Alternatively, we can prove the expectation formula by considering it as a sum of indepen-
dent Bernoulli trials (recall our discussion in Chapter 4.3 and the linearity of expectation).
For the variance proof, I will leave it as an exercise as it is not too complicated and the
technique is, of course, similar to that for the expectation. When proving the formula for
variance, note that

Var(X) = E [X(X −1)]+E(X)− [E(X)]2

and a classic trick to proving this result is by finding an expression for E[X(X −1)].

Example 4.24 (Ross p. 199 Question 9). If X is a binomial random variable with expec-
tation 6 and variance 2.4, find P(X = 5).

Solution. Suppose X ∼B(n, p). By Proposition 4.7, we have np= 6 and np(1− p)= 2.4.
By elimination, we have 1 − p = 0.4, so p = 0.6. So, n = 10. Hence, P(X = 5) =
0.201. □

Example 4.25 (Ross 9th edition p. 181 Question 10). Let X be a binomial random
variable with parameters n and p. Show that

E
[

1
X +1

]
=

1− (1− p)n+1

(n+1)p

Solution. Let X ∼ B(n, p). Then,

E
(

1
X +1

)
=

n

∑
k=0

P(X = k)
k+1

which is equal to

n

∑
k=0

1
k+1

(
n
k

)
pk (1− p)n−k =

1
n+1

n

∑
k=0

(
n+1
k+1

)
pk (1− p)n−k .

The result follows with some manipulation. □

Definition 4.7 (mode). The mode is the value k at which the probability mass func-
tion takes its maximum value. In other words, it is the value that is most likely to
be sampled.

Proposition 4.8. For a binomial distribution with parameters n and p, the mode is

k = ⌊(n+1)p⌋ or k = ⌈(n+1)p⌉−1.
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Proof. Note that
P(X = k+1)

P(X = k)
=

p(n− k)
(1− p)(k+1)

which can be easily derived via the probability mass function of the binomial distribu-
tion. For convenience sake, we set P(X = k) = f (k). There are three cases to consider,
namely f (k) > f (k+ 1), f (k) < f (k+ 1) and f (k) = f (k+ 1). For the last case, where
f (k) = f (k+1), the graph of the binomial distribution has two peaks, or two maximum
points. Such a distribution is bimodal.

For the first case,
p(n− k)

(1− p)(k+1)
< 1,

which implies that (n+1)p < k+1. Since we know that k is the mode, by definition of
the floor function, the result follows. It is not difficult to prove the modal result for the
other two cases. I shall leave this as an exercise.

Example 4.26. A biased coin has a 55% probability of showing heads. The coin is flipped
200 times independently. What is the number of heads that is most likely to appear?

Solution. We can model this using a binomial distribution, say X ∼ B(200,0.55). We are
essentially finding the mode of the distribution. Suppose the mode is k. Then,

P(X = k)≥ P(X = k−1) and P(X = k)≥ P(X = k+1) .

By the mass formula for a binomial distribution,(
200

k

)
(0.55)k (0.45)200−k ≥

(
200

k−1

)
(0.55)k−1 (0.45)201−k

and (
200

k

)
(0.55)k (0.45)200−k ≥

(
200

k+1

)
(0.55)k+1 (0.45)199−k .

One can show, using algebraic manipulation any mode k must satisfy

201 ·0.55−1 ≤ k ≤ 201 ·0.55.

Since 201 ·0.55 = 110.55, the only integer k in this interval is 110. □

Random Variable PMF Parameter(s) E(X) Var(X)

B(n, p)
(n

k

)
pkqn−k n and p np npq

Proposition 4.9 (additivity). The sum of two independent binomial random vari-
ables with the same probability of success, p, still follows a binomial distribution.
That is, if X ∼ B(m, p) and Y ∼ B(n, p), then X +Y ∼ B(m+n, p).
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Proof. Note that X +Y takes values between 0 and m+n inclusive. Hence,

P(X +Y = k) =
k

∑
i=0

P({X = i}∩{Y = k− i}) =
k

∑
i=0

P(X = i)P(Y = k− i)

where we used the fact that X and Y are independent. By substituting the respective
probability mass function formulae, the above expression is equal to

k

∑
i=0

(
m
i

)
piqm−i

(
n

k− i

)
pk−iqn−k+i = pkqm+n−k

k

∑
i=0

(
m
i

)(
n

k− i

)
=

(
m+n

k

)
pkqm+n−k.

Here, the last equality involved the use of Vandermonde’s identity (Theorem 1.4).

Example 4.27 (Ross p. 200 Question 24). Ten balls are to be distributed among 5 urns,
with each ball going into urn i with probability pi, where p1+ . . .+ p5 = 1. Let Xi denote
the number of balls that go into urn i. Assume that events corresponding to the locations
of different balls are independent.

(a) What type of random variable is Xi? Be as specific as possible.

(b) For i ̸= j, what type of random variable is Xi +X j?

(c) Find P{X1 +X2 +X3 = 7}.

Solution.

(a) Xi denotes the number of balls that go into urn i, where 1 ≤ i ≤ 5. We have X1 +

. . .+X5 = 10. Hence,

P(X1 = x1, . . . ,X5 = x5) =
10!

x1! . . .x5!
px1

1 . . . px5
5

so

P(Xi = xi) =
10!

xi!(10− xi)!
pxi

i (1− pi)
10−xi

We see that Xi ∼ B(10, pi), for which we would see in due course this is actually
the marginal distribution of Xi (Definition 6.2).

(b) We have Xi +X j ∼ B
(
10, pi + p j

)
by additivity property of binomial random vari-

ables (Proposition 4.9).

(c) From (b), we infer that

X1 +X2 +X3 ∼ B(10, p1 + p2 + p3) .

We must have X1 +X2 +X3 = 7, so the probability of this event is(
10
7

)
(p1 + p2 + p3)

7 (1− p1 − p2 − p3)
3 .
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Example 4.28 (Ross p. 195 Question 12). A random walk Sn consists of sums of suc-
cessive steps Xi, each of which can be ±1 with probability p for X1 = 1 such that

Sn =
n

∑
i=1

Xi.

Show that 1
2 (Sn +n) is binomially distributed and work out its mean and variance.

Solution. We have

P(Xi = 1) = p and P(Xi =−1) = 1− p.

The trick is to define
Yi =

Xi +1
2

.

So,
1
2
(Sn +n) =

X1 + . . .+Xn +n
2

= Y1 + . . .+Yn.

Since P(Yi = 1) = p, then Yi follows a Bernoulli distribution with parameter p. Also,
the Yi’s are independent random variables. Since every Bernoulli random variable is
a binomial random variable, by the additivity property of binomial random variables
(Proposition 4.9), 1

2 (Sn +n) follows a binomial distribution with mean np and variance
np(1− p). □

Example 4.29 (ST2131 AY24/25 Sem 1 Lecture 6). A fair coin is tossed repeatedly. The
outcomes of the tosses are assumed to be independent.

(a) Let p be the probability of getting 30 heads before 10 tails. Let q be the probability
of getting 30 tails before 10 heads. Is p = q?

(b) Let p be the probability of getting 30 heads before 10 tails. Let q be the probability
of getting 10 heads before 30 tails. Is p = q?

(c) Let p be the probability of getting 30 heads before 10 tails. Let q be the probability
of getting 10 heads before 30 tails. Is p+q = 1?

Solution.

(a) This is true. The coin is fair, so by symmetry it is true.

(b) False. Intuitively, it is easier to reach 10 heads first before 30 heads. We can do
some calculations to verify this.

p =
39

∑
k=30

(
39
k

)(
1
2

)k(
1− 1

2

)39−k

=
39

∑
k=30

(
39
k

)(
1
2

)39

On the other hand,

q =
39

∑
k=10

(
39
k

)(
1
2

)k(
1− 1

2

)39−k

=
39

∑
k=10

(
39
k

)(
1
2

)39

.

It follows that q > p.

(c) True. Observe that both events are complements, so they must add up to 1.
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Theorem 4.1 (serve-and-rally). To find the probability that player A wins a serve-
and-rally match where A serves first and 2n− 1 rallies are played, where the win
condition is n points, we have

P(A wins match) = P(A wins at least n points in 2n−1 rallies)

=
2n−1

∑
m=n

P(A wins exactly m points in 2n−1 rallies)

where if pA and pB are the probabilities that A wins when A and B serve respectively,

P(A wins exactly m points in 2n−1 rallies)

is equal to the following:

=
n

∑
k=1

P(A wins k points he serves) ·P(A wins m− k points B serves)

=
n

∑
k=1

(
n
k

)
(pA)

k(1− pA)
n−k
(

n−1
m− k

)
(pB)

m−k(1− pB)
n−m+k−1

Example 4.30 (ST2131 AY24/25 Sem 1 Lecture 7; serving protocol). A quick badminton
serve-and-rally match is played following the alternative serve protocol, with player A
serving first. The rules are changed so that the match ends when a player wins 2 points
(rallies), and that player is declared the winner of the match.

If player A has a 60% chance of winning a rally when he serves, but only 30% chance of
winning when player B serves, what is the probability of player A winning the match?

Solution. If we want player A to win the match, it means we want A to win at least 2
points in the first 3 games. That is, we find

P(A wins) = P(A wins 2 rallies in first 3)+P(A wins 3 rallies in first 3)

A natural question is why do we consider the case that A wins 3 rallies, since he would
have already won with 2. This assumption works because no matter how that game ends,
we still put artificial rallies at the back such that we can always assume that 3 rallies are
always played. Since the outcome will always be the same, it does not matter that we
append rallies afterwards.

• Case 1: Suppose A serves 1 and B serves 1. Then, A wins 1 rally he serves, A wins
1 rally that B serves, and the remaining rally is lost by A, which yields a probability
of (

2
1

)
(0.6)

(
1
1

)
(0.3)(1−0.6) .

• Case 2: Suppose A serves 2. Then, A wins the 2 rallies he serves. The remaining
rally is served by B, so A has to lose the game. This yields a probability of(

2
2

)
(0.6)2

(
1
1

)
(1−0.3) .
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• Case 3: Suppose A wins all 3 rallies. So, A serves 2 rallies with both winning, and
B serves one rally. This yields a probability of (0.6)2 (0.3).

The desired answer is the sum of probabilities in all three cases, which is approximately
0.5. □

4.5 Geometric Distribution
Let X be the random variable denoting the number of Bernoulli trials required to obtain
the first success, where the probability of success is p. Here, the support of X is the pos-
itive integers 1,2,3, . . . because the minimum number of tries required to obtain the first
success is 1. As such, it is easy to derive the following formula, which is the probability
mass function of X :

P(X = k) = pqk−1 (4.6)

We say that X ∼ Geo(p). In certain textbooks, the geometric distribution is defined to be
the number of failures in the Bernoulli trials in order to obtain the first success. However,
we will stick to the former definition.

For a situation to be modelled using a geometric distribution, independent trials are car-
ried out, the outcome of each trial is deemed either a success or a failure, and the proba-
bility of a successful outcome p is the same for every trial.

The formula for P(X = k) in (4.6) captures the intuition that we must fail the first k− 1
times, each with probability q= 1− p, before succeeding on the kth try. Also, note that the
distribution is called geometric because the successive probabilities p, pq, pq2, . . . form a
geometric sequence with first term p and common ratio q.

Example 4.31. An example where the geometric distribution can be used includes the
number of tries up to and including finding a defective item on a production line.

Example 4.32. A biased coin has 30% probability of showing heads. Assume that the
outcomes of the tosses are independent.

(a) What is the probability that exactly 3 tosses are needed to see the first tail?

(b) What is the probability that at least 8 tosses are needed to see the first tail?

Solution. Let N be the number of occurrences up to and including the occurrence of the
first tail. Then, N follows a geometric distribution with parameter 0.7. That is,

P(N = n) = 0.7 ·0.3k−1.

For (a), P(N = 3) = 0.063; for (b), P(N ≥ 8) = 0.0002187. □



80 CHAPTER 4. DISCRETE RANDOM VARIABLES

Proposition 4.10. Suppose X ∼ Geo(p). Then,

E(X) =
1
p

and Var(X) =
q
p2 .

Again, we will only prove the formula for expectation.

Proof. By definition,

E(X) =
∞

∑
k=1

kpqk−1.

Suppose f (q) = qk. Then, f ′(q) = kqk−1. Hence,

∞

∑
k=1

kpqk−1 = p
∞

∑
k=1

d
dq

(
qk
)
= p

d
dq

(
∞

∑
k=1

qk

)
= p

d
dq

(
q

1−q

)
=

1
p
.

This proof uses the technique of using a derivative to replace the summand.

Example 4.33 (Ross p. 200 Question 22). Each game you play is a win with probability
p. You plan to play 5 games, but if you win the fifth game, then you will keep on playing
until you lose.

(a) Find the expected number of games that you play.

(b) Find the expected number of games that you lose.

Solution.

(a) Note that we always play at least 5 games. If we lose the 5th game, we stop and
this occurs with probability q = 1− p. If we win the 5th game, we continue play-
ing until our first loss. After the 5th game, the number of games is geometric with
parameter being the probability of success.

We find P(X = k). Note that P(X = 5) = q. On the other hand, for k > 5, we
win the 5th, win k−6 games, and lose the (k−5)th game, which occurs with prob-
ability P(X = k) = p · pk−6 · q = qpk−5. If X = 5, then the expected number of
games is 5q. If X = k > 5, then the expected number of games is

5q+
∞

∑
k=6

k ·qpk−5 = 5+
p

1− p
.

(b) We can lose on the kth game, where k ∈N. If k = 1,2,3,4, we lose with probability
q. We then discuss the case where k ≥ 5. We lose on the 5th game with probability
q, lose on the 6th game with probability pq, and so on. In general, we lose on the
kth game with probability pk−5q.

So, the expected number of losses is

4q+
∞

∑
k=5

pk−5q = 5−4p.
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We give an alternative perspective to Example 4.33. For (a), let X denote the number of
games we play. Then, X −4 ∼ Geo(1− p). Hence,

E (X) = E (X −4)+4 =
1

1− p
+4.

As for (b), let Y denote the number of games we lose. Then, Y is the sum of the number
of games lost among the first 4 games and the number of games lost starting from the first
5 games. Note that the number of games lost among the first 4 games follows a binomial
distribution B(4,1− p). By linearity of expectation,

E (Y ) = 4(1− p)+1.

Example 4.34 (Ross p. 200 Question 26). Let α be the probability that a geometric
random variable X with parameter p is an even number.

(a) Find α by using the identity

α =
∞

∑
i=1

Pr{X = 2i}.

(b) Find α by conditioning on whether X = 1 or X > 1.

Solution.

(a) Suppose X ∼ Geo(p). Then,

P(X = k) = pqk−1 so α =
∞

∑
i=1

pq2i−1 =
pq

1−q2 .

Using the fact that q = 1− p, we see that α = 1−p
2−p .

(b) By the law of total probability (Proposition 3.3),

α = P(X even)

= P(X even | X = 1)P(X = 1)+P(X even | X > 1)P(X > 1)

Since P(X = 1) = 0, then

α = P(X even | X > 1)P(X > 1) = P(X odd)(1− p) .

Since P(X even) = α , then P(X odd) = 1−α , so the result follows.

Example 4.35 (Ross p. 199 Question 20). Show that if X is a geometric random variable
with parameter p, then

E
(

1
X

)
=− p log p

1− p
.

Solution. We have

E
(

1
X

)
=

∞

∑
k=1

1
k
· p(1− p)k−1 =

p
1− p

∞

∑
k=1

(1− p)k

k
. (4.7)
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The trick is to recall that (4.7) resembles the series expansion of ln(1+ x) but with a slight
twist. From

ln(1+ x) = x− x2

2
+

x3

3
− x4

4
+ . . . ,

we have

ln(1− x) =−
(

x+
x2

2
+

x3

3
+

x4

4
+ . . .

)
.

Setting x = q and then recognising that q = 1− p yields the desired result. □

What makes the geometric distribution especially intriguing is its memoryless property.
Say we have a biased coin with a probability p of landing heads. If we have already
flipped 3 tails without success, the probability of needing 5 more flips to get a head is
exactly the same as it was at the very start — past failures do not change the game.

Definition 4.8 (memorylessness). A probability distribution is said to have a mem-
oryless property if the probability of some future event occurring is not affected
by the occurrence of past events. If a random variable X satisfies the memoryless
property, then for m,n ∈ N,

P(X > m+n | X > m) = P(X > n).

In particular, the geometric distribution is the only distribution that exhibits the memory-
less property. For the continuous counterpart, the exponential distribution is the only one
which exhibits memorylessness. We will discuss this in due course. It is easy to verify
that the geometric distribution has the memoryless property but to prove that it is the only
one, it is slightly more complicated.

Proof. Suppose X is a random variable which satisfies the memoryless property. Then,

P(X > m+n | X > m) = P(X > n). (4.8)

We apply the definition of conditional probability (Definition 3.1) to the left side of (4.8).
Hence,

P(X > m+n) = P(X > m)P(X > n).

Note that P(X > 0) = 1 since the support of X is the positive integers. Then,

P(X > 1) = [P(X > 0)]2 = 1

P(X > 2) = P(X > 1)P(X > 1) = [P(X > 1)]2

P(X > 3) = P(X > 1)P(X > 2) = [P(X > 1)]3

It is clear that
P(X > k) = [P(X > 1)]k.

To compute P(X = k), we use the formula P(X = k) = P(X > k− 1)−P(X > k) (rela-
tionship between the cumulative distribution function and the probability mass function)
to get

P(X = k) = [P(X > 1)]k−1 − [P(X > 1)]k = [P(X > 1)]k−1[1−P(X > 1)].
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Setting p = 1 − P(X > 1),1 we obtain P(X = k) = p(1 − p)k−1, which is indeed the
probability mass function of the geometric distribution with parameter p.

To summarise,

Random Variable PMF Parameter(s) E(X) Var(X)

Geo(p) pqk−1 p 1
p

q
p2

In Proposition 4.9, we claimed that the sum of two independent binomial random vari-
ables with the same probability of success p will still follow a binomial distribution.
However, if we have the sum of two geometric distributions (namely X and Y ) with the
same probability of success p, then X +Y actually follows a negative binomial distribu-
tion (see Chapter 4.6)! That is, X +Y ∼ NB(2, p).

Proposition 4.11 (additivity). If X ,Y ∼ Geo(p), then X +Y ∼ NB(2, p).

Proof. Note that X +Y takes values 2,3, . . .. We set k ≥ 2. Then,

P(X +Y = k) =
k−1

∑
i=1

P({X = i}∩{Y = k− i}) =
k−1

∑
i=1

P(X = i)P(Y = k− i)

where we used the fact that X and Y are independent. Substituting the probability mass
function formulae, the above is equal to

k−1

∑
i=1

pqi−1 pqk−i−1 = (k−1) p2qk−2 =

(
k−1

1

)
p2qk−2

which is the probability mass function of a negative binomial random variable with pa-
rameters 2 and p.

As mentioned, we will formally introduce the negative binomial distribution in Chapter
4.6, but Proposition 4.11 is just to illustrate that the sum of identical distributions with
the same parameters may not result in the new distribution to be of the same kind as the
original. One of the random variables which we would encounter in this chapter is the
Poisson random variable (Chapter 4.7). We will see in Proposition 4.16 that the sum of
two Poisson random variables also follows a Poisson distribution.

Example 4.36 (ST2131 AY24/25 Sem 1 Lecture 6). A coin is tossed repeatedly. The
outcomes of the tosses are assumed to be independent. The coin is biased with each
toss showing head with probability 60%. What is the probability of getting a run of 3
consecutive heads before a run of 2 consecutive tails?

Solution. Observe that this process is memoryless. That is, if we get some string, say
HHT, then everything is invalidated, since we need 3 heads in a row. Hence, it suffices to
only keep track of the effective states. We leave the details to the reader. □

1Note that q = P(X > 1), which is clear because we claimed that p is the probability of success, or in
relation to attempts, p is the probability of attaining a success on the first try. That is, p = P(X = 1).
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Example 4.37 (coupon collector’s problem). The coupon collector’s problem describes
‘collect all coupons and win’ contests. It asks the following question: if each box of a
brand of cereals contains a coupon, and there are n different types of coupons, what is the
probability that more than t boxes need to be bought to collect all n coupons?

We shall investigate this. Let T be the number of draws needed to collect all n coupons
and ti be the time to collect the ith coupon after i− 1 coupons have been collected and
regarding them as random variables, then the probability of collecting a new coupon,
denoted by pi, can be written as

pi =
n− i+1

n
.

To see why, the ith coupon must be different from all the previous collected. The proba-
bility of obtaining a coupon that is of the same type as any one of the i coupons previously
collected is i−1

n . Hence,

pi = 1− i−1
n

.

Note that ti follows a geometric distribution with parameter pi and T = t1 + t2 + . . .+ tn.
We shall prove two interesting results, which are expressions for E(T ) and Var(T ) (The-
orem 4.2), and they are related to the harmonic numbers and the famous Basel problem
respectively:

Theorem 4.2.
E(T ) = nHn and Var(T )<

n2π2

6
,

where Hn is the nth harmonic number.

For Var(T ), it is rather interesting that we do not have an explicit formula but only an
upper bound for it. We shall first prove the result for expectation.

Proof. Assume that the ti’s are independent. Then,

E(T ) = E(t1 + t2 + . . .+ tn) = E(t1)+E(t2)+ . . .+E(tn)

which is equal to

n

∑
i=1

n
n− i+1

= n
n

∑
i=1

1
n− i+1

= n
n

∑
i=1

1
i
= nHn.

Next, we prove the result for variance.

Proof. We have

Var(T ) = Var(t1 + . . .+ tn) = Var(t1)+ . . .+Var(tn) =
n

∑
i=1

1− pi

p2
i

= n
n

∑
i=1

i−1
(n− i+1)2 .
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The Basel problem, proved by Leonhard Euler in 1734, states that

∞

∑
i=1

1
i2

=
π2

6
.

Thus, it suffices to prove

n

∑
i=1

i−1
(n− i+1)2 <

n

∑
i=1

n
(n− i+1)2 <

∞

∑
i=1

n
i2

=
nπ2

6
.

This is true because i−1 < n if and only if i < n+1. Hence, the result follows.

At this juncture, we give a motivation for studying the distribution of the minimum or
maximum of geometric random variables. The geometric distribution naturally arises
whenever we model the number of independent Bernoulli trials (each with success prob-
ability p) needed until the first success. Its memoryless property and simple form make
it a canonical example of a waiting-time distribution in discrete time. However, in many
practical situations we observe not just one such waiting time, but several in parallel
or in repetition, and we care about extremes. For example, say we have a store with n
identical checkout counters. Time is slotted, and in each slot, each cashier independently
sees a customer with probability p. For cashier i, the number of slots until their first
customer X follows a geometric distribution with parameter p. How long do we have to
wait till any cashier gets their first customer? In other words, what is the distribution of
min{X1, . . . ,Xn}?

Proposition 4.12 (distribution of the minimum). If Xi ∼ Geo(pi) for 1 ≤ i ≤ n and
the Xi’s are independent, then

W = min{X1, . . . ,Xn} ∼ Geo

(
1−

n

∏
i=1

(1− pi)

)
.

Proof. Note that P(W ≤ r) = 1−P(W > r). By definition of the minimum,

W = min{X1, . . . ,Xn}> r implies Xi > r for all 1 ≤ i ≤ n.

Hence,

P(W ≤ r) = 1−P(X1 > r) . . .P(Xn > r) .

Since P(Xi > r) = (1− pi)
r, it follows that

P(W ≤ r) = 1− (1− pi)
r . . .(1− pn)

r = 1−

(
n

∏
i=1

(1− pi)

)r

.

Hence, W follows a geometric distribution with parameter 1−∏
n
i=1 (1− pi).
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Corollary 4.1. For the case where the Xi’s are also identically distributed, i.e. Xi ∼
Geo(p) for all 1 ≤ i ≤ n, then

W = min{X1, . . . ,Xn} ∼ Geo(1− (1− p)n) .

Proposition 4.13 (distribution of the maximum). If Xi ∼ Geo(pi) for 1 ≤ i ≤ n and
the Xi’s are independent, then defining M = max{X1, . . . ,Xn}, we have

P(M = r) =
n

∏
i=1

(1− (1− pi)
r)−

n

∏
i=1

(
1− (1− pi)

r−1
)
.

Proof. The proof is similar to that of Proposition 4.12. Note that

P(M ≤ r) = P(X1 ≤ r) . . .P(Xn ≤ r) = (1−qr
1) . . .(1−qr

n) =
n

∏
i=1

(1−qr
i ) .

By using the formula P(M = r) = P(M ≤ r)−P(M ≤ r−1), the result follows.

4.6 Negative Binomial Distribution
Define the random variable X to be the number of Bernoulli trials, with parameter p,
required to obtain r successes. Here, the support of X is k ≥ r and we say that the dis-
tribution is negative binomial with parameters r and p. We write X ∼ NB(r, p). The
probability mass function of a negative binomial random variable is

P(X = k) =
(

k−1
r−1

)
prqk−r.

We can think of the negative binomial distribution as such: for the first k− 1 trials, we
wish to have r−1 successes. As such, there are k− r failures. Then, we ensure that the
kth trial is a success and we are done.

The geometric distribution is a special case of the negative binomial distribution. We can
view the geometric distribution Geo(p) as NB(1, p) since for the geometric distribution,
we are interested in the number of tries up to and including the first success.

Proposition 4.14. The expectation and variance of the negative binomial distribu-
tion X ∼ NB(r, p) are

E(X) =
r
p

and Var(X) =
rq
p2 .

To summarise,

Random Variable PMF Parameter(s) E(X) Var(X)

NB(r, p)
(k−1

r−1

)
prqk−r r and p r

p
rq
p2
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We move on to discuss Banach’s matchbox problem (Example 4.38). This problem is
named after the Mathematician Stefan Banach, who is known for the Banach-Tarski para-
dox.

Example 4.38 (Banach’s matchbox problem). Suppose a Mathematician carries two match-
boxes at all times — one in his left pocket and one in his right. Each time he needs a
match, he is equally likely to take it from either pocket. Suppose he reaches into his
pocket and discovers for the first time that the box picked is empty. If it is assumed that
each of the matchboxes originally contained N matches, what is the probability that there
are exactly k matches in the other box?

Solution. Let E be the event that the mathematician first discovers that the right pocket
matchbox is empty and there are k matches in the left pocket matchbox at that instant.
E will occur if and only if the (N + 1)th choice of the right pocket matchbox is made at
the (N +1+N − i)th trial. We see that this setup is essentially using a negative binomial
distribution model with parameters r = N + 1 and p = 1/2. Here, k = 2N − i+ 1. As
such,

P(E) =
(

2N − i
N

)(
1
2

)2N−i+1

.

As there is an equal probability that the left pocket matchbox is the first to be discovered
to be empty and there are k matches in the right pocket matchbox at that time, the desired
result is simply 2P(E), or (

2N − i
N

)(
1
2

)2N−i

.

□

4.7 Poisson Distribution
A random variable X is said to follow a Poisson distribution with parameter λ if the
support of X is the non-negative integers 0,1,2, . . . with probabilities

P(X = k) =
e−λ λ k

k!
. (4.9)

We say that X ∼ Po(λ ). Interestingly, the parameter λ > 0 in (4.9) represents the ex-
pected number of occurrences in a fixed interval. We will see in Proposition 4.15 that if
X ∼ Po(λ ), then E (X) and Var(X) are also equal to λ .

Some examples where the Poisson distribution can be used are as follows. Take note
that time plays a critical role when defining a Poisson random variable.

Example 4.39 (calls per hour). Call centres use the Poisson distribution to model the
number of expected calls per hour that they will receive so they know how many call
centre reps to keep on staff. For example, suppose a given call centre receives 10 calls
per hour. Then, X ∼ Po(10).
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Example 4.40 (arrivals). Restaurants use the Poisson distribution to model the number of
expected customers that will arrive at the restaurant per day. Suppose a restaurant receives
an average of 100 customers per day. Then, X ∼ Po(100).

Example 4.41 (Ross p. 199 Question 14). On average, 5.2 hurricanes hit a certain region
in a year. What is the probability that there will be 3 or fewer hurricanes hitting this year?

Solution. Let X denote the number of times a hurricane hits in a year. So, X ∼ Po(5.2).
Hence, P(X ≤ 3) = 0.238. □

Example 4.42 (Ross p. 196 Question 17). Let X be a Poisson random variable with
parameter λ . One can use (4.9) to show that P(X = i) increases monotonically and then
decreases monotonically as i increases, reaching its maximum when i is the largest integer
not exceeding λ .

Example 4.43 (Ross p. 196 Question 18). Let X be a Poisson random variable with
parameter λ . Show that

P(X is even) =
1
2

(
1+ e2λ

)
.

Solution. Suppose X is even. Then, there exists k ∈ Z≥0 such that x = 2k. The required
probability is

P(X is even) =
∞

∑
k=0

P(X = 2k) =
∞

∑
k=0

e−λ λ 2k

(2k)!
= e−λ

∞

∑
k=0

λ 2k

(2k)!
.

Expanding the power series yields

1+
λ 2

2!
+

λ 4

4!
+

λ 6

6!
+

λ 8

8!
+ . . . . (4.10)

Recall that

eλ = 1+λ +
λ 2

2!
+

λ 3

3!
+

λ 4

4!
+ . . . and e−λ = 1−λ +

λ 2

2!
− λ 3

3!
+

λ 4

4!
− . . . .

So, the required power series expansion in (4.10) can be written as

eλ + e−λ

2

so the result follows. In fact, the mentioned power series in (4.10) is that of the hyperbolic
cosine function coshλ . □

Proposition 4.15. If X ∼ Po(λ ), then

E(X) = λ and Var(X) = λ .

We shall prove the result for expectation. As an added bonus, one can refer to Example
4.44 for the derivation of E

(
X3) when X ∼ Po(λ ).
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Proof.

E (X) =
∞

∑
k=0

k · e−λ λ k

k!
=

∞

∑
k=1

k · e−λ λ k

k!
= λe−λ

∞

∑
k=1

λ k−1

(k−1)!
= λe−λ · eλ = λ

Example 4.44. The random variable X follows a Poisson distribution with parameter λ .
Find E[X2] and E[X3].

Solution. Recall that Var(X) = E
(
X2)− (E (X))2, and for any Poisson random variable

with parameter λ , it has mean λ and variance λ . Hence, E
(
X2)= λ +λ 2.

Next,

E
(
X3)= ∞

∑
k=0

k3 · e−λ λ k

k!
= λe−λ

∞

∑
k=1

k2 · λ k−1

(k−1)!
= λe−λ

∞

∑
r=0

(r+1)2 · λ r

r!

Note that for
∞

∑
r=0

(r+1)2 · λ r

r!
,

we consider the standard series
∞

∑
r=0

λ r

r!
= eλ and

∞

∑
r=0

r
λ r

r!
= λeλ and

∞

∑
r=0

r(r−1)
λ r

r!
= λ

2eλ .

Hence, E
(
X3)= λ 3 +3λ 2 +λ . □

Example 4.45 (Ross p. 199 Question 15). The number of eggs laid on a tree leaf by an
insect of a certain type is a Poisson random variable with parameter λ . However, such a
random variable can be observed only if it is positive since if it is 0, then we cannot know
that such an insect was on the leaf. If we let Y denote the observed number of eggs, then

P(Y = i) = P(X = i | X > 0)

where X is Poisson with parameter λ . Find E (Y ).

Solution. By Definition 3.1,

P(Y = i) =
P(X = i where i ∈ N)

P(X > 0)
. (4.11)

Since X ∼ Po(λ ), then
P(X > 0) = 1− e−λ .

Also,

P(X = i where i ∈ N) =
e−λ λ i

i!
.

Substituting these into (4.11), we have

P(Y = i) =
e−λ λ i

i!
(
1− e−λ

) .
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Hence,

E (Y ) =
∞

∑
i=1

i · e−λ λ i

i!
(
1− e−λ

) = λe−λ

1− e−λ

∞

∑
i=1

λ i−1

(i−1)!
=

λe−λ

1− e−λ

∞

∑
i=0

λ i

i!
=

λ

1− e−λ
.

□

To summarise,

Random Variable PMF Parameter(s) E(X) Var(X)

Po(λ ) e−λ λ k

k! λ λ λ

Proposition 4.16 (additivity). The additivity property of the Poisson distribution
states that if X and Y are independent Poisson random variables where X ∼ Po(λ )
and Y ∼ Po(µ), then X +Y ∼ Po(λ +µ).

Proof. We have

P(X +Y = n) =
n

∑
k=0

P({X = k}∩{Y = n− k}) =
n

∑
k=0

P(X = k)P(Y = n− k) (4.12)

where we used the fact that X and Y are independent. Substituting the respective proba-
bility mass function formulae, (4.12) can be written as

n

∑
k=0

e−λ λ k

k!
·e

−µ µn−k

(n− k)!
=

e−(λ+µ)µn

n!

n

∑
k=0

n!
k!(n− k)!

(
λ

µ

)k

=
e−(λ+µ)µn

n!

n

∑
k=0

(
n
k

)(
λ

µ

)k

.

By the binomial theorem, the above simplifies to

e−(λ+µ)µn

n!

(
1+

λ

µ

)n

=
e−(λ+µ)(λ +µ)n

n!

and the result follows.

Even though X +Y follows a Poisson distribution, X −Y actually does not follow a Pois-
son distribution. In general, the difference of two Poisson random variables is said to
follow a Skellam distribution. Its probability mass function is rather complicated to com-
pute as it involves the modified Bessel function of the first kind (appears in MA3220
Ordinary Differential Equations).

Example 4.46 (ST2131 AY24/25 Sem 1 Lecture 16). A sample of radioactive substance
is observed to emit 0.3 α-particles per second, on average. A sample of another substance
is observed to emit 0.5 α-particles per second, on average. The two samples are now
combined.

(a) What is the probability that at least three α-particles are emitted from the combined
sample in a ten second interval?

(b) What is the longest time interval we need to wait in order that the probability of the
combined sample emitting any α-particle in that time interval is > 90%?
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Solution. Let X (t) denote the total number of α-particles emitted in t seconds from the
combined sample. Since emissions from the samples can be regarded as independent
events (more formally, these are known as Poisson processes and you may look at its
definition in Definition 5.8), then X (t) ∼ Po(λ t), where λ = 0.3 + 0.5 = 0.8. Thus,
X (t)∼ Po(0.8t).

(a) This is equivalent to computing

P(X (10)≥ 3) = 1−P(X (10) = 2)

which is equal to

1− e−8
(

1+8+
82

2!

)
.

(b) Let T be this said time interval. We have

P(X (T )≥ 1)> 0.9 if and only if P(X (T ) = 0)< 0.1

So, e−0.8T < 0.1, which implies T > ln10/0.8 as desired.

Example 4.47 (Ross 9th Edition p. 178 Question 63). People enter a gambling casino
at a rate of 1 every 2 minutes.

(a) What is the probability that no one enters between 12.00 and 12.05?

(b) What is the probability that at least 4 people enter the casino during that time?

Solution.

(a) We should expect 2.5 persons entering the casino during this time period. Say
N ∼ Po(2.5). Hence, P(N = 0) = e−2.5.

(b) We wish to find the probability that at least 4 people enter the casino from 12.00 to
12.05, which is P(N ≥ 4) = 0.242.

Proposition 4.17 (conditional of Poisson distribution is binomial). If X and Y are
independent Poisson random variables such that X ∼ Po(λ ) and Y ∼ Po(µ), then

P(X = k | X +Y = n) = P(J = k) ,

where

J ∼ B
(

n,
λ

λ +µ

)
.

Proof. By Definition 3.1),

P(X = k | X +Y = n) =
P({X = k}∩{Y = n− k})

P(X +Y = n)

=
P(X = k)P(Y = n− k)

P(X +Y = n)
since X and Y are independent
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By applying the respective mass formulae, the above simplifies to

e−λ λ k

k!
· e−µ µn−k

(n− k)!
· n!

e−(λ+µ)(λ +µ)n =
µn

(λ +µ)n ·
(

n
k

)(
λ

µ

)k

=

(
n
k

)(
λ

λ +µ

)k(
µ

λ +µ

)n−k

which is indeed the probability mass function of a binomial random variable with n tries
and probability of success λ/(λ +µ).

Example 4.48 (Ross p. 192 Question 63). The number of times that a person contracts
a cold in a given year is a Poisson random variable with parameter λ = 5. Suppose that
a new wonder drug (based on large quantities of vitamin C) has just been marketed that
reduces the Poisson parameter to λ = 3 for 75 percent of the population. For the other
25 percent of the population, the drug has no appreciable effect on colds. If an individual
tries the drug for a year and has 2 colds in that time, how likely is it that the drug is
beneficial for him or her?

Solution. Let X denote the number of times an individual who tries the drugs has a cold.
Let B be the event the drug is beneficial and N be the event the drug has no effect such
that we have X ∼ Po(3) with P(B) = 0.75 and X ∼ Po(5) with P(N) = 0.25. By Bayes’
theorem (Theorem 3.1) and the law of total probability (Proposition 3.3), P(B | X = 2) =
0.889. □

Example 4.49 is adapted from a past year A-Level Mathematics Special Paper question
dated back to 2004. It is the equivalent of the current H3 Mathematics.

Example 4.49 (A-Level Special Paper 2004). Fish comes to the surface of a stretch of
river randomly and independently at a mean rate of 8 per minute. When a fish comes to
the surface, the probability that it catches a fly is 0.6. If S is the number of flies caught in
a randomly chosen minute, show that

P(S = s) =
∞

∑
r=s

e−88r

r!

(
r
s

)
(0.6)s(0.4)r−s

and deduce that S follows a Poisson distribution.

Solution. One should draw some parallelism with Proposition 4.17. Let R be the random
variable denoting the number of fish coming to the surface in a minute. The probability
that r fish come to the surface in a randomly chosen minute is

P(R = r) =
e−88r

r!
.

The probability that s flies are caught during a period of a randomly chosen minute in
which r fish come to the surface, where s ≤ r, is

e−88r

r!

(
r
s

)
(0.6)s(0.4)r−s.
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Hence,

P(S = s) = P({R = s}∩{S = s})+P({R = s+1}∩{S = s})+ . . .

=
∞

∑
r=s

P({S = s}∩{R = r})

=
∞

∑
r=s

P(R = r)P(S = s | R = r)

=
∞

∑
r=s

e−88r

r!

(
r
s

)
(0.6)s(0.4)r−s

To prove that S follows a Poisson distribution, we manipulate with the given probability
mass function formula to obtain

P(S = s) =
e−8(1.5)s

s!

∞

∑
r=s

(3.2)r

(r− s)!
=

e−8(1.5)s

s!

∞

∑
j=0

(3.2) j+s

j!

where we set r− s = j. Hence,

P(S = s) =
e−8(4.8)s

s!

∞

∑
j=0

(3.2) j

j!
=

e−4.8(4.8)s

s!
.

This asserts that S indeed follows a Poisson distribution with parameter 4.8. That is,
S ∼ Po(4.8). □

Example 4.50 (Ross p. 197 Question 26). Suppose that the number of events that occur in
a specified time is a Poisson random variable with parameter λ . If each event is occurred
with probability p, independently of every other count, show that the number of events
counted is a Poisson random variable with parameter λ p.

Solution. Let the number of events be N. Then, N ∼ Po(λ ). Each event is counted with
probability p. Let M be the number of events counted. We wish to show that M ∼ Po(λ p).
Condition on N = n. Suppose n events have occurred. Note that

M | N = n ∼ Binomial(n, p) .

Since

P(M = k | N = n) =
(

n
k

)
pk (1− p)n−k ,

then by the law of total probability (Proposition 3.3),

P(M = k) =
∞

∑
n=k

P(M = k | N = n)P(N = n) =
∞

∑
n=k

(
n
k

)
pk (1− p)n−k · e−λ λ n

n!

which simplifies to

e−λ
∞

∑
n=k

1
k!(n− k)!

(λ p)k (λ (1− p))n−k =
e−λ (λ p)k

k!

∞

∑
n=k

(λ (1− p))n−k

(n− k)!

=
e−λ (λ p)k

k!
· eλ (1−p)

=
e−λ p (λ p)k

k!
which is precisely a Poisson random variable with parameter λ p. □
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The Poisson distribution has a variety of applications in diverse areas.

Theorem 4.3 (law of raw events). The Poisson distribution can be used as an ap-
proximation for a binomial random variable with parameters (n, p) when n is large
and p is small enough so that np is of moderate size.

Proof. Suppose X ∼ B(n, p) and let λ = np. Then, by first using the binomial probability
mass function formula,

P(X = k) =
n!

k!(n− k)!
pkqn−k

=
n!

k!(n− k)!

(
λ

n

)k(
1− λ

n

)n−k

=
n(n−1)(n−2) . . .(n− k+1)

nk · λ k

k!

(
1− λ

n

)n−k

For large n and a moderate-sized λ ,(
1− λ

n

)n

≈ e−λ

(
1− λ

n

)k

≈ 1
n(n−1)(n−2) . . .(n− k+1)

nk ≈ 1.

Hence, we conclude that

P(X = k)≈ e−λ λ k

k!
.

4.8 Hypergeometric Distribution
The hypergeometric distribution describes the probability of k successes in n draws, with-
out replacement, from a finite population of size N that contains K objects with that
feature, wherein each draw is either a success or a failure. In contrast, the binomial dis-
tribution describes the probability of k successes in n draws with replacement.

Definition 4.9 (hypergeometric distribution). If a random variable follows a hyper-
geometric distribution with parameters N,K and n, then

P(X = k) =

(K
k

)(N−K
n−k

)(N
n

) .

We say that X ∼ Hypergeometric(N,K,n).

Proposition 4.18. The sum of probabilities is indeed equal to 1. That is,

∑
0≤k≤n

(K
k

)(N−K
n−k

)(N
n

) = 1.

Proof. Use Vandermonde’s identity (Theorem 1.4).
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Example 4.51. Michael has a box of 8 blue balls and 6 red balls. He draws 3 balls from
the box without replacement. Calculate the probability that 2 balls are red.

Solution. We can use the probability mass function formula of a hypergeometric distribu-
tion. Note that N = 14, K = 6, n = 3 and k = 2. Substituting everything into the formula
yields

P(X = 2) =

(6
2

)(8
1

)(14
3

) =
30
91

.

However, we can think of it from an O-Level student’s perspective. We have the following
cases: RRB, RBR and BRR. For the first case, the probability is

6
14

· 5
13

· 8
12

=
10
91

.

Observe that the probabilities for the other two cases are the same, namely

6
14

· 8
13

· 5
12

and
8
14

· 6
13

· 5
12

respectively. The answer we obtain is 30
91 too, yielding the same conclusion as before. So,

it appears that the hypergeometric distribution is not something exactly new! □

In solving Example 4.51, it turns out that our O-Level method actually has a potential
limitation when n and k are large because the total number of permutations will also be
large and many cases will arise2.

Proposition 4.19. The expectation and variance of a hypergeometric random vari-
able are

E(X) =
nK
N

and Var(X) =
nK(N −K)(N −n)

N2(N −1)
.

To summarise,

Random Variable PMF Parameter(s) E(X) Var(X)

Hypergeometric(N,K,n) (K
k)(

N−K
n−k )

(N
n)

N,K and n nK
N

nK(N−K)(N−n)
N2(N−1)

To summarise the main components of discrete random variables,

2When I first wrote this set of notes in 2022, I had an analogy regarding the number of COVID-19
cases. I mentioned that the ‘number of cases will arise’ just like how the number of COVID-19 cases there
are as of now (back then) when I sm writing this which is 4 July 2022.



96 CHAPTER 4. DISCRETE RANDOM VARIABLES

Random Variable PMF Parameter(s) E(X) Var(X)

Bernoulli(p) X =

{
1 if it is a success;
0 if it is a failure

p p pq

B(n, p)
(n

k

)
pkqn−k n and p np npq

Geo(p) pqk−1 p 1
p

q
p2

NB(r, p)
(k−1

r−1

)
prqk−r r and p r

p
rq
p2

Po(λ ) e−λ λ k

k! λ λ λ

Hypergeometric(N,K,n) (K
k)(

N−K
n−k )

(N
n)

N,K and n nK
N

nK(N−K)(N−n)
N2(N−1)



Chapter 5
Continuous Random Variables

5.1 Continuous Random Variables
In discrete random variables, our support, or the set of possible values, is countable. The
support can be finite (i.e. binomial distribution) or infinite (i.e. geometric distribution).
In this section, we wish to study the continuous counterpart, and the property of such
random variables is that their set of possible values is uncountable.

In this case, elements like time, a person’s height etc. come into play. For example,
the lifetime of an electrical appliance might follow an exponential distribution (Chapter
5.5) and the amount of rainfall obtained in a region during the dry season might be mod-
elled by a continuous uniform distribution (Chapter 5.3). Such scenarios are examples
which make use of continuous random variables.

Definition 5.1 (continuous random variable). We say that X is a continuous random
variable if there exists a non-negative function fX , defined for all real x ∈R, having
the property that for any set B of real numbers,

P(X ∈ B) =
∫

B
fX(x) dx.

The function fX is called the probability density function (PDF) of X .

By letting B = [a,b], we obtain

P(a ≤ X ≤ b) =
∫ b

a
fX(x) dx.

Sometimes, we may write fX(x) simply as f (x) for convenience.

Definition 5.2 (cumulative distribution function). We define the cumulative distri-
bution function, or CDF, of X by

FX(x) = P(X ≤ x) for x ∈ R.

97
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Note that the definition of the distribution function is the same for both discrete and
continuous random variables. Therefore, in the context of continuous random variables,

FX(x) =
∫ x

−∞

fX(t) dt.

By the fundamental theorem of calculus,

F ′
X(x) = fX(x).

Observe that for discrete random variables, expectations and probabilities naturally take
the form of finite or countable sums. In contrast, for continuous random variables, the
corresponding expressions are written as integrals. This difference is not accidental: the
continuous theory can be obtained as a limiting refinement of the discrete one.

Going back, the PDF is regarded as the derivative of the CDF, or the cumulative dis-
tribution function. More intuitively, we have

P
(

x− ε

2
≤ X ≤ x+

ε

2

)
=
∫ x+ ε

2

x− ε

2

fX(x) dx ≈ ε f (x).

This occurs when ε is small and when f is continuous at x. The probability that X will
be contained in an interval of length ε around the point x is approximately ε f (x). Hence,
we see that f (x) is a measure of how likely that the random variable would be near x.

Proposition 5.1. We have some properties in relation to continuous random vari-
ables.

(i) P(X = x) = 0

(ii) The CDF, that is FX , is continuous

(iii) For any a,b ∈ R,

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)

(iv) Since the sum of probabilities is equal to 1, then∫
∞

−∞

f (x) dx = 1

Example 5.1 (Ross p. 245 Question 2). Fix a non-negative integer n. For some constant
c, the random variable X has the probability density function

f (x) =

cxn if 0 < x < 1;

0 otherwise.

(a) Find c.

(b) Find P(X > x) where 0 < x < 1.
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Solution.

(a) We have ∫ 1

0
cxn dx = 1 so c = n+1.

(b) We have f (x) = (n+1)xn for 0 < x < 1. Then,

P(X > x) =
∫ 1

x
(n+1) tn dt = 1− xn+1.

5.2 Expectation and Variance

Definition 5.3 (expectation and variance). Let X be a continuous random variable
with PDF f (x). Then,

E(X) =
∫

∞

−∞

x f (x) dx and Var(X) =
∫

∞

−∞

[x−E(X)]2 f (x) dx.

Note that these are analogous to the formulae for expectation and variance for the discrete
counterpart in Chapter 4.2, just that for continuous random variables, the sum is changed
to an integral. We can manipulate the expression for variance till it resembles that of
E(X2)− [E(X)]2. That is,

Var(X) =
∫

∞

−∞

x2 f (x) dx−
(∫

∞

−∞

x f (x) dx
)2

.

The linearity properties for expectation and variance also apply here. That is, E(aX±b)=
aE(X)±b and Var(aX ±b) = a2 Var(X).

Proposition 5.2. If X is a continuous random variable with probability density func-
tion f (x), then for any real-valued function g,

E[g(X)] =
∫

∞

−∞

f (x)g(x) dx. (5.1)

Example 5.2 (Ross p. 246 Question 3). For some constant c, the random variable X has
the probability density function

f (x) =

cx4 if 0 < x < 2;

0 otherwise.

Find E (X) and Var(X).

Solution. We first find the value of c. Note that∫ 2

0
cx4 dx = 1 so c =

5
32

.
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Hence,

E (X) =
∫ 2

0
x f (x) dx =

5
32

∫ 2

0
x5 dx

and we leave the computation of Var(X) as a simple integration exercise as I am lazy. □

Example 5.3 (Ross p. 246 Question 4). The random variable X has the probability
density function

f (x) =

ax+bx2 if 0 < x < 1;

0 otherwise.

If E (X), find P
(
X < 1

2

)
and Var(X).

Solution. Since ∫ 1

0
ax+bx2 dx = 1 then

a
2
+

b
3
= 1.

Since E (X) = 0.6, then∫ 1

0
x
(
ax+bx2)= 0.6 so

a
3
+

b
4
= 0.6.

Solving both equations yields a = 3.6 and b =−2.4. So, f (x) = 3.6x−2.4x2 for 0 < x <
1. We only find P

(
X < 1

2

)
, which is∫ 1/2

0
3.6x−2.4x2 dx = 0.35.

So, we leave it to the reader to compute the variance. □

Example 5.4. A random variable X has a probability density function given by

f (x) =

e−x if |x|< a;

0 otherwise.

Here, a is a constant.

(a) Find the value of a.

(b) Compute E (X).

Solution.

(a) We have ∫ a

−a
e−x = 1.

Eventually, one can show that

a = ln

(
1+

√
5

2

)
.

(b) We have

E (X) =
∫ a

−a
xe−x dx =−0.0760.
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5.3 Continuous Uniform Distribution

Definition 5.4 (continuous uniform distribution). For a < b, a random variable X
is said to be uniformly distributed over the interval (a,b) if its PDF is

f (x) =

 1
b−a if a < x < b;

0 otherwise.

This is denoted by X ∼U(a,b).

Example 5.5 (Ross p. 246 Question 6). Your company must make a sealed bid for
a construction project. If you succeed in winning the contract (by having the lowest
bid), then you plan to pay another firm $100,000 to do the work. If you believe that
the minimum bid (in thousands of dollars) of the other participating companies can be
modelled as the value of a random variable that is uniformly distributed on (70,140),
how much should you bid to maximise your expected profit?

Solution. Let b be your bid, and M be the random variable denoting the minimum com-
peting bid. So, M ∼U (70,140). We have

P(M > b) =
∫ 140

b

1
70

dt =
140−b

70
.

The expected profit is

E (b) = (b−100) · 140−b
70

=
240−b2 −14000

70
.

We need E ′ (b) = 0 so b = 120. One checks that E (120) is a maximum value. To max-
imise the expected profit, we should bid $120,000. □

Example 5.6 (Ross p. 246 Question 5). The random variable X is said to be a discrete
uniform random variable on the integers 1,2, . . . ,n if

P(X = i) =
1
n

where i = 1,2, . . . ,n.

For any non-negative real number x, let Int(x) (sometimes written as [x] or the more well-
known floor function ⌊x⌋) be the largest integer that is less than or equal to x. Show that
if U is a uniform random variable on (0,1), then X = Int(nU)+ 1 is a discrete uniform
random variable on 1, . . . ,n.

Solution. We use the definition of the floor function. Note that

P(X = i) = P(Int(nU) = i−1) = P
(

i−1
n

≤U <
i
n

)
=

1
n
.

Hence, X is also a discrete uniform random variable on the same support. □
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Theorem 5.1 (triangular distribution and Irwin-Hall distribution). The sum of two
independent, equally distributed, uniform distributions yields a symmetric triangu-
lar distribution. In general, if we have n independent and identically distributed
(i.i.d.) uniform distributions U(0,1), the new distribution is said to follow an Irwin-
Hall distribution.

Proof. See Example 6.20 for a derivation of the density formula for X +Y given that
X ∼U (0,1) and Y ∼U (0,1).

Proposition 5.3. The expectation and variance of a uniform distribution X ∼
U(a,b) are

E(X) =
a+b

2
and Var(X) =

(b−a)2

12
.

One can prove the formula for expectation using integration, but observe since f (x) is a
constant, then the expectation should be the x-coordinate of the mean (to be more precise,
arithmetic mean) of a and b. We shall prove the formula for variance only.

Proof. As

E(X2) =
∫ b

a

x2

b−a
dx =

1
b−a

∫ b

a
x2 dx =

b3 −a3

b−a
= a2 +ab+b2,

then

Var(X) = a2 +ab+b2 −
(

a+b
2

)2

=
(b−a)2

12
which concludes the proof.

Example 5.7 (ST2131 AY24/25 Sem 1 Lecture 9). A point is chosen at random on a
line segment of length 1, thus dividing the line segment into two pieces. What is the
probability that the longer piece is at least four times as long as the shorter piece?

Solution. Suppose the shorter segment is of length x, so x ≤ 1/5. This means 1− x ≥
4/5. Since the line segment is symmetrical, the desired probability is 2 · (1/5÷4/5) =
2/5. □

Example 5.8 (ST2131 AY24/25 Sem 1 Lecture 10; triangle inequality). Two points are
chosen at random on a line segment of length 1, thus dividing the line segment into three
pieces. What is the probability that we can form a triangle?

Solution. Suppose we cut the line segment at points x and y, where x < y. Then, we
have three pieces of length x,y− x,1− y. By the triangle inequality, we must have the
following:

x+ y− x > 1− y and x+1− y > y− x and y− x+1− y > x

Upon simplification, we obtain

y >
1
2

and x <
1
2

and y < x+
1
2
.
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By symmetry, suppose we had y < x instead. Then, all the inequalities will still hold
via substitution. By plotting a graph for both cases with y against x, we see that we
can translate the problem to be such that if we pick a point (x,y) ∈ [0,1]2, what is the
probability that it falls in the regions satisfying both inequalities?

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x

y

One can deduce that the required probability is 1/4. □

Example 5.9 (ST2131 AY24/25 Sem 1 Lecture 10). Trains heading to destination A ar-
rive at the station at 15 minutes interval starting at 7:00 am. Trains heading to destination
B arrive at the station at 25 minutes interval starting at 7:05 am.

(a) A man arrives at the station at a time uniformly distributed between 7:00 am and
8:00 am, and takes the first train that arrives. What is the probability that he goes
to destination A?

(b) A woman arrives at the station at a time uniformly distributed between 7:10 am and
8:10 am, and takes the first train that arrives. What is the probability that she goes
to destination A?

Solution.

(a) Consider the following diagram:

A
B

07
00

07
05

07
15

07
30

07
45

07
55

08
00

Then, the intervals that he goes to A is the intervals that he definitely goes to A,
plus the interval that both A and B arrive at the same time (7.15–7.30), with half
the probability of choosing the trains. That is,

P(man goes to destination A) =
10+15+5

60
+

1
2
· 15

60
=

1
3
+

1
8
.
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(b) Similarly for the woman,

A
B

07
10

07
15

07
30

07
45

07
55

08
00

08
10

and we can calculate the probability in a similar fashion. We will get 25/60+
1/8.

Example 5.10. A point is chosen at random (in a uniformly distributed way) on a line seg-
ment of length L, thus dividing the line segment into two pieces. What is the probability
that the longer piece is at least 3 times as long as the shorter piece?

A B
Xx L− x

L

Solution. Let the length of the line segment be L, and X be the distance from one end
of the point to an arbitrary point on the line. Then, X ∼ U (0,L). The lengths of the
two pieces are X and L−X , and the length of the longer piece is max{X ,L−X}. We
investigate when

max{X ,L−X} ≥ 3min{X ,L−X} .

Naturally, we consider two cases. For the first case, suppose max{X ,L−X}= X . Then,
min{X ,L−X}= L−X . We must have

X ≥ 3(L−X) so X ≥ 3L
4
.

On the other hand, if max{X ,L−X}= L−X , then we must have

L−X ≥ 3X so X ≤ L
4
.

The required probability is

P
(

X ≥ 3L
4

or X ≤ L
4

)
= 1−P

(
L
4
≤ X ≤ 3L

4

)
= 1−

∫ 3L/4

L/4

1
L

dt =
1
2
.

□

Example 5.11. Consider a circle of radius R, together with an inscribed square in the
circle.

(a) Suppose a chord of the circle is picked randomly in such a way that the distance
of the chord from the centre of the circle is uniformly distributed between 0 and R.
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What is the probability that the chord is shorter than the side length of the square?

O

Inscribed square: s =
√

2R

L

d

(b) Suppose now that the chord of the circle is picked randomly in such a way that
the angle between the chord and the tangent to the circle at one end is uniformly
distributed between 0◦ and 180◦. What is the probability that the chord is shorter
than the side length of the square?

O

s =
√

2R

tangent at P

P

L

Q

Solution.

(a) Note that the length of the diagonal of the square is 2R since it is the diameter of
the circle. By Pythagoras’ theorem, the length of the square is R

√
2. The distance

of the chord from the circle follows a uniform distribution d ∼ U (0,R). Let X be
the random variable denoting

X = length of square− length of chord = R
√

2− length of chord.

By Pythagoras’ theorem,

length of chord = 2
√

R2 −d2.
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We wish to find P(X > 0), or equivalently,

P
(

2
√

R2 −d2 < R
√

2
)
= P

(
R√
2
< d < R

)
=
∫ R

R/
√

2

1
R

dt = 1− 1√
2
.

(b) The length of the side length of the square is
√

2R as seen in (a). Suppose the
angle between the chord and the tangent to the circle at one end follows a uniform
distribution Θ ∼U (0,π). Note that ∠QPO = π

2 −θ so ∠QOP = 2θ . Let L denote
the length of the chord. By the sine rule,

L
sin2θ

=
R

sin
(

π

2 −θ
) so L = 2Rsinθ .

We need L <
√

2R so

P
(

L <
√

2R
)
= P

(
2Rsinθ <

√
2R
)
= P

(
sinθ <

1√
2

)
= P

(
θ <

π

4

)
=

1
2
.

We then introduce the inverse transform sampling method (Theorem 5.2). The probability
integral transform states that if X is a continuous random variable with cumulative dis-
tribution function FX , then the random variable Y = F(X) has a uniform distribution on
(0,1). The inverse probability integral transform is just the inverse of this. To be specific,
we have Theorem 5.2.

Theorem 5.2 (inverse transform sampling). If Y ∼U(0,1) and if X has a cumulative
distribution FX , then the random variable F−1

X (Y ) has the same distribution as X .

Proof. Applying F to both sides, we have

P
[
F−1(Y )≤ x

]
= P [Y ≤ F(x)] .

Since Y ∼U (0,1), the above is equal to F (x).

Example 5.12 (Ross p. 245 Question 29). Let X be a continuous random variable hav-
ing cumulative distribution function F . Assume that F is strictly increasing. Find the
distribution of Y = F(X).

Solution. We have

P(Y ≤ y) = P(F(X)≤ y) = P
(
X ≤ F−1 (y)

)
since F is strictly increasing.

So,

P
(
X ≤ F−1 (y)

)
=
∫ F−1(y)

0
f (x) dx = y−F (0) .

As such, P(Y ≤ y) = y so fY (y) = 1, implying that Y ∼U (0,1). □

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

U(a,b) 1
b−a a and b a+b

2
(b−a)2

12
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5.4 Normal Distribution
The normal distribution is one of the most important probability distributions in Mathe-
matics and Statistics. It is often called the bell curve because of its characteristic symmet-
ric shape, with most of the probability mass concentrated around the mean and tapering
off smoothly in both directions. This distribution arises naturally in many real-world sit-
uations: the heights of people in a population, measurement errors in experiments, IQ
scores, and even fluctuations in stock prices often follow an approximately normal distri-
bution. Its ubiquity is explained in part by the central limit theorem (CLT), which states
that the sum (or average) of many independent random variables tends to follow a normal
distribution, regardless of the original distributions of those variables (Theorem 8.6).

Definition 5.5. A random variable X is normally distributed with parameters µ and
σ , where µ is the mean and σ2 is the variance, if its PDF is

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

where x ∈ R. We say that X ∼ N(µ,σ2).

Even though the PDF formula looks very complicated, one can verify that the integral
from −∞ to ∞ is indeed 1 (i.e. sum of probabilities is 1). To the interested, this uses a
well-known result, known as the Gaussian integral (Theorem 5.3).

Theorem 5.3 (Gaussian integral).∫
∞

−∞

e−x2
dx =

√
π (5.2)

We give a proof of this amazing result and note that we are jumping the gun to Chapter 6.
I will provide some preliminaries in the proof anyway.

Proof. Let f (x,y) be a function defined on R = [a,b]× [c,d]. The integral∫ d

c
f (x,y) dy

means that x is regarded as a constant and f (x,y) is integrated with respect to y from y = c
to y = d. Thus, this integral is a function of x and we can integrate it with respect to x
from x = a to x = b. The resulting integral∫ b

a

∫ d

c
f (x,y) dydx

is known as an iterated integral. The Fubini theorem allows the order of integration to be
changed in certain iterated integrals. It states that if f (x,y) is absolutely convergent and
continuous on R = [a,b]× [c,d], then∫∫

R
f (x,y) dA =

∫ b

a

∫ d

c
f (x,y) dydx =

∫ d

c

∫ b

a
f (x,y) dxdy.
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As mentioned earlier, for Fubini’s theorem to be applied, f must be an absolutely con-
vergent integral. Similar to the absolute convergence of series, if an integral is absolutely
convergent, then ∫

R
| f (x)| dx < ∞.

We will use polar coordinates. Let I be the original integral in (5.2). Then,

I =
∫

∞

−∞

e−x2
dx =

∫
∞

−∞

e−y2
dy.

Hence,

I2 =

(∫
∞

−∞

e−x2
dx
)(∫

∞

−∞

e−y2
dy
)
=
∫

∞

−∞

∫
∞

−∞

e−x2
e−y2

dxdy

where we used Fubini’s theorem. As such,

I2 =
∫

∞

−∞

∫
∞

−∞

e−(x2+y2) dxdy. (5.3)

We will do a change of variables from Cartesian coordinates to polar coordinates. We
will establish the following result

dxdy = rdrdθ

using the Jacobian of a suitable matrix. That is,

J =

[
∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

]
.

Since dxdy = det(J)drdθ , then the result follows1. Hence, (5.3) can be transformed to

I2 =
∫ 2π

0

∫
∞

0
re−r2

drdθ = π.

We conclude that I =
√

π .

Proposition 5.4. The expectation and variance of a normal random variable X ∼
N(µ,σ2) are

E(X) = µ and Var(X) = σ
2.

One interesting property is that the mean, median and mode of a normal random variable
are the same, which is µ . To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

N(µ,σ2) 1
σ
√

2π
e−

(x−µ)2

2σ2 µ and σ µ σ2

Definition 5.6 (standard normal random variable). A normal random variable is
called a standard normal random variable when µ = 0 and σ = 1. This is denoted

1One should refer to Algorithm 6.1 for a complete discussion.
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by Z. That is, Z ∼ N(0,1). Its PDF and CDF are usually denoted by φ and Φ

respectively. That is,

φ(x) =
1√
2π

e−
x2
2 and Φ(x) =

1√
2π

∫ x

−∞

e−
t2
2 dt.

Proposition 5.5. Some properties of the standard normal distribution are as follows:

(i) P(Z ≥ 0) = P(Z ≤ 0) = 0.5 due to symmetry

(ii) −Z ∼ N(0,1)

(iii) P(Z ≤ x) = 1−P(Z > x) for x ∈ R

(iv) P(Z ≤−x) = P(Z ≥ x) for x ∈ R

(v) If X ∼ N(µ,σ2), then,

Z =
X −µ

σ
∼ N(0,1)

(vi) If Z ∼ N(0,1), then X = aZ +b ∼ N(b,a2) for a,b ∈ R

Example 5.13 (Ross p. 246 Question 8). A randomly chosen IQ test taker obtains a score
that is approximately a normal random variable with mean 100 and standard deviation 15.
What is the probability that the score of such a person is (a) more than 125; (b) between
90 and 110?

Solution. Consider X ∼ N
(
100,152). For (a), we have P(X > 125) = 0.0478, for (b),

we have P(90 < X < 100) = 0.495. □

Example 5.14 (Ross p. 246 Question 9). Suppose that the travel time from your home
to your office is normally distributed with mean 40 minutes and standard deviation 7
minutes. If you want to be 95% certain that you will not be late for an office appointment
at 1 pm, what is the latest time that you should leave home?

Solution. Let t0 be the minutes before 1 pm to leave home. Then we have P(X < t0) ≥
0.95. By standardisation, we deduce that t0 ≈ 52 so we should leave home latest by
12.08pm. □

Example 5.15 (Ross p. 246 Question 10). The life of a certain type of automobile tire is
normally distributed with mean 34,000 miles and standard deviation 4000 miles.

(a) What is the probability that such a tire lasts more than 40,000 miles?

(b) What is the probability that it lasts between 30,000 and 35,000 miles?

(c) Given that it has survived 30,000 miles, what is the conditional probability that the
tire survives another 10,000 miles?

Solution. Let X ∼ N
(
34000,40002) denote the life of the automobile.

(a) We have P(X > 40000) = 0.066807 ≈ 0.0668.
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(b) We have P(30000 < X < 35000) = 0.44005 ≈ 0.440.

(c) By Definition 3.1, we have

P(another 10000 | survived 30000) =
P(X ≥ 40000)
P(X ≥ 30000)

=
0.066807
0.84134

≈ 0.0794.

Example 5.16. The scores of students taking an exam are assumed to follow a normal
distribution. It is known that 25% of the students scored less than 45 points, and 25% of
the students scored more than 70 points.

(i) What is the probability that a randomly chosen student scores less than 50 points?

(ii) What is the probability that a randomly chosen student scores more than 90 points?

Solution. Let X denote the score of a randomly chosen student. Then, X ∼ N
(
µ,σ2).

(i) We know that P(X ≤ 45) = 0.25 and P(X ≥ 70) = 0.25. By standardisation,

45−µ

σ
=−0.67449 and

70−µ

σ
= 0.67449.

Solving yields µ = 57.5 and σ = 18.546. So, P(X < 50) = 0.343.

(ii) P(X > 90) = 0.0399.

Example 5.17 (ST2131 AY21/22 Sem 1). Let Z be a standard normal random variable.
For any real number a ∈ R, define Xa by

Xa =

{
Z if Z > a;
0 otherwise.

Find E(X0) and E(X1).

Solution. Note that X0 = Z for Z > 0 and 0 otherwise. By definition of the probability
density function of the standard normal random variable (Definition 5.6), we have

E(X0) =
∫

∞

0
x · 1√

2π
e−x2/2 dx ≈ 0.40.

As for X1, it is equal to Z for Z > 1 and 0 otherwise. In a similar fashion,

E(X1) =
∫

∞

1
x · 1√

2π
e−x2/2 dx ≈ 0.24.

□

Example 5.18 (Ross p. 244 Question 10). Let f (x) denote the probability density
function of a normal random variable with mean µ and variance σ2. Show that µ −σ

and µ +σ are points of inflection of this function. That is, show that f ′′ (x) = 0 when
x = µ −σ or x = µ +σ .
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Solution. Suppose X ∼ N
(
µ,σ2). Then,

f (x) =
1

σ
√

2π
exp

(
−(x−µ)2

2σ2

)
.

Hence, we have

f ′ (x) =−x−µ

σ2 f (x) so f ′′ (x) =

(
(x−µ)2 −σ2

σ4

)
f (x) .

Setting f ′′ (x) = 0, we have x = µ ±σ , so these are the inflection points of the probability
density function. □

Example 5.19 (Ross p. 244 Question 11). Let Z be a standard normal random variable
and g be a differentiable function with derivative g′.

(a) Prove that E (g′(Z)) = E (Zg(z))2

(b) Show that E
(
Zn+1)= nE

(
Zn−1)

(c) Find E
(
Z4).

Solution.

(a) Let f denote the probability density function of Z. Recall that

E (Z) =
∫

∞

−∞

x f (x) dx and f (x) =
1√
2π

e−
x2
2 .

By (5.1), we have

E
(
g′ (Z)

)
=
∫

∞

−∞

g′ (x) f (x) dx (5.4)

and

E (Zg(z)) =
∫

∞

−∞

xg(x) f (x) dx =
1

σ
√

2π

∫
∞

−∞

xe−
x2
2 g(x) .

Using integration by parts, this is equal to

1
σ
√

2π

[
−g(x)e−

x2
2

]∞

−∞

− 1
σ
√

2π

∫
∞

−∞

−e−
x2
2 g′ (x) dx

and upon simplification, we have

E (Zg(z)) =− 1
σ
√

2π

∫
∞

−∞

−e−
x2
2 g′ (x) dx.

This line refers to the integral of g′ (x) f (x) and the proof is complete.

(b) We have

E
(
Zn+1)= ∫ ∞

−∞

xn+1 · 1√
2π

e−
x2
2 dx =

1√
2π

∫
∞

−∞

xn · xe−
x2
2 dx.

Using integration by parts, the result follows.
2This is known as Stein’s lemma.
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(c) By repeatedly applying (b), we have E
(
Z4) = 3E

(
Z2). Recall that Var(Z) =

E
(
Z2)− (E (Z))2 so E

(
Z2)= 1. Hence, E

(
Z4)= 3.

Example 5.20 (Ross p. 244 Question 11). Let Z be the standard normal random variable.
Show that

E
(
Zn+2)= (n+1)E (Zn) .

Solution. Use integration by parts. In fact, the idea is pretty much the same as (b) of
Example 5.19. □

Proposition 5.6 (68-95-99.7 rule). The 68–95–99.7 rule, also known as the empir-
ical rule, is a shorthand used to remember the percentage of values that lie within
an interval estimate in a normal distribution: 68%, 95% and 99.7% of the values lie
within one, two, and three standard deviations of the mean, respectively. That is,
for a random variable X

P(µ −σ ≤ X ≤ µ +σ)≈ 0.6827

P(µ −2σ ≤ X ≤ µ +2σ)≈ 0.9545

P(µ −3σ ≤ X ≤ µ +3σ)≈ 0.9973

In the empirical sciences, the so-called three-sigma rule of thumb (or 3σ rule) expresses
a conventional heuristic that nearly all values are taken to lie within three standard de-
viations of the mean, and thus it is empirically useful to treat 99.7% probability as near
certainty.

We then discuss the de Moivre-Laplace theorem (Theorem 5.4). Recall that the bino-
mial distribution B(n, p) describes the number of successes in n independent Bernoulli
trials, each with success probability p. While exact binomial probabilities can be com-
puted for small n, they become computationally intensive for large n. A powerful and
widely used method to approximate the binomial distribution in such cases is through the
normal approximation, justified by the central limit theorem.

Theorem 5.4 (de Moivre-Laplace theorem). Suppose X ∼ B(n, p). Then, for any
a < b, we have

P
(

a <
X −np
√

npq
< b
)
→ Φ(b)−Φ(a)

as n → ∞. That is, B(n, p)≈ N(np,npq). Equivalently,

X −np
√

npq
≈ Z where Z ∼ N (0,1) .

The approximation in Theorem 5.4 becomes increasingly accurate as n grows, and is
generally considered good when the product npq ≥ 10. However, one must be cautious
when approximating discrete distributions using a continuous distribution. A key refine-
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ment to improve the accuracy of the approximation is the use of the so-called continuity
correction (Proposition 5.7).

Proposition 5.7 (continuity correction). If X ∼ B(n, p), then

P(X = k) = P
(

k− 1
2
< X < k+

1
2

)
P(X ≥ k) = P

(
X ≥ k− 1

2

)
P(X ≤ k) = P

(
X ≤ k+

1
2

)

Example 5.21. A fair dice is rolled 15 times. Assume the outcomes are independent. The
random variable X denotes the number of times we see 1 or 2 among the 15 dice rolls.
Let p denote the exact probability of X = 5 and let q denote the probability of X = 5
computed using a normal approximation. What is the relative error of

∣∣∣ p−q
p

∣∣∣ expressed as
a percentage?

Solution. We have X ∼ B
(
15, 1

3

)
. Then, p = P(X = 5). Consider Y ∼ N

(
5, 10

3

)
so X ap-

proximately follows a normal distribution with mean 5 and variance 10
3 . So, p = 0.21430

and q = 0.21580 (we used continuity correction for the latter). Hence, the required rela-
tive error is

∣∣∣ p−q
p

∣∣∣= 0.704%. □

Example 5.22. In a country with a large population, a new law is being considered to ban
smoking. Suppose 70% of all citizens support this new law.

(i) What is the probability that in a random sample of 100 citizens, at least 65% of
them support this new law?

(ii) What is the minimum size of our random sample if we want to be 95% sure that at
least 65% of the sampled citizens support this new law?

Solution.

(i) We can model the situation using X ∼ B(100,0.7). Then, we wish to compute
P(X ≥ 65). We turn to normal approximation. So, X approximately follows a
normal distribution, say Y , with mean 70 and variance 21, i.e. Y ∼ N (70,21) ap-
proximately. Then, by continuity correction (Proposition 5.7),

P
(

Y ≥ 65− 1
2

)
= 0.885.

(ii) Suppose X ∼ B(n,0.7) Then, we wish to find the smallest value of n such that

P(X ≥ 0.65n)≥ 0.95.

Suppose X approximately follows a normal distribution, say Y , with mean 0.7n
and variance 0.21n, i.e. Y ∼ N (0.7n,0.21n) approximately. Then, by continuity
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correction (Proposition 5.7),

P
(

Y ≥ 0.65n− 1
2

)
≥ 0.95.

By standardisation,

P

(
Z ≥

0.65n− 1
2 −0.7n

√
0.21n

)
≥ 0.95.

Hence,
0.65n− 1

2 −0.7n
√

0.21n
≤−1.645

so the smallest value of n is 207.

Example 5.23. A certain school has a maximum enrolment capacity of 200 students per
year. Historical records indicate that 65% of the offers of admission made to applicants
of this school were accepted.

(i) If the school decides to make 300 offers of admissions this year, what is the proba-
bility that more than 200 students accept their offers?

(ii) The school is only willing to take a risk of 1% chance that more than 200 students
accept their offers. What is the maximum number of offers the school can make
this year?

Solution.

(i) Suppose X is the random variable denoting the number of students who accept
offers. Then, X ∼ B(300,0.65). We approximate this using a normal distribution
with mean 300 · 0.65 and variance 300 · 0.65 · 0.35. Hence, X ∼ N (195,68.25)
approximately. By continuity correction (Proposition 5.7),

P(X > 200)≈ P
(

X ≥ 200− 1
2

)
= 0.293.

(ii) Let Y be the random variable denoting the number of students who accept offers.
Then, Y ∼ B(n,0.65), where n is the number of offers the school can make this
year. We want P(Y > 200) < 0.01. Again, we approximate this using a normal
distribution with mean 0.65n and variance 0.65 · 0.35n. By continuity correction
(Proposition 5.7), the maximum number of offers is 279.

5.5 Exponential Distribution
The exponential distribution is one of the most fundamental continuous probability distri-
butions, often used to model the time between events in a Poisson process (see Definition
5.8). It is particularly useful when dealing with scenarios where events occur randomly
and independently over time, such as waiting times, lifetimes of components, or inter-
arrival times.
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Definition 5.7 (exponential distribution). A random variable X is said to follow an
exponential distribution with parameter λ > 0 if its PDF is

f (x) =

λe−λx if x ≥ 0;

0 if x < 0.

We say that X ∼ Exp(λ ).

Proposition 5.8. If X ∼ Exp(λ ), then the expectation and variance are

E(X) =
1
λ

and Var(X) =
1

λ 2 .

Example 5.24 (Ross p. 247 Question 13). At a certain bank, the amount of time that a
customer spends being served by a teller is an exponential random variable with mean 5
minutes. If there is a customer in service when you enter the bank, what is the probability
that he or she will still be with the teller after an additional 4 minutes?

Solution. Suppose X ∼ Exp(λ ). We are given that 1/λ = 5 so λ = 1
5 . So,∫

∞

4

1
5

e−
1
5 x dx = 0.449.

□

Example 5.25 (Ross p. 247 Question 19). Evidence concerning the guilt or innocence of
a defendant in a criminal investigation can be summarised by the value of an exponential
random variable X whose mean µ depends on whether the defendant is guilty. If innocent,
µ = 1; if guilty, µ = 2. The deciding judge will rule the defendant guilty if X > c for
some suitably chosen value of c.

(a) If the judge wants to be 95 percent certain that an innocent man will not be con-
victed, what should be the value of c?

(b) Using the value of c found in (a), what is the probability that a guilty defendant will
be convicted?

Solution.

(a) Let X ∼ Exp(λ ) with mean µ = 1/λ . The judge convicts if X > c. We have

P(convict | innocent) = P(X > c | µ = 1) = e−c = 0.05

so c = ln20.

(b) With the value of c in (a),

P(convict | guilty) = P(X > c | µ = 2) = e−
1
2 c =

1√
20

.
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Example 5.26 (Ross p. 244 Question 19). If X is an exponential random variable with
mean 1/λ , show that

E
(

Xk
)
=

k!
λ k where k = 1,2,3, . . . .

Solution. We have X ∼ Exp(λ ). So,

E
(

Xk
)
=
∫

∞

0
xk ·λe−λx dx.

Using integration by parts,

E
(

Xk
)
= λ

[
xk
(
− 1

λ
e−λx

)]∞

0
−λ

∫
∞

0
− 1

λ
e−λx · kxk−1 dx =

k
λ

∫
∞

0
xk−1

λe−λx dx.

This shows that E
(
Xk) = kE

(
Xk−1). Applying this repeatedly yields the desired result.

□

Proposition 5.9 (median and exponential decay). If T ∼ Exp(λ ), then the median
m is ln2/λ .

Proof. This is easy to prove by considering the CDF formula. Substituting t = m, we
have F (m) = 1

2 . Hence, e−λm = 1
2 . This implies that m = ln2

λ
.

The expression ln2/λ in Proposition 5.9 is of great significance. It is known as half-
life and it plays an important role in the exponential decay of an object. A quantity is
subject to exponential decay if it decreases at a rate proportional to its current value.
Symbolically, this process can be expressed by the following differential equation:

dN
dt

=−λN,

where N is the quantity and λ is a positive rate called the exponential decay constant. The
solution to the equation is N = N0e−λ t , where N0 = N(0) is the initial quantity at time
t = 0.

Recall that the if a random variable X satisfies the memoryless property, then for m,n∈N,

P(X > m+n | X > m) = P(X > n).

Previously, we claimed and proved that the geometric distribution is the only discrete
random variable exhibiting the memoryless property. Here, we set m,n ∈ R+ since we
are dealing with continuous random variables.

Proposition 5.10 (memorylessness). For the continuous counterpart, only the ex-
ponential distribution has the memoryless property.

We provide a proof for this statement.
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Proof. We apply the definition of conditional probability. Hence, for any m,n > 0, we
have

P(X > m+n) = P(X > m)P(X > n). (5.5)

We note that P(X ≤ x) = F(x) by definition of the CDF. Hence, (5.5) becomes

[1−F(m+n)] = [1−F(m)][1−F(n)].

Using the substitution G(x) = 1−F(x) for all x > 0, we have

G(m+n) = G(m)G(n), (5.6)

which is a functional equation involving two variables. Setting m = n = 0 yields G(0) =
[G(0)]2, and so G(0)[1−G(0)] = 0. Hence, G(0) = 0 or G(0) = 1. By first principles of
differentiation, we have

G′(x) = lim
δx→0

G(x+δx)−G(x)
δx

= lim
δx→0

G(x)G(δx)−G(x)
δx

where we used the functional equation (5.6). Hence,

G′ (x) = G(x) lim
δx→0

G(δx)−G(0)
δx

= G(x)G′(0).

Note that G′(0) is a constant, say c, so we end up with a first-order separable differential
equation, namely G′(x) = cG(x). This is easy to solve. We get G(x) = ecx+d , where c and
d are both constants. By setting A = ed , the solution is just

G(x) = Aecx.

Hence, F(x) = 1−Aecx and since f (x) is the derivative of the CDF, then

f (x) = F ′(x) =−Acecx.

By setting c =−λ and −Ac = λ , we have A = 1, and the result follows.

Example 5.27. When an MRT (subway) line breaks down, the time (in hours) until the
resumption of operations is an exponentially distributed random variable with parameter
1/3.

(i) What is the probability that more than 3 hours is needed to fix a broken down MRT
line?

(ii) One of the MRT lines has broken down 6 hours ago. What is the probability that it
will get fixed within the next 3 hours?

Solution.

(i) Let T be the time taken until the resumption of operations of a broken MRT line.
Then, T ∼ Exp(1/3). Then,

P(T > 3) =
∫

∞

3

1
3

e−
1
3 t dt = 0.368.
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(ii) We wish to find P(T > 9 | T > 6), which is equal to P(T > 3) by the memoryless
property of the exponential distribution (Proposition 5.10). So, the answer is 0.368.

Example 5.28 (Ross p. 247 Question 18). There are two types of batteries in a bin.
When in use, type i batteries last (in hours) an exponentially distributed time with rate λi,
where i = 1,2. A battery that is randomly chosen from the bin will be a type i battery
with probability pi, where p1 + p2 = 1. If a randomly chosen battery is still operating
after t hours of use, what is the probability that it will still be operating after an additional
s hours?

Solution. Let Ti denote the lifespan of a type i battery, where i = 1 or i = 2. Then,
Ti ∼ Exp(λi). Let T denote the lifespan of a randomly chosen battery. By Definition 3.1,

P(T > s+ t | T > t) =
P(T > s+ t)

P(T > t)
.

By the law of total probability (Proposition 3.3),

P(T > t) = P(T1 > t) p1 +P(T2 > t) p2 = e−λ1t p1 + e−λ2t p2.

Hence, the required probability is

e−λ1(s+t)p1 + e−λ2(s+t)p2

e−λ1t p1 + e−λ2t p2
.

□

Example 5.29 (ST2131 AY24/25 Sem 1 Lecture 12). Used cars are sold at a garage.
The total lifetime mileage that a car from the garage can be drive before it breaks down is
assumed to have an exponential distribution. You and I both bought a car from the garage.

Your car has been driven 100 thousand kilometres. My car has been driven 150 thou-
sand kilometres. Which of the two cars is more likely to be driven for a longer distance
before breaking down?

Solution. Let Y be the lifetime of your car and M be the lifetime of my car. Then

P(Y > t +100 | Y > 100) and P(M > t +150 | M > 150)

are probabilities of interest. Both probabilities are actually equal by the memoryless
property of the exponential random variable (Proposition 5.10). That is,

P(Y > t +100 | Y > 100) = P(Y > t) = P(M > t) = P(M > t +150 | M > 150) .

So, both cars are equally likely to break down. Well, to further justify, let X be the lifetime
of the car, which can be modelled as X ∼ exp(λ ). Define a random process

S (t) =

1 if X ≤ t;

0 otherwise
which is a memoryless process.



5.5. EXPONENTIAL DISTRIBUTION 119

Consider P(S (s) = 0 | S (t) = 0). This is equal to P(S (s− t) = 0), i.e. when you arrive at
point t, the process forgets the history and refreshes itself. This is known as the Markov
property. □

Definition 5.8 (Poisson process). A homogeneous Poisson point process can be
defined as a counting process, which can be denoted by {N(t), t ≥ 0}. A counting
process represents the total number of occurrences or events that have happened
up to and including time t. A counting process is a homogeneous Poisson counting
process with rate λ > 0 if it has the properties N(0)= 0, has independent increments
and the number of events in any interval of length t is a Poisson random variable
with parameter (or mean) λ t.

We shall prove that if N(t)∼ Po(λ t), then the inter-arrival time T , follows an exponential
distribution with parameter λ . That is, T ∼ Exp(λ ). Note that in most cases, we usually
denote an exponential random variable by T since it encompasses the essence of time.

Proof. Note that

P(T > t) = P(N(t) = 0) = e−λ t

Hence, P(T ≤ t) = 1− e−λ t , so f (t) = λe−λ t . To conclude, T ∼ Exp(λ ).

Theorem 5.5 (distribution of the minimum). Suppose Ti ∼ Exp(λi) for 1 ≤ i ≤ n
and the Ti’s are independent exponential random variables. We define W to be the
minimum of all the Ti’s. Then, W also follows an exponential distribution. That is,

W = min{T1,T2, . . . ,Tn} ∼ Exp

(
n

∑
i=1

λi

)
.

Proof.

P(W ≤ t) = 1−P(W > t) = 1−P(T1 > t)P(T2 > t) . . .P(Tn > t)

where we used the fact that the Ti’s are independent. By considering the CDF of each Ti,
we see that

P(W ≤ t) = 1− e−λ1te−λ2t . . .e−λnt = 1− e−(λ1+λ2+...+λn) = 1− exp

(
−

n

∑
i=1

λit

)
.

Differentiating both sides yields

fW (t) =
n

∑
i=1

λi · exp

(
−

n

∑
i=1

λit

)
,

asserting that our claim is true.
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Corollary 5.1. If Ti ∼ Exp(λ ) for 1 ≤ i ≤ n, and that all the Ti’s are independent and
identically distributed, then

W = min{T1,T2, . . . ,Tn} ∼ Exp(nλi).

Example 5.30 (ST2131 AY19/20 Sem 2). Let X be an exponential random variable with
mean 1. Find the probability density function of Y = 1/X2.

Solution. We have P(X ≤ x) = e−x for x ≥ 0 by definition of the exponential distribution.
Thus,

P(Y ≤ y) = P
(

1
X2 ≤ y

)
= P

(
1
y
≤ X2

)
= P

(
X ≤− 1

√
y

or X ≥ 1
√

y

)
which is equal to

P
(

X ≤− 1
√

y

)
+P

(
X ≥ 1

√
y

)
= 0+

∫
∞

1/
√

y
e−x dx = exp

(
− 1
√

y

)
.

Differentiating P(Y ≤ y) with respect to y yields fY (y), which is the probability density
function of Y , so

f (y) =
exp
(
−1/

√
y
)

2y3/2 .

Here, exp(x) = ex. Next, we find the support of Y . Since X is defined for x ≥ 0, then Y is
defined for y ≥ 0. To conclude,

f (y) =


exp
(
−1/

√
y
)

2y3/2 if y ≥ 0;

0 otherwise.

□

Previously in Theorem 5.5, we talked about the distribution of the minimum of indepen-
dent random variables. In general, we have the following result:

Theorem 5.6 (distribution of the maximum and minimum). Assume that
X1,X2, . . . ,Xn are independent random variables with common CDF F and PDF
f . Let

U = max{X1, . . . ,Xn} and V = min{X1, . . . ,Xn} .

The CDF of U is

FU(u) = P(U ≤ u) =
n

∏
i=1

P(Xi ≤ u) = [F(u)]n,

and the PDF of U is
fU(u) = n f (u)[F(u)]n−1.

Similarly,

FV (v) = 1− [1−F(v)]n and fV (v) = n f (v)[1−F(v)]n−1.
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The results in Theorem 5.6 are easy to established. In particular, the respective PDFs can
be easily derived by differentiating the CDF and we make use of F ′ = f .

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Exp(λ ) λe−λx λ
1
λ

1
λ 2

Definition 5.9 (Laplace distribution). The definition of the Laplace distribution is

f (x) =
1
2

λe−λ |x|.

Realise that the Laplace distribution is a natural extension of the exponential distri-
bution.

Example 5.31 (ST2131 AY24/25 Sem 1 Lecture 12). The random variable X follows the
Laplace distribution with parameter 1/π . Find P(X > π) ,P(−1 < X < 2) ,E (X) ,Var(X).

Solution. So
P(X > π) =

∫
∞

π

1
2
· 1

π
e−x/π dx =

1
2e

.

For P(−1 < X < 2), we find

P(−1 < X < 2) =
∫ 0

−1

1
2
· 1

π
e−x/π dx+

∫ 2

0

1
2
· 1

π
e−x/π dx.

Observe that this is a symmetric function, so we can compute

P(−1 < X < 2) =
∫ 1

0

1
2
· 1

π
e−x/π dx+

∫ 2

0

1
2
· 1

π
e−x/π dx ≈ 0.37.

For E (X), note that this is a symmetric distribution. So, E (X) = 0. Lastly, the variance
is

Var(X) = E
(
X2)− [E (X)]2 =

1
2π

∫ 0

−∞

x2e−x/π dx+
1

2π

∫
∞

0
x2e−x/π dx = 2π

2.

Here, the evaluation of each integral is quite simple — use integration by parts. □

5.6 Gamma Distribution
The gamma distribution is a flexible family on [0,∞) that generalises the exponential law
and naturally models accumulated waiting time: in a Poisson process with rate λ , the
time to observe α events is Γ(α,λ ). It is widely used for lifetimes, service times, and
positive-valued data.

Definition 5.10 introduces the gamma distribution. The shape is controlled by the pa-
rameter α . For example, α = 1 gives the exponential distribution and any integer α = n
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yields the Erlang distribution (sum of n independent and identically distributed exponen-
tials). The rate parameter λ > 0 sets the time scale (units 1/time). Many texts use the
scale θ = 1/λ instead; then X ∼ Γ(α,θ) has E[X ] = αθ and Var(X) = αθ 2.

Definition 5.10 (gamma distribution). A random variable X is said to follow a
gamma distribution with parameters α and λ , and is denoted by X ∼ Γ(α,λ ). The
PDF only exists for x ≥ 0 and its formula is

f (x) =
λe−λx(λx)α−1

Γ(α)
,

where α,λ > 0 and Γ(α), called the gamma function, is defined by

Γ(α) =
∫

∞

0
e−ttα−1 dt.

It is easy to prove that Γ(1) = 1 and that the gamma function satisfies the recurrence
relation Γ(α + 1) = αΓ(α). One can use integration by parts to deduce the recurrence
relation. Hence, it is easy to establish that for integer values of α , say α = n, we have
Γ(n) = (n−1)!.

Observe that Γ(1,λ ) = Exp(λ ), which implies that the exponential distribution is a spe-
cial case of the gamma distribution.

Lemma 5.1. A very interesting result states that

Γ

(
1
2

)
=
∫

∞

0
e−tt−

1
2 dt =

√
π.

Proof. Using the substitution u =
√

t, we have∫
∞

0
e−tt−

1
2 dt =

∫
∞

−∞

e−u2
du

This follows from the Gaussian integral (Theorem 5.3).

Proposition 5.11. If X ∼ Γ(α,λ ), then the expectation and variance are

E(X) =
α

λ
and Var(X) =

α

λ 2 .

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Γ(α,λ ) λe−λx(λx)α−1

Γ(α) α and λ
α

λ

α

λ 2

Similar to the Poisson process, we have a similar result, known as a gamma process.
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Theorem 5.7 (gamma process). If events are occurring randomly and in accordance
with the axioms required for a situation to be modelled by a Poisson process, then
the amount of time one has to wait until a total of n events has occurred will be a
gamma random variable with parameters (n,λ ).

Proof. Let Tn denote the time at which the nth event occurs, and N(t) equal to the number
of events in [0, t]. Note that N(t)∼ Po(λ t). Hence, {Tn ≤ t}= {N(t)≥ n}. Therefore,

P(Tn ≤ t) = P(N(t)≥ n) =
∞

∑
j=n

P(N(t) = j) =
∞

∑
j=n

e−λ t(λ t) j

j!
.

To get the PDF of Tn, we differentiate both sides with respect to t. This should be straight-
forward and will be left as an exercise.

5.7 Beta Distribution

Definition 5.11 (beta distribution). A random variable X is said to follow a beta
distribution with parameters (a,b), denoted by X ∼ Beta(a,b), if its PDF is

f (x) =
1

B(a,b)
xa−1(1− x)b−1,

where the support of x is 0 < x < 1. The expression B(a,b) is known as the beta
function, where

B(a,b) =
∫ 1

0
xa−1(1− x)b−1 dx.

Lemma 5.2 (relationship with gamma function).

B(a,b) =
Γ(a)Γ(b)
Γ(a+b)

Proof. We first consider Γ(a)Γ(b) and write it as an integral. Then,

Γ(a)Γ(b) =
(∫

∞

0
e−uua−1 du

)(∫
∞

0
e−vvb−1 dv

)
=
∫

∞

0

∫
∞

0
e−(u+v)ua−1vb−1 dudv.

We use the change of variables u = zt and v = z(1− t). Hence, v =−z(t −1). Recall that
u,v ≥ 0, which implies that 0 ≤ t ≤ 1 and z ≥ 0. Upon change of variables, we have

Γ(a)Γ(b) =
∫

∞

0

∫ 1

0
e−z(zt)a−1(z(1− t))b−1z dtdz

=

(∫
∞

0
e−zza+b−1 dz

)(∫ 1

0
ta−1(1− t)b−1 dt

)
= Γ(a+b)B(a,b)

which asserts that the statement is true.
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Proposition 5.12. If X ∼ Beta(a,b), then

E(X) =
a

a+b
and Var(X) =

ab
(a+b)2(a+b+1)

.

We shall prove the formula for expectation only.

Proof. It is clear that

E (X) =
1

B(a,b)

∫ 1

0
xa(1− x)b−1 dx.

By definition of the beta function and using the relationship between the beta function
and the gamma function, we can rewrite the above integral as

B(a+1,b)
B(a,b)

=
Γ (a+1) Γ (b)

Γ (a+b+1)
· Γ (a+b)

Γ (a) Γ (b)
=

Γ (a+1) Γ (a+b)
Γ (a) Γ (a+b+1)

.

To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

Beta(a,b) 1
B(a,b)x

a−1(1− x)b−1 a and b a
a+b

ab
(a+b)2(a+b+1)

5.8 Cauchy Distribution

Definition 5.12 (Cauchy distribution). A random variable X is said to follow a
Cauchy distribution with parameter θ , where θ ∈R, denoted by X ∼ Cauchy(θ), if
its PDF is

f (x) =
1
π
· 1

1+(x−θ)2 .

It is also the distribution of the ratio of two independent normally distributed random
variables with mean zero. Interestingly, the expectation and variance of a Cauchy random
variable do not exist!

Example 5.32 (Ross p. 247 Question 16). A standard Cauchy random variable X has
probability density function

f (x) =
1

π(1+ x2)
, −∞ < x < ∞.

Prove that 1/X is also a standard Cauchy random variable.

Solution. Let Y = 1/X . Then,

P(Y ≤ y) = P
(

1
X

≤ y
)
= P

(
1
y
≤ X

)
=
∫

∞

1/y

1
π (1+ x2)

dx =
1
2
− 1

π
arctan

(
1
y

)
.

Differentiating both sides yields the desired result. □
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To summarise,

Random Variable PDF Parameter(s) E(X) Var(X)

U(a,b) 1
b−a a and b a+b

2
(b−a)2

12

N(µ,σ2) 1
σ
√

2π
e−

(x−µ)2

2σ2 µ and σ µ σ2

Exp(λ ) λe−λx λ
1
λ

1
λ 2

Γ(α,λ ) λe−λx(λx)α−1

Γ(α) α and λ
α

λ

α

λ 2

Beta(a,b) 1
B(a,b)x

a−1(1− x)b−1 a and b a
a+b

ab
(a+b)2(a+b+1)

Cauchy(θ) 1
π
· 1

1+(x−θ)2 θ

5.9 Order Statistics
Suppose we have a sample of n random variables, X1,X2, . . . ,Xn, drawn from some distri-
bution. To study the ordered values, we sort the sample in increasing order as follows:

X(1) < X(2) < .. . < X(n)

Here, X(1),X(2), . . . ,X(n) are called the order statistics.

• X(1) is the smallest value in the sample, also known as the minimum

• X(n) is the largest value in the sample, also known as the maximum

• X(i) is the ith smallest value in the sample (also called the ith order statistic)

The notation X(i) < X( j) for 1 ≤ i < j ≤ n indicates that the order statistics are arranged
in strictly increasing order. The index (i) specifies the position in the ordered sequence,
not the original order of Xi.

Theorem 5.8. The CDF of X(r) (where r specifies the order statistic) is

FX(r)(x) =
n

∑
j=r

(
n
j

)
[FX(x)] j[1−FX(x)]n− j

and the corresponding PDF is

fX(r)(x) =
n!

(r−1)!(n− r)!
fX(x)[FX(x)]r−1[1−FX(x)]n−r.

Example 5.33. Suppose X1,X2, . . . ,Xn are independent and identically distributed random
variables, each following a uniform distribution on [0,1]. We are interested in the second
smallest value, X(2), in a sample of size n = 3. Obtain its CDF.
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Solution. In fact, the second smallest value is the median. We have FX(2) (x)=P
(
X(2) ≤ x

)
.

This means that at least two of the random variables X(1),X(2),X(3) have values ≤ x. We
shall consider two cases.

• Case 1: Suppose two random variables have values ≤ x. Then, the contribution of
this event is (

3
2

)
[FX (x)]2 [1−FX (x)] .

• Case 2: Suppose all three random variables have values ≤ x. The contribution of
this event is (

3
3

)
[FX (x)]3 .

The desired CDF is the sum of contributions of the two cases, so,

FX(2) (x) =
(

3
2

)
[FX (x)]2 [1−FX (x)]+

(
3
3

)
[FX (x)]3 .

□



Chapter 6
Joint Probability Distribution

6.1 Joint Distribution Functions
In many real-world situations, we are interested in studying the relationship between two
or more random variables simultaneously. For instance, in Probability Theory, we may
wish to understand the joint behaviour of height and weight, demand and supply, or the
time and location of an event. This leads naturally to the concept of joint distributions,
which capture the full probabilistic structure between two (or more) random variables
defined on the same sample space.

Definition 6.1 (joint distribution). For any two random variables X and Y defined
on the same sample space, we define the joint distribution function of X and Y by

FX ,Y (x,y) = P(X ≤ x,Y ≤ y) for x,y ∈ R.

Note that {X ≤ x,Y ≤ y} is equivalently {X ≤ x}∩{Y ≤ y}.

Definition 6.2 (marginal distribution). The distribution function of X can be ob-
tained from the joint density function of X and Y via

FX(x) = lim
y→∞

FX ,Y (x,y) where FX is the marginal distribution of X .

Similarly,

FY (y) = lim
x→∞

FX ,Y (x,y) where FY is the marginal distribution of Y.

Proposition 6.1. We present two formulae which are useful in some calculations.
Let a,b be real numbers, where a1 < a2 and b1 < b2. Then, the following hold:

(i) P(X > a,Y > b) = 1−FX(a)−FY (b)+FX ,Y (a,b)

(ii) P(a1 < X ≤ a2,b1 < Y ≤ b2) = FX ,Y (a2,b2)−FX ,Y (a1,b2)+FX ,Y (a1,b1)−

127
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FX ,Y (a2,b1)

We will only prove (i).

Proof. We set A = {X ≤ a} and B = {Y ≤ b}. Then, the required event is A′ ∩ B′,
which is the same as (A∩B)′, and by considering the complement of it, it is equiva-
lently n(S)− (A∩B). By the principle of inclusion and exclusion (Proposition 2.1), the
required probability is 1−P(A∪B). Hence,

P(X > a,Y > b) = 1−P(A∪B)

= 1−P(A)−P(B)+P(A∩B)

= 1−FX(a)−FY (b)+FX ,Y (a,b)

which concludes the proof.

Definition 6.3 (joint density function). In the case where X and Y are discrete
random variables, the joint probability density function of X and Y is

pX ,Y (x,y) = P(X = x,Y = y).

We can recover the probability density function of X and Y using

pX(x) = P(X = x) = ∑
y∈R

pX ,Y (x,y) and pY (y) = P(Y = y) = ∑
x∈R

pX ,Y (x,y).

px and py are the marginal probability density function of X and Y respectively.

Example 6.1. 3 balls are randomly selected from an urn containing 3 red, 4 white and 5
blue balls. If we let R and W denote the number of red and white balls chosen respectively,
then we can construct a joint probability density function table of R and W as shown in

white (right); red (bottom) 0 1 2 3 P(R = r)

0 10
220

40
220

30
220

4
220

84
220

1 30
220

60
220

18
220 0 108

220

2 15
220

12
220 0 0 27

220

3 1
220 0 0 0 1

220

P(W = w) 56
220

112
220

48
220

4
220

It should be clear as to how these probabilities are computed.

Proposition 6.2. Some useful formulae are as follows:

(i)
P(a1 < X ≤ a2,b1 < Y ≤ b2) = ∑

a1<x≤a2

∑
b1<y≤b2

pX ,Y (x,y)



6.1. JOINT DISTRIBUTION FUNCTIONS 129

(ii)
FX ,Y (a,b) = P(X ≤ a,Y ≤ b) = ∑

x≤a
∑
y≤b

pX ,Y (x,y)

(iii)
P(X > a,Y > b) = ∑

x>a
∑
y>b

pX ,Y (x,y)

Definition 6.4 (jointly density function). We say that X and Y are jointly continuous
random variables if there exists a function, denoted by fX ,Y and known as the joint
probability density function of X and Y if for every set C ⊆ R2, we have

P((X ,Y ) ∈C) =
∫∫

(x,y)∈C
fX ,Y (x,y) dxdy.

Example 6.2. A committee of 4 persons is to be randomly selected from a group of 12
professors consisting of 6 physicists, 4 chemists and 2 biologists. Let X and Y respectively
denote the number of physicists and chemists in the committee.

(a) Determine the joint probability mass function p of X and Y

(b) Determine the marginal probability mass function pX of X

(c) Determine the marginal probability mass function pY of Y

Solution.

(a) We have

p(x,y) =

(
6
x

)(
4
y

)(
2

4− x− y

)
(

12
4

) .

(b) We have

pX (x) =

(
6
x

)(
6

4− x

)
(

12
4

) .

(c) We have

pY (y) =

(
4
y

)(
8

4− y

)
(

12
4

) .

Example 6.3 (Ross p. 312 Question 5). Suppose X ,Y,Z are independent random vari-
ables that are each equally likely to be either 1 or 2. Find the probability mass function
of

(a) XY Z
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(b) XY +XZ +Y Z

(c) X2 +Y Z

Solution.

(a) We have X ,Y,Z ∼ U (1,2), where U is a discrete uniform random variable. Let K
denote the number of 2’s among X ,Y,Z so K ∼ B(3,0.5). Then, XY Z = 2K . Hence,

P(XY Z = 1,2,4,8) =
(

1
8
,
3
8
,
3
8
,
1
8

)
.

(b) Recall K in (a). If K = 0, then XY +XZ+Y Z = 3; if K = 1, then we get 5; if K = 2,
we get 8, if K = 3, we get 12, so

P(XY +XZ +Y Z = 3,5,8,12) =
(

1
8
,
3
8
,
3
8
,
1
8

)
.

(c) We first condition on X . If X = 1, then the values are 2, 3, 5 with respective proba-
bilities 1/4, 1/2, 1/4; if X = 2, then the values are 5, 6, 8 with respective probabil-
ities 1/4, 1/2, 1/4. The result follows by considering P(X = 1) = P(X = 2) = 1

2
and then applying the law of total probability (Proposition 3.3).

Proposition 6.3. We state some useful formulae.

(i) Let A,B ⊆ R. Set C = A×B (i.e. C is the Cartesian product of A and B).
Then,

P(X ∈ A,Y ∈ B) =
∫

A

∫
B

fX ,Y (x,y) dydx.

(ii) In particular, we can set a1,a2,b1,b2 ∈R, where a1 < a2 and b1 < b2, and so

P(a1 < X ≤ a2,b1 < Y ≤ b2) =
∫ a2

a1

∫ b2

b1

fX ,Y (x,y) dydx.

(iii) Let a,b ∈ R. Then,

FX ,Y (a,b) = P(X ≤ a,Y ≤ b) =
∫ a

∞

∫ b

∞

fX ,Y (x,y) dydx.

Hence,

fX ,Y (x,y) =
∂ 2

∂x∂y
FX ,Y (x,y).

Definition 6.5 (marginal density function). The marginal probability density func-
tion of X is

fX(x) =
∫

∞

−∞

fX ,Y (x,y) dy.

Similarly, the marginal probability density function of Y is

fY (y) =
∫

∞

−∞

fX ,Y (x,y) dx.
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Example 6.4. The joint probability density function of X and Y is

fX ,Y (x,y) =

2e−xe−2y if x,y > 0;

0 otherwise.

Suppose we wish to compute the following probabilities:

(i) P(X > 1,Y < 1)

(ii) P(X < Y )

(iii) the marginal probability density function of X

(iv) P(X ≤ x)

(v) the marginal distribution function of Y

Solution.

(i) This probability can be expressed by the following integral:∫
∞

1

∫ 1

0
2e−xe−2y dydx

The answer is e−1(1− e−2).

(ii) As 0 < x < y and 0 < y < ∞, the required probability is∫
∞

0

∫ y

0
2e−xe−2y dxdy.

The answer is 1/3. I omit the integration process because it is simple. I believe
the only issue readers might have is setting up the double integral. We have an
alternative representation for it. That is, we set x < y < ∞ and 0 < x < ∞. Hence,
the integral is just ∫

∞

0

∫
∞

x
2e−xe−2y dydx =

1
3
.

It yields the same conclusion as before!

(iii) Recall from Definition 6.5 that the formula for the marginal probability density
function of X is

fX(x) =
∫

∞

−∞

fX ,Y (x,y) dy.

As such,
fX(x) =

∫
∞

0
2e−xe−2y dy = e−x.

Hence, for x > 0, the marginal probability density function is fX(x) = e−x.

(iv) Note that P(X ≤ x) is the marginal distribution function of x, so

FX(x) =
∫ x

0
e−t dt = 1− e−x where x > 0.

(v) The marginal distribution function of Y , for y > 0, is FY (y) = 1− e−2y.
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Example 6.5 (Ross p. 311 Question 3). The joint density of X and Y is given by

f (x,y) =C(y− x)e−y where − y < x < y and 0 < y < ∞.

(a) Find C

(b) Find the density function of X

(c) Find the density function of Y

(d) Find E(X)

(e) Find E(Y )

Solution.

(a) We know that∫
∞

−∞

∫
∞

−∞

f (x,y) dx dy = 1 so
∫

∞

0

∫ y

−y
C(y− x)e−y dxdy = 1.

One can use integration by parts to deduce that C = 1
4 .

(b) We have

fX (x) =

1
4e−x if x ≥ 0;
1
4e−x (1−2x) if x < 0

.

(c) We have

fY (y) =

0 if y < 0;
1
2y2e−y if y ≥ 0.

(d) We have

E (X) =
∫

∞

0

1
4

xe−x dx+
∫ 0

−∞

1
4

xe−x (1−2x) dx.

(e) We have

E (Y ) =
∫

∞

0

1
2

y3e−y dy.

We leave it to the reader to integrate by parts and obtain an expression for E (Y ).

Example 6.6. The random variables X and Y are jointly continuous with a joint probabil-
ity density function given by

f (x,y) =

c
(
x2 + xy

2

)
if 0 < x < 1 and 0 < y < 2;

0 otherwise.

Here, c is a constant. Find the following.

(a) Find c.

(b) Find P
(
X < 1

2 and Y > 1
2

)
(c) Determine the marginal density function fX of X .

(d) Determine the marginal density function fY of Y .
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(e) Determine the probability density function g of Y/X .

Solution.

(a) We have ∫ 2

0

∫ 1

0
c
(

x2 +
xy
2

)
dxdy = 1 so c =

6
7
.

(b) From (a), we had c = 6
7 . So,

P
(

X <
1
2

and Y >
1
2

)
=
∫ 2

1/2

∫ 1/2

0

6
7

(
x2 +

xy
2

)
dxdy =

69
448

.

(c) We have

fX (x) =
∫ 2

0

6
7

(
x2 +

xy
2

)
dy =

6
7
(
2x2 + x

)
.

(d) We have

fY (y) =
∫ 1

0

6
7

(
x2 +

xy
2

)
dx =

3y+4
14

.

(e) Let T = Y
X . Then,

P(T ≤ t) = P(Y ≤ tX) .

Consider the rectangle governed by the inequalities 0 < x < 1 and 0 < y < 2 as
shown. We shall consider two different cases depending on the value of t.

x

y

1

2

First, if 0 < t ≤ 2, then the region Y ≤ tX represents the interior of the right-angled
triangle with vertices (0,0), (1,0), (1,2). So,

P(Y ≤ tX) =
∫ tx

0

3y+4
14

dy =
3t2x2

28
+

2tx
7
.

Differentiating both sides yields

ft =
3tx2

14
+

2x
7
.

Integrating both sides with respect to x from 0 to 1 yields

∫ 1

0

3tx2

14
+

2x
7

dx =
3

14
+

3
28

t.
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If t > 2, then the region Y ≤ tX represents the interior of the trapezium with vertices
(0,0) ,(1,0) ,(1,2) ,(2/t,2). Note that the line Y = tX has slope 2/t so the region
below the line has slope ≤ 2/t. Then,

P(Y ≤ tX) =
∫ tx

0

∫ 2/t

0
f (x,y) dxdy+

∫ 1

2/t

∫ 2

0
f (x,y) dydx

=
6
7

(
7
6
− 1

t2 −
4

3t3

)
Differentiating gives

g(t) =
12
7t3 +

24
7t4 .

6.2 Independent Random Variables

Definition 6.6 (independent random variables). Two random variables X and Y are
independent if

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for any A,B ⊆ R. Random variables that are not independent are dependent.

In contrast to Definition 6.6, some might be more familiar with the following definition.
For both discrete and continuous random variables, X and Y are independent if and only
if

there exist functions g,h : R→ R such that for all x,y ∈ R, fX ,Y (x,y) = g(x)h(y) .

Proposition 6.4. For jointly discrete random variables, we have three equivalent
statements:

(i) X and Y are independent

(ii) For all x,y ∈ R, pX ,Y (x,y) = pX(x)pY (y)

(iii) For all x,y ∈ R, FX ,Y (x,y) = FX(x)FY (y)

For jointly continuous random variables, we also have three equivalent statements.

(i) X and Y are independent

(ii) For all x,y ∈ R, fX ,Y (x,y) = fX(x) fY (y)

(iii) For all x,y ∈ R, FX ,Y (x,y) = FX(x)FY (y)

In many applications, we either know or assume that X and Y are independent. Then, the
joint probability density function of X and Y can be obtained by multiplying the individ-
ual probability density functions.
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Independence is a symmetric relation. To say that X is independent of Y is equivalent
to saying that Y is independent of X , or simply saying that X and Y are independent. In
considering whether X is independent of Y in situations where it is not at all intuitive that
knowing the value of Y will not change the probabilities concerning X , it can be beneficial
to interchange the roles of X and Y and ask instead whether Y is independent of X .

Example 6.7. Suppose X and Y are jointly continuous random variables whose joint den-
sity function is given by f (x,y), where

f (x,y) =

xe−(x+y) if x > 0 and y > 0;

0 otherwise.

Are X and Y independent?

Solution. We can write

fX (x) =
∫

∞

0
xe−(x+y) dy = xe−x and fY (y) =

∫
∞

0
xe−(x+y) dx = e−y.

Observe that f (x,y) = fX (x) fY (y) so X and Y are independent. □

Example 6.8. Suppose X and Y are jointly continuous random variables whose joint den-
sity function is given by f (x,y), where

f (x,y) =

2 if 0 < x < y < 1;

0 otherwise.

Are X and Y independent?

Solution. We have

fX (x) =
∫ 1

x
2 dy = 2−2x and fY (y) =

∫ y

0
2 dx = 2y.

Note that fX (x) fY (y) = 2y(2−2x) ̸= 2 so X and Y are not independent. □

Example 6.9. Suppose X and Y are jointly continuous random variables whose joint den-
sity function is given by f (x,y), where

f (x,y) =

x+ y if 0 < x < 1 and 0 < y < 1;

0 otherwise.

Are X and Y independent?

Solution. We have

fX (x) =
∫ 1

0
x+ y dy = x+

1
2

and fY (y) =
∫ 1

0
x+ y dx = y+

1
2
.

So, X and Y are not independent. □
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Example 6.10 (Ross p. 312 Question 7). The joint density function of X and Y is

f (x,y) =

xy if 0 < x < 1,0 < y < 2;

0 otherwise.

(a) Are X and Y independent?

(b) Find the density function of X .

(c) Find the density function of Y .

(d) Find the joint distribution function.

(e) Find E (Y ).

(f) Find P(X +Y < 1).

Solution.

(a) Observe that

f (x,y) = xy = x · y
2

where 0 < x < 1 and 0 < y < 2

so X and Y are independent random variables.

(b) We have

fX (x) =
∫ 2

0
xy dy = 2x.

(c) We have

fY (y) =
∫ 1

0
xy dx =

y
2
.

(d) The joint distribution function is

FX ,Y (x,y) =
∫ y

0

∫ x

0
uv dudv

(e) There are five cases to consider.

• If x < 0 and y < 0, then FX ,Y (x,y) = 0.

• If 0 < x < 1 and 0 < y < 2, then

FX ,Y (x,y) =
∫ y

0

∫ x

0
uv dudv =

1
4

x2y2.

If x ≥ 1 and 0 < y < 2, then

FX ,Y (x,y) =
∫ y

0

∫ 1

0
uv dudv =

1
4

y2.

• If 0 < x < 1 and y ≥ 2, then

FX ,Y (x,y) =
∫ 2

0

∫ x

0
uv dudv = x2.

• If x ≥ 1 and y ≥ 2, then FX ,Y (x,y) = 1.



6.2. INDEPENDENT RANDOM VARIABLES 137

(f) We have

P(X +Y < 1) = P(Y < 1−X) =
∫ 1

0

∫ 1−x

0
xy dydx =

1
24

.

Example 6.11 (Ross p. 312 Question 6). Let X and Y be continuous random variables
with joint density function

f (x,y) =

 x
5 + cy if 0 < x < 1 and 1 < y < 5;

0 otherwise.

where c is a constant.

(a) What is the value of c?

(b) Are X and Y independent?

(c) Find P(X +Y > 3)

(d) Let S = X +Y . What is the density function of S?

Solution.

(a) We have ∫ 1

0

∫ 5

1

x
5
+ cy dydx = 1 so c =

1
20

.

(b) We have

fX (x) =
∫ 5

1

x
5
+

1
20

y dy =
4x+3

5
and fY (y) =

∫ 1

0

x
5
+

1
20

y dx =
2+ y
20

.

Note that
fX (x) fY (Y ) =

(4x+3)(2+ y)
100

̸= f (x,y)

so X and Y are not independent.

(c) We have

P(X +Y > 3) =
∫ 1

0

∫ 5

3−x

x
5
+

1
20

y dydx =
11
15

.

(d) Since S = X +Y , then s = x+ y so 1 < s < 6. As such,

fS (s) =
∫ U

L
f (x,s− x) dx where L = max{0,s−5} and U = min{1,s−1} .

So,

fS (s) =
∫ U

L

x
5
+

s− x
20

dx.

As such,

fS(s) =



5s2−8s+3
40 1 < s < 2;

2s+3
40 2 ≤ s ≤ 5;

−5s2+42s−72
40 5 < s < 6;

0 otherwise.
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Example 6.12. A box contains 10 balls, some of which are red and the others are green.
A sample of 100 balls is drawn at random from the box with replacement. Let X denote
the number of red balls from this sample. Another sample of 100 balls is drawn at random
from the box with replacement. Let Y denote the number of red balls from this sample.
Are the random variables X and Y independent? Why?

Solution. Let the probability of choosing a red ball in the first sample be p and the prob-
ability of choosing a red ball in the second sample be q. Then, X ∼ B(100, p) and
Y ∼ B(100,q). Since X only depends on the first sample and Y only depends on the
second sample, the samples are independent and count X and Y as independent random
variables. As such, we have

P(X = x and Y = y) = P(X = x)P(Y = y).

□

Example 6.13 (Ross p. 313 Question 17). Find the probability that X1,X2, . . . ,Xn is a
permutation of 1,2, . . . ,n, when X1,X2, . . . ,Xn are independent and

(a) each is equally likely to be any of the values 1, . . . ,n

(b) each has the probability mass function

Pr{Xi = j}= p j where j = 1, . . . ,n.

Solution.

(a) The number of favourable outcomes is n! (in fact, this is precisely the order of the
symmetric group Sn), whereas the sample space has nn elements since any of the
Xi’s can take any of the values from {1, . . . ,n}. Hence, the probability is

n!
nn .

(b) By independence of the random variables, then for any fixed outcome (x1, . . . ,xn),
we have

P(X1 = x1, . . . ,Xn = xn) = px1 . . . pxn.

The event that (X1, . . . ,Xn) is a permutation of (1, . . . ,n) means that each of the
numbers 1, . . . ,n appears exactly once among the coordinates. As such, we must
sum the probability over all n! permutations σ of {1, . . . ,n}. Let Sn denote the set
of all bijections σ from {1, . . . ,n} to itself. Hence,

P((X1, . . . ,Xn) is a permutation) = ∑
σ∈Sn

P((X1, . . . ,Xn) = (σ (1) , . . . ,σ (n))) .

So the desired probability is

∑
σ∈Sn

n

∏
i=1

pσ(i) = ∑
σ∈Sn

p1 . . . pn which does not depend on σ .

Hence, the answer is n! · p1 . . . pn.
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Example 6.14 (Buffon’s needle problem). A table is ruled with equidistant parallel lines
with distance D apart from one another. A needle of length L, where L ≤ D, is randomly
thrown onto the table. The Buffon’s needle problem asks for the probability that the
needle will intersect one of the lines.

Solution. The answer is a surprising

2L
πD

.

This shows that when L ≈ D, we can find a good estimate of the value of π . However, the
approximation is not powerful until we toss the needle over 3400 times, which allows us
to get the value of π to 6 decimal places.

We determine the position of the needle by specifying the distance X from the midpoint
of the needle to the nearest parallel line, and the angle θ between the needle and the
projected line of length X . The needle will intersect a line if the hypotenuse of the right
triangle is less than L/2. That is,

X
cosθ

<
L
2

which implies X <
L
2

cosθ .

As X varies between 0 and D/2 and θ between 0 and π/2, it is reasonable to assume that
they are independent and uniformly distributed random variables over these respective
ranges. Note that D = Lcosθ ,

fX (x) =

2
x if 0 ≤ x ≤ D

2 ;

0 otherwise
and fθ (θ) =

 2
π

if 0 ≤ θ ≤ π

2 ;

0 otherwise.

We thus obtain the joint probability density function

fX (x) fθ (θ) =

 4
πD if 0 ≤ x ≤ D

2 and 0 ≤ θ ≤ π

2 ;

0 otherwise.

Hence,

P
(

X <
L
2

cosθ

)
=
∫ π

2

0

∫ L
2 cosθ

0

4
πD

dxdθ =
2L
πD

.

□

Example 6.15 (Buffon’s needle problem). A table is ruled with equidistant parallel lines
a distance 1 cm apart. A needle of length 2 cm is randomly thrown on the table.
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t = 1

ℓ= 2
x

θ

Figure 6.1: Buffon’s needle problem

(a) What is the probability that the needle intersects at least one line on the table?

(b) What is the probability that the needle intersects two lines on the table simultane-
ously?

Solution. We consider the setup shown in Figure 6.1, where ℓ = 2 and t = 1 denote the
length of the needle and the distance between the parallel lines respectively. Let X be the
random variable denoting the distance between the centre of the needle and the nearest
line, and let Θ be the random variable denoting the acute angle the needle makes with the
line.

(a) We see that

X ∼U
(

0,
t
2

)
=U

(
0,

1
2

)
and Θ ∼U

(
0,

π

2

)
.

Here, X and Θ are independent random variables. Hence,

fX (x) = 2 for 0 ≤ x ≤ 1
2

and fΘ (θ) =
2
π

for 0 ≤ θ ≤ π

2
.

Hence, their joint density is

fX ,Θ (x,θ) =
4
π

where 0 ≤ x ≤ 1
2

and 0 ≤ θ ≤ π

2
.

For a fixed angle θ , the needle crosses at least one line if and only if X ≤ ℓ
2 sinθ =

sinθ . Since X ≤ 1
2 , this condition is automatically true when sinθ ≥ 1

2 , i.e. when
θ ≥ π

6 . Hence,

P(cross | Θ = θ) =

2sinθ if 0 ≤ θ < π

6 ;

1 if θ

6 ≤ θ ≤ π

2 .

By the law of total probability (Proposition 3.3), the probability of at least one
intersection is∫

π/6

0
2sinθ · 2

π
dθ +

∫
π/2

π/6
1 · 2

π
dθ =

2
π

(
2−

√
3
)
+

2
3
≈ 0.8367.
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(b) For ℓ= 2 and t = 1, the needle hits two lines if and only if both endpoints straddle
the two neighbouring lines, i.e.

X ≤ ℓ

2
sinθ and X +

ℓ

2
sinθ ≥ t.

With ℓ= 2 and t = 1, this becomes

sinθ ≥ 1−X where 0 ≤ X ≤ 1
2

and 0 ≤ θ ≤ π

2
.

Since X ∼U
(
0, 1

2

)
and Θ ∼U

(
0, π

2

)
are independent, the required probability is

∫ 1/2

0

∫
π/2

sin−1(1−x)

4
π

dθdx =
2
√

3
π

− 2
3
≈ 0.436.

Example 6.16 (ST2131 AY24/25 Sem 1 Lecture 14; Buffon’s needle problem). A table
is ruled with equidistant parallel lines a distance

√
3 cm apart. A needle of length 2 cm is

randomly thrown on the table. What is the probability that the needle will intersect with
(at least) one of the lines?

Solution. Let X denote the minimum distance between the center of the needle and the
ruled lines. Then, X ∼U

(
0,
√

3/2
)
. Let θ denote the acute angle between the needle and

the lines. Then, θ ∼U (0,π/2).

For the needle to intersect with one of the lines, we must have sinθ > X . We then now
find the area of {

(X ,θ) ∈
[
0,
√

3/2
]
× [0,π/2] : sinθ > X

}
.

Note that X is bounded by
√

3/2, so we would have to be careful in carrying out the
integration. The probability that the needle intersects with the ruled lines is given by the
ratio of the feasible area over the total area.

The area of the feasible region is

π

2
×

√
3

2
−
∫ √

3/2

0
sin−1(x) dx = 0.4069

and take this divided by the area of the rectangle to give 70%. □

Example 6.17. Consider the right-angled triangle on the plane with vertices at (0,0),
(
√

2,0) and (0,
√

2). A point is chosen randomly within this triangle.
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(a) The random variable A denotes the area of the rectangle bounded by the x- and y-
axes and the horizontal and vertical lines through the chosen point. Find P(A < 0.4).

x

y

√
2

√
2

xy = 0.4

(b) The random variable D denotes the distance of the chosen point from the origin.
Find P(D > 1.2).

Solution.

(a) Note that y ≤ 0.4
x denotes the region below the hyperbola xy = 0.4. By comparing

the y-values, the region is represented by

0 ≤ y ≤ min
{

0.4
x
,
√

2− x
}
.

We note that

0.4
x

≤
√

2− x if α =
1√
2
− 1√

10
≤ x ≤ 1√

2
+

1√
10

= β .

So,

P(A < 0.4) =
∫

β

α

∫ 0.4
x

0
dydx+

∫
α

0

∫ √
2−x

0
dydx+

∫ √
2

β

∫ √
2−x

0
dydx = 0.938.

(b) We have D=
√

X2 +Y 2. Consider the complement of the event, which is X2+Y 2 <

1.2. However, we need to restrict this to the interior of the right-angled triangle. Let

R =
{
(x,y) ∈ R2 : x2 + y2 < 1.22,x+ y ≤

√
2,x ≥ 0,y ≥ 0

}
.

Using polar coordinates, the region is equivalent to

R =

{
(r,θ) ∈ R2 : 0 ≤ r ≤ min

{ √
2

cosθ + sinθ
,1.2

}
and 0 ≤ θ ≤ π

2

}
.

Hence,

P(D ≤ 1.2) =
1

area of triangle
· 1

2

∫ π

2

0
min

{ √
2

cosθ + sinθ
,1.2

}
dθ

so P(D > 1.2) = 0.049.
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Example 6.18 (ST2131 AY17/18 Sem 1; Poisson thinning property). Let N be a Poisson
random variable with mean λ > 0. We place N balls one by one randomly into one of
r boxes. For 1 ≤ i ≤ r, let Xi be the number of balls in box i. Prove that X1, . . . ,Xr are
independent Poisson random variables with mean λ/r.

Solution. We have N ∼ Po(λ ). For any n in the support of N, let x1+ . . .+xr = n. If we fix
in advance that ball 1 goes to some box, ball 2 to another, and so on, then the probability
of this exact arrangement is 1/rn because each ball independently has probability 1/r of
going into the chosen box. Hence, we have

P(X1 = x1, . . . ,Xr = xr | N = n) =
n!

x1! . . .xr!
· 1

rn .

By the law of total probability (Proposition 3.3),

P(X1 = x1, . . . ,Xr = xr) =
∞

∑
n=0

P(X1 = x1, . . . ,Xr = xr | N = n)P(N = n)

=
(x1 + . . .+ xr)!

x1! . . .xr!
· 1

rx1+...+xr
· e−λ λ x1+...+xr

(x1 + . . .+ xr)!

=
e−λ

x1! . . .xr!
·
(

λ

r

)x1+...+xr

=
r

∏
i=1

e−λ/r · (λ/r)xi

xi!

This is the product of the joint probability mass function of r Poisson random variables,
hence the result follows. □

Example 6.19 (Ross p. 312 Question 11). Let X1,X2, . . . be a sequence of independent
uniform (0,1) random variables. For a fixed constant c, define the random variable N by

N = min{n : Xn > c} .

Is N independent of XN? That is, does knowing the value of the first random variable that
is greater than c affect the probability distribution of when this random variable occurs?
Give an intuitive explanation for your answer.

Solution. Yes — N and XN are independent. Note that for any set A ⊆ (c,1], where
0 < c < 1, we have

{N = n : XN ∈ A}= {X1 ≤ c, . . . ,Xn−1 ≤ c : Xn ∈ A} .

Hence,

P(N = n : Xn ∈ A) = [P(X ≤ c)]n−1 P(X ∈ A) = cn−1 (1− c) .

By the law of total probability (Proposition 3.3),

P(XN ∈ A) =
∞

∑
n=1

P(N = n and XN ∈ A) =
∞

∑
n=1

cn−1 (1− c)
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so indeed, N and XN are independent.

We give some intuition to this problem. Think of each draw as a Bernoulli success if
Xn > c. Then N is geometric with success probability 1− c, depending only on the suc-
cess/failure pattern — not on the actual values. When the first success occurs, that suc-
cessful value is just a fresh uniform draw conditioned to exceed c, i.e. uniform on (c,1).
Because the trials are independent and identically distributed, the point at which the first
success happens tells you nothing about the value of that success, and vice versa. □

Very often, we are interested in the sums of independent random variables. For example,
when two dice are rolled, we are interested in the sum of the two numbers.

Proposition 6.5. Suppose we have two independent random variables X and Y .
Then, for x,y ∈ R,

fX ,Y (x,y) = fX(x) fY (y).

It follows that
FX+Y (x) =

∫
∞

−∞

FX(x− t) fy(t) dt.

Proof. We have

FX+Y (x) = P(X +Y ≤ x) =
∫∫

s+t≤x
fX ,Y (s, t) dsdt

which simplifies to∫
∞

−∞

∫ x−t

−∞

fX(s) fY (t) dsdt =
∫

∞

−∞

FX(x− t) fy(t) dt.

Similarly,

FX+Y (x) =
∫

∞

−∞

FY (x− t) fx(t) dt.

By differentiation, it can be shown that

fX+Y (x) =
∫

∞

−∞

fX(x− t) fY (t) dt =
∫

∞

−∞

fX(t) fY (x− t) dt.

Example 6.20. Recall from Theorem 6.20 that the sum of two independent uniform dis-
tributions follows a triangular distribution. Let us prove this result! Suppose X and Y are
independent random variables with a common uniform distribution over (0,1). That is,
X ∼U(0,1) and Y ∼U(0,1). We wish to find the probability density function of X +Y .

Solution. X +Y takes values in (0,2). For x ≤ 0 and x ≥ 2, it follows that fX+Y (x) = 0.
For 0 < x < 2,

fX+Y (x) =
∫

∞

−∞

fX(x− t) fY (t) dt =
∫ 1

0
fX(x− t) dt
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fX(x− t) > 0 if and only if 0 < x− t < 1. Note that x is fixed and t varies. We split this
into two cases, namely 0 < x ≤ 1 and 1 < x < 2.

For 0 < x ≤ 1,

fX+Y (x) =
∫ 1

0
fX(x− t) dt +

∫ 1

x
fX(x− t) dt =

∫ x

0
fX(x− t) dt =

∫ x

0
dt = x.

In a similar fashion, it can be shown that for 1 < x < 2,

fX+Y (x) = 2− x.

Hence,

fX+Y =


x if 0 < x ≤ 1;

2− x if 1 < x < 2;

0 otherwise.

The density function has the shape of a triangle, so X +Y follows a triangular distribution.
□

More generally, we have the following result:

Proposition 6.6. Assume that X and Y are independent uniform random variables
on intervals X ∼U (α,β ) and Y ∼U (γ,δ ). Let Z = X +Y . Then,

fZ(z) =
1

(β −α)(δ − γ)
max{0,min{β ,z− γ}−max{α,z−δ}}

Example 6.21 (ST2131 AY21/22 Sem 2). Let X and Y be independent random variables
uniformly distributed on the unit interval [0,1]. Find

(a) P(−0.5 < 3X −2Y < 0.5)

(b) P(0 < 3X −2Y < 2.5)

Solution. One can use the formula given in Proposition 6.6 to tackle this problem straight-
away.

(a) The probability is P(−0.5+2Y < 3X < 0.5+2Y ), which is∫∫
−0.5+2y<3x<0.5+2y

f (x,y) dxdy =
∫∫

−0.5+2y<3x<0.5+2y
fX(x) fY (y) dxdy

=
∫ 1

0

∫ (2y+0.5)/3

(2y−0.5)/3

(
1
1

)2

dxdy

=
1
3

(b) In a similar fashion, the required probability is∫∫
2y<3x<2.5

f (x,y) dxdy =
∫ 1

0

∫ 2.5/3

2y/3
dxdy =

1
2
.
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Example 6.22. Let X and Y be independent random variables uniformly distributed on
the unit interval [0,1]. Determine the probability density function f of 3X −2Y .

Solution. Define A = 3X − 2Y . Then, the range of values of A is [−2,3]. Clearly, if
a ≤−2 or a ≥ 3, then fA (a) = 0. We consider the region 3x−2y ≤ a for different values
of a, where 0 ≤ x,y ≤ 1. First, note that 3x−2y = a is equivalent to y = 3

2x− 1
2a, which

has gradient 3
2 and y-intercept −1

2 .

• Case 1: If −2 ≤ a ≤ 0, the region 3x−2y ≤ a restricted to 0 ≤ x,y ≤ 1 represents
a right-angled triangle. It has an area of

1
2

(
1+

a
2

)(a+2
3

)
.

So,

FA (a) =
1
2

(
1+

a
2

)(a+2
3

)
so fA (a) =

1
6
(a+2) .

x

y

3x−2y = a

(0,1)

(
0,−a

2

)
(a+2

3 , 1
)

• If 0 ≤ a ≤ 1, the region represents a trapezium. Similarly, we find its area so

FA (a) =
1
2
·1
(

a+2
3

+
a
3

)
so fA (a) =

1
3
.

x

y

3x−2y = 1
(0,0)

(0,1)
(a+2

3 ,1
)

(a
3 ,0
)

• If 1 ≤ a ≤ 3, we have a pentagonal region. One can sketch the region, then show
that

fA (a) =
1
6
(3−a) .

We are done! □

Example 6.23 (ST2131 AY24/25 Sem 1 Lecture 14). A man and a woman agreed to meet
at the location at 12 pm. The man arrives at the location at the time uniformly distributed
between 11:45 am and 12:15 pm. The woman arrives at the location at a time uniform
distributed between 12 pm and 12:30 pm.
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(a) What is the probability that the first person to arrive waits less than 5 minutes for
the second person?

(b) What is the probability that the man arrives first?

Solution.

(a) Let X and Y be the number of minutes the man and woman arrive with respect to
12 pm. We have X ∼U (−15,15) and Y ∼U (0,30). It suffices to find

P(|X −Y |< 5) or equivalently P(−5 < Y −X < 5) .

Let us construct a diagram as follows:

x− y =−5

x− y = 5

−30 −20 −10 10 20 30

10

20

30

Plot Y against X , and we use this to find the area bounded between y= 5+x and y=
x−5 in the rectangle [−15,15]× [0,30], and divide it by the area of the rectangle.
Computation yields us 17%.

(b) For this, we are finding P(X < Y ). The diagram is given as follows:

−30 −20 −10 10 20 30

10

20

30

With this,

P(Y > X) =
shaded area
total area

= 1−
1
2 ·152

302 = 0.88.

Example 6.24. One point is randomly selected on the interval [0, 1
2 ]. Another point is

randomly selected on the interval [1
2 ,1]. What is the exact probability that the distance

between the two points is more than 1
3?
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Solution. Define

X ∼U
(

0,
1
2

)
and Y ∼U

(
1
2
,1
)
.

Then, the distance between the two points is Y −X . For each fixed x ∈
[
0, 1

2

]
, we need

y > x+ 1
3 . Note that the joint density is uniform on the rectangle bounded by 0 ≤ x ≤ 1

2
and 1

2 ≤ y ≤ 1. We need y > x+ 1
3 , so the answer is

area of blue pentagon
area of rectangle bounded by 0 ≤ x ≤ 1

2 and 1
2 ≤ y ≤ 1

.

x

y

0
0

1
2

1
2

1

1

y = x+ 1
3

y > x+ 1
3

The area of the blue pentagon is

1
2

(
1
6
+

1
2

)(
1
3

)
+

1
6
· 1

2
.

Next, the area of the rectangle is 1
4 , so the answer is 7

9 . □

Example 6.25 (ST2131 AY24/25 Sem 1 Lecture 14). Three points X ,Y,Z are selected in-
dependently at random from the interval [0,1]. What is the probability that Y lies between
X and Z?

Solution. There are 2 permutations where Y is between X and Z. The total number of
permutations is 3! = 6. So, the desired answer is 2/6 = 1/3. □

Example 6.26 (Ross p. 305 Question 26). Three numbers A,B,C are selected indepen-
dently at random from the unit interval [0,1]. What is the probability that both roots of
the equation Ax2 +Bx+C = 0 are real?

Solution. For the roots to be real, its discriminant B2 −4AC ≥ 0. Since A,B,C are inde-
pendent, we can condition on C = c and integrate over c from 0 to 1 to obtain

P(B2 ≥ 4AC) =
∫ 1

0
P(B2 ≥ 4Ac)dc.
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Note that this involved the law of total probability (Proposition 3.3). Now, fix c ∈ [0,1].
We evaluate the probability that B2 ≥ 4Ac over the square A,B ∈ [0,1]2. This corresponds
to computing the area of the region{

(a,b) ∈ [0,1]2 : b2 ≥ 4ac
}
.

To proceed, we split into two cases based on the value of c. We shall consider when
4ac < 1 and when 4ac > 1. Since 0 ≤ a ≤ 1, it is natural for us to consider the cases
0 < c < 1

4 and c ≥ 1
4 .

• Case 1: If 0 < c < 1
4 , it is possible for b2 to be greater than 4ac because 4ac < 1.

For a fixed a, we need b ≥
√

4ac, so

P(B2 ≥ 4Ac) =
∫ 1

0

∫ 1
√

4ac
dbda =

∫ 1

0
(1−

√
4ac)da.

We integrate to obtain

P(B2 ≥ 4Ac) = 1− 4
3
√

c.

• Case 2: If c ≥ 1
4 , then 4ac can be greater than 1, especially when a is large. For

each b, we find the upper limit of a such that b2 ≥ 4ac, i.e. a ≤ b2

4c . So,

P(B2 ≥ 4Ac) =
∫ 1

0

∫ b2/4c

0
dadb =

∫ 1

0

b2

4c
db =

1
4c

∫ 1

0
b2db =

1
12c

.

Now, we put everything together by integrating over c and we obtain.

P(B2 ≥ 4AC) =
∫ 1/4

0

(
1− 4

3
√

c
)

dc+
∫ 1

1/4

1
12c

dc.

which yields 1
36 (5+3ln4). □

6.3 Conditional Probability Distribution

Definition 6.7 (conditional discrete probability density function). The conditional
probability density function of X given that Y = y is defined by

pX |Y (x | y) =
pX ,Y (x,y)

pY (y)
for all y such that pY (y)> 0. (6.1)

Similarly, the conditional distribution function of X given that Y = y is defined by

FX |Y (x | y) = P(X ≤ x | Y = y) for all y such that pY (y)> 0.

It follows that
FX |Y (x | y) = ∑

a≤x
pX |Y (a | y).

If X is independent of Y , then the conditional probability density function of X given
Y = y is the same as the marginal probability density function of X for every y such that
pY (y)> 0.



150 CHAPTER 6. JOINT PROBABILITY DISTRIBUTION

Example 6.27. Suppose X and Y are discrete random variables whose joint probability
mass function is given by p(1,1) = 1

8 , p(1,2) = 1
4 , p(2,1) = 1

8 , p(2,2) = 1
2 . Determine

the conditional probability mass function pX |Y (x | y) of X given Y = y.

(a) pX |Y (1 | 1)

(b) pX |Y (2 | 1)

(c) pX |Y (1 | 2)

(d) pX |Y (2 | 2)

Solution. Using the conditional density formula in (6.1), we can derive the following:

(a) So,

pX |Y (1 | 1) =
pX ,Y (1,1)

pY (1)
=

1
8

1
8 +

1
8

=
1
2
.

(b) Next,

pX |Y (2 | 1) =
pX ,Y (2,1)

pY (1)
=

1
8

1
8 +

1
8

=
1
2
.

(c) We have

pX |Y (1 | 2) =
pX ,Y (1,2)

pY (2)
=

1
4

1
4 +

1
2

=
1
3
.

(d) In a similar fashion, one can show that this probability is 2
3 .

Example 6.28. A standard die is thrown before flipping as many fair coins as given by
the die value. We then count the number of heads counted by the coins.

(a) What is the probability that no head is flipped?

(b) Given that at least 1 head was flipped, what is the probability that exactly 1 head
was flipped?

Solution.

(a) Let X be the number of heads obtained. Then, X ∼ B(N,0.5), where N follows a
discrete uniform distribution over the integers from 1 through 6 inclusive. Then,

P(X = 0) =
6

∑
i=1

1
6
·0.5i =

21
128

.

(b) We wish to find P(X = 1 | X ≥ 1). By Definition 3.1, this is precisely

P(X = 1)
1−P(X = 0)

,

where

P(X = 1) =
6

∑
i=1

1
6
· i(0.5)i =

5
16

.

We computed P(X = 1) in (a) so the answer is 40
107 .
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Example 6.29. A fair dice is rolled. Let N denote the number shown on the dice. A fair
coin is then tossed N times. Let X denote the number of heads seen. Find the following
probabilities:

(a) P(X = 4 | N = 5)

(b) P(X = 4)

(c) P(N = 5 | X = 4)

Solution.

(a) By Definition 3.1,

P(X = 4 | N = 5) =
P(X = 4 and N = 5)

P(N = 5)
=

(5
4

)
0.54 ·0.5 · 1

6
1
6

=
5

32
.

(b) By the law of total probability (Proposition 3.3),

P(X = 4) =
6

∑
k=1

P(X = 4 | N = k)P(N = k) =
1
6

6

∑
k=4

P(X = 4 | N = k)

We see that

P(X = 4 | N = k) =
(

k
4

)
0.5k

so the answer is
1
6

6

∑
k=4

(
k
4

)
0.5k =

29
384

.

(c) By Bayes’ theorem (Theorem 3.1),

P(N = 5 | X = 4) =
P(X = 4 | N = 5)P(N = 5)

P(X = 4)
.

We computed P(X = 4 | N = 5) in (a) and P(X = 4) in (b). Note that P(N = 5) =
1
6 . Substituting all the probabilities yields the answer, which is 10

29 .

Definition 6.8 (conditional continuous probability density function). Suppose X
and Y are jointly continuous random variables. We define the conditional probabil-
ity density function of X given Y = y to be

fX |Y (x | y) =
fX ,Y (x,y)

fY (y)
for all y such that fY (y)> 0. (6.2)

For A ⊆ R and y such that fY (y)> 0,

P(X ∈ A | Y = y) =
∫

A
fX |Y (x | y) dx.

The conditional distribution of X given that Y = y is defined by

FX |Y (x | y) = P(X ≤ x | Y = y) =
∫ x

−∞

fX |Y (t | y) dt.
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If X is independent of Y , then the conditional probability density function of X given
Y = y is the same as the marginal probability density function of X for every y such that
fY (y)> 0.

Example 6.30. The random variables X and Y are jointly continuous, with a joint proba-
bility density function given by

f (x,y) =

1
8

(
x2 − y2)e−x if x > 0 and − x < y < x;

0 otherwise.

(a) Determine the conditional density function fX |Y (x | y) of X given Y = y. Given that
Y = 1, what is the probability that 2 < X < 3?

(b) Determine the conditional density function fY |X (y | x) of Y given X = x. Given that
X = 2, what is the probability that 0 < Y < 1?

Solution.

(a) Recall from (6.2) that

fX |Y (x | y) =
fX ,Y (x,y)

fY (y)
.

We shall compute the marginal density

fY (y) =
∫

∞

y

1
8
(
x2 − y2)e−x dx =

y+1
4ey .

So,

fX |Y (x | y) =
1

8ex

(
x2 − y2) · 4ey

y+1
=

ey−x (x2 − y2)
2(y+1)

.

Next,

P(2 < X < 3 | Y = 1) =
∫ 3

2

e1−x (x2 −1
)

4
dx =

1
4

(
9
e
− 16

e2

)
.

(b) Again by (6.2), we have

fY |X (y | x) =
fY,X (y,x)

fX (x)
=

fX ,Y (x,y)
fX (x)

.

We then compute the marginal density

fX (x) =
∫ x

−x

1
8
(
x2 − y2)e−x dy =

x3e−x

6
.

So,

fY |X (y | x) =
1
8
(
x2 − y2)e−x · 6

x3e−x =
3
(
x2 − y2)
4x3 .

Next,

P(0 < Y < 1 | X = 2) =
∫ 1

0

3
(
4− y2)
4 ·23 dy =

11
32

.
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Example 6.31. We are given a coin. It can be tossed any number of times to generate
independent outcomes (heads vs tails). Its probability X of showing heads is assumed to
have a continuous distribution on the interval (0,1) with density function given by

f (x) =

cx3 (1− x)2 if 0 < x < 1;

0 otherwise.

Here, c is some real constant.

(a) What is the probability that when we toss the coin 10 times, we see exactly 7 heads
among them?

(b) We toss the coin 10 times and we see exactly 7 heads among them. What is the
probability that 0.65 < X < 0.75?

Solution. First, note that ∫ 1

0
cx3 (1− x)2 dx = 1 so c = 60.

(a) We have

P(7 heads out of 10) =
∫ 1

0
P(7 heads | X = x) f (x) dx

=
∫ 1

0

(
10
7

)
x7 (1− x)3 ·60x3 (1− x)2 dx

= 60
(

10
7

)∫ 1

0
x10 (1− x)5 dx

Recall a nice formula for the beta function (Lemma 5.2) where we mentioned how
it is closely related to the gamma function. It states that∫ 1

0
ta−1 (1− t)b−1 dt =

(a−1)!(b−1)!
(a+b−1)!

for any a,b ∈ N, (6.3)

where one should also recall that Γ(a) = (a−1)!. Set a = 11 and b = 6 in (6.3) to
obtain the required answer which is 0.14985.

(b) By the conditional probability formula (Definition 3.1),

P(0.65 < X < 0.75 | 7 heads out of 10)

is equal to

P(7 heads out of 10 and 0.65 < X < 0.75)
P(7 heads out of 10)

. (6.4)

The numerator is equal to∫ 0.75

0.65

(
10
7

)
x7 (1− x)3 ·60x3 (1− x)2 dx

which is equal to 0.048009. Substituting everything into (6.4), the required answer
is 0.048009

0.14985 = 0.320.
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Example 6.32. Suppose U is a uniform random variable on (0,1), and X | U ∼ B(n, p).
Prove that X is a discrete uniform random variable on {0,1, . . . ,n}.

Solution. First, condition on U = u. Say X |U = u ∼ B(n,u). We have

P(X = x |U = u) =
(

n
k

)
uk (1−u)n−k where 0 ≤ k ≤ n.

Hence,

P(X = x) =
∫ 1

0

(
n
k

)
uk (1−u)n−k fU (u) du =

(
n
k

)∫ 1

0
uk (1−u)n−k du. (6.5)

Note that the integral in (6.5) represents the beta function. Recall from Definition 5.11
and Lemma 5.2 that

B(a,b) =
∫ 1

0
ta−1 (1− t)b−1 dt and B(a,b) =

Γ(a)Γ(b)
Γ(a+b)

.

Hence,

P(X = x) =
(

n
k

)
· k!(n− k)!
(n+1)!

=
1

n+1
and the result follows. □

Example 6.33 (Ross p. 313 Question 14). Let N be a geometric random variable with
parameter p. Suppose that the conditional distribution of X given that N = n is the gamma
distribution with parameters n and λ . Find the conditional probability mass function of
N given that X = x.

Solution. We have N ∼ Geo(p) and X | N ∼ Gamma(n,λ ). So,

fX |N (x | n) =
(λx)n−1

λe−λx

Γ(n)
.

As such,
fX ,N (x,n)
P(N = n)

=
(λx)n−1

λe−λx

Γ(n)
.

Since N ∼ Geo(p), then P(N = n) = p(1− p)n−1. As such,

fX ,N (x,n) =
p(λx(1− p))n−1

λe−λx

Γ(n)
.

Hence,

P(N | X = x) =
fX ,N (x,n)

fX (x)
=

p(λx(1− p))n−1
λe−λx

Γ(n) fX (x)
. (6.6)

By definition of the gamma function, we have Γ(n) = (n−1)!. We then perform a change
of variable from n to k to obtain

fX (x) =
∞

∑
n=1

p(λx(1− p))n−1
λe−λx

Γ(n)
= pλe−λx

∞

∑
k=0

(λx(1− p))k

k!
.

Upon simplification, we see that fX (x) = pλe−pλx. Substituting this into (6.6), we have

P(N | X = x) =
fX ,N (x,n)

fX (x)
=

(λx(1− p))n−1

Γ(n)
· e−(1−p)λx.

As such, N −1 ∼ Po(λx(1− p)). □
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6.4 Joint Probability Distribution Function of Func-
tions of Several Variables

Let X and Y be jointly distributed random variables with joint probability density function
fX ,Y . It is sometimes necessary to obtain the joint distribution of the random variables U
and V , which arise as functions of X and Y . Suppose

U = g(X ,Y ) and V = h(X ,Y ) for some functions g and h.

We wish to find the joint probability function of U and V in terms of the joint probability
density function fX ,Y ,g and h. For example, say X and Y are independent exponentially
distributed random variables. We are interested in the joint probability density function
of U = X +Y and V = X/(X +Y ). It is clear that

g(x,y) = x+ y and h(x,y) =
x

x+ y
.

In general, to find the joint probability density function of U and V , we state some condi-
tions first in Algorithm 6.1.

Algorithm 6.1 (formulation of the joint probability density function). We assume
that the following conditions are satisfied:

(i) Let X and Y be jointly continuously distributed random variables with a
known joint probability density function.

(ii) Let U and V be given functions of X and Y of the form U = g(X ,Y ) and
V = h(X ,Y ) and we can uniquely solve X and Y in terms of U and V . That
is,

x = a(u,v) and y = b(u,v) .

(iii) The functions g and h have continuous partial derivatives and

J(x,y) = det

[
∂g
∂x

∂g
∂y

∂h
∂x

∂h
∂y

]
=

∂g
∂x

∂h
∂y

− ∂g
∂y

∂h
∂x

̸= 0.

We call the matrix the Jacobian matrix and J the determinant of the Jacobian.

Hence, the joint probability density function of U and V is

fU,V (u,v) =
fX ,Y (x,y)

J
,

where x = a(u,v) and y = b(u,v) as mentioned.

Example 6.34 (Ross p. 294). Let X and Y be jointly distributed with the joint probability
density function

fX ,Y (x,y) =
1

2π
exp
(
−x2 + y2

2

)
.



156 CHAPTER 6. JOINT PROBABILITY DISTRIBUTION

Note that X and Y are independent standard normal random variables and exp(x) = ex. If
the term in the exponent is complicated, we usually use the former expression. Let R and
θ denote the polar coordinates of the point (x,y). That is,

R =
√

X2 +Y 2 and Θ = tan−1
(

Y
X

)
.

Θ is the uppercase version of θ .

(i) Find the joint probability density function of R and Θ.

(ii) Show that R and Θ are independent.

Solution.

(i) Note that the random variables R and Θ take values in the respective intervals (0,∞)

and (0,2π). We set r = g(x,y) =
√

x2 + y2 and θ = h(x,y) = tan−1 (y/x). Hence,
x = r cosθ and y = r sinθ , which is essentially the conversion formulae from polar
to Cartesian coordinates.

I omit the differentiation process in this case, but anyway, J(x,y) = (x2 + y2)−
1
2 .

Hence,

fR,Θ(r,θ) =
fX ,Y (x,y)

det(J(x,y))
=
√

x2 + y2 · 1
2π

exp
(
−x2 + y2

2

)
=

1
2π

re−
r2
2

which is the joint probability density function of R and Θ.

(ii) They are independent.

In Example 6.34, R is actually a special continuous random variable. We say that R fol-
lows a Rayleigh distribution. A Rayleigh distribution is often observed when the overall
magnitude of a vector is related to its directional components. One example where the
Rayleigh distribution naturally arises is when wind velocity is analysed in two dimen-
sions. Assuming that each component is uncorrelated, normally distributed with equal
variance, and zero mean, then the overall wind speed (vector magnitude) will be charac-
terised by a Rayleigh distribution.

If X ∼ Rayleigh(σ), where σ > 0, then

f (x) =
x

σ2 exp
(
− x2

2σ2

)
.

We call σ the scale parameter. Not only is the Rayleigh distribution related to the normal
distribution, but it is also related to the exponential distribution! That is, if Y ∼ Exp(λ ),
then

X =
√

Y ∼ Rayleigh
(

1√
2λ

)
.

Example 6.35 (ST2131 AY19/20 Sem 2). Let X be a uniform random variable on [0,1]
and let Y be an independent exponential random variable with parameter 1.
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(a) Find the joint p.d.f. of U = Y −X and V = XY .

(b) Find P(U ≥ 1).

Solution.

(a) The joint density function of X and Y , due to independence, is

fX ,Y (x,y) =
1
1
· e−y = e−y.

Let g(x,y) = y− x and h(x,y) = xy. The Jacobian determinant is

J(x,y) = det

(
∂g/∂x ∂g/∂y
∂h/∂x ∂h/∂y

)
= det

(
−1 1
y x

)
=−(x+ y).

As

fU,V (u,v) =
fX ,Y (x,y)

J(x,y)
then fU,V (u,v) =

e−y

x+ y
(6.7)

but it is not in terms of u and v! As such, consider Y =U +X , so Y =U + V
Y . This

yields the quadratic equation Y 2 −UY −V = 0. Thus,

Y =
U ±

√
U2 +4V
2

.

Note that for the ± sign, we reject the negative. Suppose otherwise. Since y≥ 0, we
have u−

√
u2 +4v ≥ 0, so u2 ≥ u2 +4v, and thus, 0 ≥ 4v, which is a contradiction

since V = XY , so v ≥ 0. Hence,

Y =
U +

√
U2 +4V
2

.

In a similar fashion,

X =
−U +

√
U2 +4V
2

.

Substituting these into fU,V (u,v) in (6.7), we have

fU,V (u,v) =
exp
[
−
(

U +
√

U2 +4V
)
/2
]

√
U2 +4V

where u ≥−1,v ≥ 0.

(b) We first find the marginal density of U . That is, finding fU(u) from fU,V (u,v). So,

fU(u) =
∫

∞

0

exp
[
−
(

u+
√

u2 +4v
)
/2
]

√
u2 +4v

dv.

We use the substitution t =−u+
√

u2+4v
2 , so dt

dv =− 1√
u2+4v

. The integral becomes∫ −∞

−u
−et dt = e−u

so fU(u) = e−u. So,

P(U ≥ 1) =
∫

∞

1
e−u du = 1/e.
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Example 6.36. A point P is picked at random from the unit disk in the plane centred at
the origin, i.e. from the set {

(x,y) ∈ R2 : x2 + y2 ≤ 1
}
.

x

y

R
θ

P

1

(a) What is the probability that the line joining P to the origin makes an angle (in either
clockwise or anticlockwise direction) of less than 10◦ with the x-axis?

(b) What is the probability that the point P lies within the disk of radius 1/3 centred at
the origin?

Solution. We parametrise the position of P using (R,Θ), where R is the random variable
denoting the distance P makes with the origin and Θ is the angle P makes with the x-axis.
We first find the joint density function of R and Θ. Since the point is uniformly chosen in
the unit disk, then

fX ,Y (x,y) =
1
π
.

Perform the usual change of variables involving the Jacobian to obtain

fR,Θ (r,θ) =
r
π
.

Hence, the joint density function is

fR,Θ (r,θ) =
2r
π

where 0 ≤ r ≤ 1,−π

2
≤ θ ≤ π

2
.

By independence of R and Θ, we have

fR (r) = 2r where 0 ≤ r ≤ 1 and fΘ (θ) =
1
π

where − π

2
≤ θ ≤ π

2
.

(a) The probability is ∫
π/18

−π/18

1
π

dθ =
1
9
.

(b) The probability is ∫ 1/3

0
2r dr =

1
9
.

Example 6.37 (Ross p. 313 Question 15). Let X and Y be independent uniform (0,1)
random variables. Find the joint density of U = X and V = X +Y .
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Solution. Note that X =U and Y =V −U . The Jacobian matrix is

J =

(
1 0
−1 1

)
which has determinant 1.

Since 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, then 0 ≤ v−u ≤ 1 so u ≤ v ≤ u+1 and 0 ≤ u ≤ 1. Hence,

fU,V (u,v) = 1 where u ≤ v ≤ u+1 and 0 ≤ u ≤ 1.

□

Example 6.38. Consider the random variables X and Y with joint probability density
function given by

f (x,y) =

1
8

(
x2 − y2)e−x if x > 0 and − x < y < x;

0 otherwise.

Compute the following:

(a) E (XY )

(b) E
(
(XY )k

)
for any k ≥ 2

(c) E
(
eXY)

(d) E
(

1
XY 2

)
Solution.

(a) The trick is to realise that fY |X is symmetric so E (XY ) = 0. Alternatively, using
integration, one can see that

E (XY ) =
∫

∞

0

∫ x

−x
xy · 1

8
(
x2 − y2)e−x dydx = 0.

(b) If k is odd, one can infer that the expectation is equal to 0. On the other hand, if k
is even, one can deduce that

E
(
(XY )2k

)
=
∫

∞

0

∫ x

−x
(xy)2k · 1

8
(
x2 − y2)e−x dydx

which is equal to

(2k+3)− (2k+1)
4(2k+1)(2k+3)

∫
∞

0
e−xx4k+3 dx =

1
2(2k+1)(2k+3)

· (4k+3)!

where we used the definition of the gamma function.

(c) Note that

E
(
eXY)= E

(
∞

∑
n=0

(XY )n

n!

)
=

∞

∑
n=0

(4n+3)!
(2n)! ·2(2n+1)(2n+3)

which diverges.
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(d) We have

E
(

1
XY 2

)
=
∫

∞

0

∫ x

−x

1
xy2 ·

1
8
(
x2 − y2)e−x dydx

which goes to infinity.

Example 6.39. Consider the variables X and Y with joint probability density function
given by

f (x,y) =

 2
x2y3 if x > 1 and y > 1;

0 otherwise.

(a) Compute E
(
X2Ye−X).

(b) Compare it to E
(
X2e−X) and E (Y ).

Solution.

(a) We have

E
(
X2Ye−X)= ∫ ∞

1

∫
∞

1
x2ye−x · 2

x2y3 dxdy =
2
e
.

(b) We have

E
(
X2e−X)= ∫ ∞

1

∫
∞

1
x2e−x · 2

x2y3 dxdy =
1
e

and
E (Y ) =

∫
∞

1

∫
∞

1
y · 2

x2y3 dxdy = 2.

This shows that
E
(
X2Ye−X)= E

(
X2e−X)E (Y )

because the joint density function can be factorised as an expression of the form
g(x)h(y).

Example 6.40. Consider the random variables X and Y with joint probability density
function given by

f (x,y) =

6
7

(
x2 + xy

2

)
if 0 < x < 1 and 0 < y < 2;

0 otherwise.

(a) Compute E (XY ).

(b) Compute Var(XY ) = E[(XY )2]− (E(XY ))2.

Solution.

(a) We have

E (XY ) =
∫ 2

0

∫ 1

0
xy · 6

7

(
x2 +

xy
2

)
dxdy =

17
21

.

(b) We have

E
(
X2Y 2)= ∫ 2

0

∫ 1

0
x2y2 · 6

7

(
x2 +

xy
2

)
dxdy =

31
35

so Var(XY ) = 508
2205 .



Chapter 7
Expectation Properties

7.1 Expectation of Sums of Random Variables
We start off this chapter with the following result: if a ≤ X ≤ b, then a ≤ E(X) ≤ b.
It is not difficult to see why this is true — we will only prove for the case where X is
a discrete random variable. The proof for the continuous counterpart is similar, but we
simply change the sum to an integral. We have

E(X) = ∑
all x

xp(x)≥ ∑
all x

ap(x) = a.

In a similar fashion, we can use the same technique to show that E(X)≤ b.

Example 7.1 (Ross p. 390 Question 6). A fair die is rolled 10 times. Calculate the
expected sum of the 10 rolls.

Solution. Let Xi denote the value of the ith roll. Note that X1 = . . . = X10. Define S =

X1 + . . .+X10. Then, Then,

E (S) = E (X1 + . . .+X10) = 10E (X) = 10 ·3.5 = 35.

□

Proposition 7.1. The following hold:

(i) If X and Y are jointly discrete random variables with joint probability density
function pX ,Y , then

E[g(X ,Y )] = ∑
all y

∑
all x

g(x,y)pX ,Y (x,y)

(ii) If X and Y are jointly continuous random variables with joint probability
density function fX ,Y , then

E[g(X ,Y )] =
∫

∞

−∞

∫
∞

−∞

g(x,y) fX ,Y (x,y) dxdy

161
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Example 7.2 (Ross p. 390 Question 5). A city in the shape of a rectangle stretches 5
kilometres from west to east and 3 kilometres from north to south. A rescue helicopter
waits in a helipad just outside the city near the southwestern corner, with coordinates
(0,0). A rescue call, which follows a uniform distribution, can arrive at any point (x,y) in
the city. Find the expected distance covered by the helicopter in travelling to this point.

1 2 3 4 5

1

2

3

Helipad (0,0)

5 km

3 km
(x,y)

Solution. The distance D is given by the expression

D =
√

X2 +Y 2 where 0 ≤ x ≤ 5 and 0 ≤ y ≤ 3.

So,

E (D) =
1

15

∫ 5

0

∫ 3

0

√
x2 + y2 dydx.

□

Example 7.3 (Ross p. 390 Question 4). If X and Y have joint density function

fX ,Y (x,y) =

1
3(x+ y), if 0 < x < 1, 0 < y < 2,

0, otherwise

find:

(a) E[XY ]

(b) E[X ]

(c) E[Y 2]

Solution.

(a) We have

E (XY ) =
∫ 2

0

∫ 1

0
xy fX ,Y (x,y) dxdy =

2
3
.

(b) We have

E (X) =
∫ 1

0

∫ 2

0
x fX ,Y (x,y) dydx =

5
9
.

Alternatively, we can compute the marginal density

fX (x) =
∫ 2

0
fX ,Y (x,y) dy =

2
3

x+
2
3

so

E (X) =
∫ 1

0
x
(

2
3

x+
2
3

)
dx =

5
9
.
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(c) We have

E
(
Y 2)= ∫ 1

0

∫ 2

0
y2 fX ,Y (x,y) dydx =

16
9
.

Corollary 7.1. Some important consequences are as follows:

(i) Non-negativity: If g(x,y)≥ 0 whenever pX ,Y (x,y)> 0, then E[g(X ,Y )]≥ 0

(ii) Linearity: E[g(X ,Y )+h(X ,Y )] = E[g(x,Y )]+E[h(X ,Y )]

(iii) Linearity: E[g(X)+h(Y )] = E[g(X)]+E[h(Y )]

(iv) Monotonicity: If jointly distributed random variables X and Y satisfy X ≤Y ,
then E(X)≤ E(Y ). Of course, this result can be easily extended to

E

(
n

∑
i=1

aiXi

)
=

n

∑
i=1

aiE(Xi).

The formula for the expectation of the sample mean, X , can be derived from (iv) in Corol-
lary 7.1. It is clear that E

(
X
)
= µ , so the expected value of the sample mean is µ , the

mean of the distribution. Hence, when µ is unknown, the sample mean is often used to
estimate it.

Example 7.4. Recall that the binomial distribution is closely linked to the Bernoulli dis-
tribution. Suppose we perform an experiment n times and the probability of success for
each trial is p. We define X to be the number of successes in n Bernoulli(p) trials. Since
the expectation of each Bernoulli random variable is p and there are n Bernoulli trials, by
the linearity property of expectation, we can use this method to derive E(X) = np.

Example 7.5 (mean line segment length). This involves a concept known as the mean
line segment length. Suppose we have a unit square with vertices at (0,0),(0,1),(1,0)
and (1,1). What is the mean distance between any two points in the square?

(0,0)

(0,1)

(1,0)

(1,1)

P1

P2

distance

This is a very interesting problem. The answer is actually not 1
2 , but rather close to it!

The mean distance is
2+

√
2+5ln(1+

√
2)

15
≈ 0.52140.

Let us prove this result.
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Solution. Let P1 = (U1,V1) and P2 = (U2,V2), where U1,U2,V1,V2 ∼ U (0,1) are inde-
pendent uniform random variables. The Euclidean distance between P1 and P2 is

D =

√
(U1 −U2)

2 +(V1 −V2)
2.

We wish to compute E (D). Define

X =U1 −U2 and Y =V1 −V2.

Here, X and Y denote the difference of two independent U (0,1) random variables, and it
is a known fact that X and Y follow a triangular distribution with density

fX (x) = 1−|x| where −1 < x < 1 (7.1)

and similarly for Y . To briefly see why, we first need to compute FX (x) = P(X ≤ x) =
P(U1 −U2 ≤ x). Fix u2 ∈ [0,1]. The condition is 0 ≤ u1 ≤ 1 and u1 ≤ u2 + x. So, the
range of values for u1 is 0 ≤ u1 ≤ min{1,u2 + x} provided that u2 + x ≥ 0, otherwise the
range is empty. Thus, the inner integral is

∫ min{1,u2+x}

0
du1 =


0 if u2 + x ≤ 0;

u2 + x if 0 < u2 + x < 1;

1 if u2 + x ≥ 1.

For the outer integral, we integrate this over u2 ∈ [0,1]. We proceed with casework. If
x ≤−1, then u2 + x ≤ 0 for all u2 ∈ [0,1], implying that FX (x) = 0. Next, if −1 < x < 0,
for u2 ∈ [0,−x], we have u2 + x ≤ 0 so the inner integral is 0; for u2 ∈ [−x,1], we have
0 < u2 + x < 1 so the inner integral is u2 + x. Thus,

FX (x) =
∫ 1

−x
u2 + x du2 =

1
2
+ x+

1
2

x2.

Next, if 0 ≤ x < 1, if u2 ∈ [0,1− x], we have u2 + x ≤ 1 so the inner integral becomes
u2 + x; if u2 ∈ [1− x,1], we have u2 + x ≥ 1 so the inner integral becomes 1. Thus,

FX (x) =
∫ 1−x

0
u2 + x du2 +

∫ 1

1−x
du2 =

1
2
+ x− 1

2
x2.

For x ≥ 1, we have FX (x) = 1. After obtaining the distribution function FX (x), differen-
tiate it to get (7.1). Since X and Y are independent random variables, then

fX ,Y (x,y) = (1−|x|)(1−|y|) where −1 < x,y < 1.

The expected distance is

E (D) =
∫∫

[−1,1]2

√
x2 + y2 (1−|x|)(1−|y|) dxdy

by using the formula

E (D) = E (g(X ,Y )) =
∫∫

R2
g(x,y) fX ,Y (x,y) dxdy.
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By symmetry, we can restrict the domain to the first quadrant then multiply the integral
by 4, so we obtain

E (D) = 4
∫ 1

0

∫ 1

0

√
x2 + y2 (1− x)(1− y) dxdy.

Naturally, we would turn to polar coordinates. Let x = r cosθ and y = r sinθ , where
0 ≤ r ≤ 1 and 0 ≤ θ ≤ π

2 . The Jacobian matrix is

J(x,y) =

[
∂x
∂ r

∂x
∂θ

∂y
∂ r

∂y
∂θ

]
so determinant of Jacobian matrix is = r.

Hence, the double integral becomes 4(A+B), where

A =
∫

π/4

0

∫ 1/cosθ

0
r2(1− r cosθ)(1− r sinθ)dr dθ

B =
∫

π/2

π/4

∫ 1/sinθ

0
r2(1− r cosθ)(1− r sinθ)dr dθ

This eventually yields the desired result. □

Example 7.6 (Erdős–Rényi model). A group of 10 students is chosen at random from a
class. Students are friends with each other with probability p, and this independently of
the other friendships within the class.

(a) On average, how many pairs of friends can we form?

(b) What is the minimal value of p such that, on average, we can find five students who
all know each other?

We now assume that if two students have one friend in common, they will also eventually
become friends.

(c) What is the expected number of eventual groups of three friends?

Solution.

(a) There are
(10

2

)
= 45 unordered pairs, each an edge with probability p. By the

linearity of expectation, the expected number of pairs is 45p.

(b) For any fixed set of 5 students, all
(5

2

)
= 10 edges must be present, and this occurs

with probability p10. There are
(10

5

)
= 252 such sets, so E (X) = 252p10. We need

E (X)≥ 1 so p ≥ 0.575.

(c) Under the rule that ‘if two students have one friend in common, they eventually
become friends’, any triple that initially spans at least two edges will close up to a
triangle, and a triple that already has 3 edges is already a triangle. For one fixed
triple, the three possible edges are independent, so if Y ∼ B(3, p) counts the present
edges, then the probability that we have an eventual triangle on this triple is

P(Y ≥ 2) =
(

3
2

)
p2 (1− p)+ p3 = 3p2 (1− p)+ p3.

As there are
(10

3

)
= 120 triples, by the linearity of expectation, it follows that the

answer is 120
(
3p2 −2p3).
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Let us give some insight into Example 7.6. We can model the situation using a random
graph. Let the 10 students be represented by vertices V = {1,2, . . . ,10}, and for each
unordered pair (i, j) we place an edge between i and j with probability p, independently
of all other pairs. This is exactly the Erdős–Rényi random graph model G(n, p) with
n = 10. For (a), we are counting the expected number of edges in the graph G(10, p). In
G(10, p), there are

(10
2

)
= 45 possible edges, each present with probability p. If we write

X for the total number of edges, we may decompose

X = ∑
1≤i< j≤10

Ii j,

where Ii j is the indicator that the edge (i, j) is present. Hence, E
(
Ii j
)
= p so E (X) = 45p.

This is the standard formula for the expected number of edges in G(n, p), which is the
expected number of edges being equal to

(n
2

)
p.

In (b), we are counting the number of complete graphs with 5 vertices, also known as
K5. A set of 5 students who all know each other corresponds to a copy of the com-
plete graph K5 in G(10, p). For any fixed 5-element subset S ⊆ V , the induced subgraph
on S is a K5 exactly when all

(5
2

)
= 10 edges among these vertices are present. Since

edges appear independently with probability p, this event has probability p10. There are(10
5

)
= 252 possible 5-element subsets S, so if Y denotes the number of K5’s in G(10, p),

then E (Y ) =
(10

5

)
p10 = 252p10.

In summary, Example 7.6 is naturally phrased in the language of Erdős–Rényi model
random graphs G(n, p). (a) and (b) compute expected numbers of edges and cliques in
G(10, p), while (c) studies how a simple local rule (closing wedges into triangles) mod-
ifies the structure of such a random graph and increases its clustering. Figure 7.1 shows
a sample friendship network on 10 students. Each edge is present independently with
probability p, so this is an instance of the Erdős-Rényi model random graph G(10, p).
The highlighted triangle is one possible group of three mutual friends.

1

23

4

5

6

7 8

9

10

Figure 7.1: A sample friendship network on 10 students

Example 7.7. A class is composed of n students, whose birthdays are independently and
uniformly distributed.

(a) On average, how many pairs of students are born on the same day?
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(b) What is the minimal value of n such that we expect 3 students to be born on the
same day?

Solution.

(a) Let X be the number of pairs of students born on the same day. Then,

xi j =

1 if i and j on the same day;

0 otherwise.

Define
X = ∑

i, j
xi j.

Note that xi j is a Bernoulli random variable with parameter p = 1
365 . So,

E (X) = ∑
i, j

E
(
Xi j
)
= ∑

i, j

1
365

=

(
n
2

)
· 1

365
=

n(n−1)
730

.

(b) Define

Yi, j,k =

1 if i = j = k;

0 otherwise.

Then,

E (Y ) = E

(
∑
i, j,k

Yi, j,k

)
= ∑

i, j,k
E
(
Yi, j,k

)
= ∑

i, j,k

1
3652 =

(
n
3

)
· 1

3652 .

So, the smallest value of n is 94.

7.2 Covariance, Variance and Correlation

Definition 7.1 (covariance). The covariance of jointly distributed random variables
X and Y , denoted by cov(X ,Y ), is defined by

cov(X ,Y ) = E(X −µX)(Y −µY ),

where µX and µY denote the means of X and Y respectively.

Definition 7.2 (correlation). If cov(X ,Y ) ̸= 0, we say that X and Y are correlated,
but if cov(X ,Y ) = 0, we say that X and Y are uncorrelated.

An alternative formula for covariance is

cov(X ,Y ) = E(XY )−E(X)E(Y ).

As a result, if X and Y are independent, it is clear that cov(X ,Y ) = 0. However, the
converse is not true. Correlation does not imply causation1.

1I strongly recommend a video by Zach Star which illustrates how easy it is to lie with Statistics. For
example, an increase in ice cream sales, as well as cases of sunburn, are caused by the hot weather, whereas
there is a correlation between the number of ice cream sales and the number of sunburn cases.
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Proposition 7.2. If X and Y are independent random variables, then for any func-
tions g,h : R→ R, we have

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Some other properties of covariance are as follows:

(i) Var(X) = cov(X ,X)

(ii) Symmetry: cov(X ,Y ) = cov(Y,X)

(iii)

cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jY j

)
=

n

∑
i=1

m

∑
j=1

aib j cov
(
Xi,Y j

)
(iv)

cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jYj

)
=

n

∑
i=1

m

∑
j=1

aib j cov
(
Xi,Y j

)
(v)

Var

(
n

∑
k=1

Xk

)
=

n

∑
k=1

Var(Xk)+2 ∑
i< j

cov
(
Xi,X j

)

We only prove (iv).

Proof.

cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jYj

)
= E

(
n

∑
i=1

m

∑
j=1

aib jXiYj

)
−E

(
n

∑
i=1

aiXi

)
E

(
m

∑
j=1

b jYj

)

=
n

∑
i=1

m

∑
j=1

aib jE
(
XiYj

)
−

n

∑
i=1

m

∑
j=1

aib jE (Xi)E
(
Y j
)

=
n

∑
i=1

m

∑
j=1

aib j cov
(
Xi,Y j

)

Let X1,X2, . . . ,Xn be independent random variables. Recall from H2 Mathematics that

Var

(
n

∑
k=1

Xk

)
=

n

∑
k=1

Var(Xk).

Under independence, the variance of a sum is the sum of variances. We provide more
information about the random variables. Suppose each of the Xi’s has an expected value
of µ and variance σ2. We let

X =
n

∑
i=1

Xi

n
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be the sample mean. The quantities Xi −X , for 1 ≤ i ≤ n, are called deviations as they
equal to the differences between the individual data and the sample mean. The random
variable

S2 =
n

∑
i=1

(
Xi −X

)2

n−1

is called the sample variance. We shall prove that E(S2) = σ2. That is, S2 is used as an
estimator for σ2 instead of the more natural choice of

n

∑
i=1

(
Xi −X

)2

n
.

Proof. Note that Xi −X = Xi −µ +µ −X . Hence,(
Xi −X

)2
=
(
Xi −µ +µ −X

)2

= (Xi −µ)2 +
(
X −µ

)2 −2
(
X −µ

)
(Xi −µ)

When we take the sum of i from 1 to n, note that X is unaffected by the index. Hence,

S2 =
1

n−1

[
n

∑
i=1

(Xi −µ)2 +
n

∑
i=1

(
X −µ

)2 −2
(
X −µ

) n

∑
i=1

(Xi −µ)

]

=
1

n−1

[
n

∑
i=1

(Xi −µ)2 +n
(
X −µ

)2 −2n
(
X −µ

)2

]

=
1

n−1

[
n

∑
i=1

(Xi −µ)2 −n
(
X −µ

)2

]

As such,

E
(
S2)= 1

n−1

[
n

∑
i=1

E
[
(Xi −µ)2

]
−nE

[(
X −µ

)2
]]

.

By the definition of variance, as E
[
(X −µ)2

]
= Var(X), then it is clear that

n

∑
i=1

E
[
(Xi −µ)2

]
= nσ

2.

The term E
[(

X −µ
)2
]

is called the variance of the sample mean. We wish to find the
sum of it from i = 1 to i = n. This is straightforward because

n

∑
i=1

E
[(

X −µ
)2
]
= Var

(
X
)
=

σ2

n
.

Putting everything together,

E
(
S2)= 1

n−1

(
nσ

2 −n
(

σ2

n

))
= σ

2.
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Example 7.8. Let X1, . . . ,Xn be a sequence of independent and identically distributed
random variables with mean µ and variance σ2. Consider the random variable

Z =
1

σ
√

n

n

∑
i=1

(Xi −µ) .

We note that E
(
XiX j

)
= E (Xi)E

(
X j
)

for any i ̸= j. Compute the mean and variance of
Z.

Solution. We have

E (Z) =
1

σ
√

n
E

(
n

∑
i=1

(Xi −µ)

)
= 0

by considering the linearity of expectation.

Next,

Z2 =
1

nσ2

[
n

∑
i=1

(Xi −µ)

]2

.

Expanding the square yields[
n

∑
i=1

(Xi −µ)

]2

=
n

∑
i=1

(Xi −µ)2 +2 ∑
i< j

(Xi −µ)
(
X j −µ

)
.

Using the fact that E
(
XiX j

)
= E (Xi)E

(
X j
)

for distinct i and j, it follows that

E
(
Z2)= 1

nσ2 ·nσ
2 = 1

so Var(Z) = 1. This normalisation shows that Z is the standardised sum of indepen-
dent and identically distributed random variables, which is the foundation for the central
limit theorem (Theorem 8.6). It implies that Z converges in distribution to N (0,1) as n
approaches infinity. □

Example 7.9 (MA3238 AY13/14 Sem 2 Homework 3). A total of n bar magnets are
placed end to end in a line on the table, where the orientation of the south and north poles
of each magnet is randomly chosen from the two possibilities with equal probability.
Adjacent magnets with opposite poles facing each other join to form a block. Find the
mean and variance of the number of blocks of joined magnets.

Solution. Denote the bar magnets by 1, . . . ,n. Call the bond between magnet i and magnet
i+1 broken if they are not joined together. The key observation is that if there are a total
of k broken bonds for 1 ≤ k ≤ n−1, then k+1 disjoint blocks. Let N be the number of
blocks and B be the number of broken bonds. Then,

N = B+1.
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As B denotes the number of broken bonds, then

B =
n−1

∑
i=1

Yi,

where Yi is the indicator random variable denoting the event that the bond between magnet
i and i+1 is broken. By the linearity of expectation,

E(N) = 1+
n−1

∑
i=1

E(Yi) = 1+(n−1)E(Yi) for any 1 ≤ i ≤ n.

For two adjacent magnets i and i+ 1, they are broken if and only if they assume one of
the following orientations:

NS | SN or SN | NS

As there are only a total of four orientations, the probability that any adjacent magnets
are disjoint is 1/2. Thus, E(Yi) = 1/2 for all 1 ≤ i ≤ n. Therefore,

E(N) = 1+
n−1

2
=

n+1
2

.

Note that the variance of N is

Var(N) = Var

(
n−1

∑
i=1

Yi

)

=
n

∑
i=1

Var(Yi)+2 ∑
1≤i< j≤n−1

cov(Yi,Y j)

=
n

∑
i=1

(
E(Y 2

i )− (E(Yi))
2)+2 ∑

1≤i< j≤n−1
cov(Yi,Y j)

=
n

∑
i=1

(
E(Yi)− (E(Yi))

2)+2 ∑
1≤i< j≤n−1

cov(Yi,Y j)

=
n
4
−2 ∑

1≤i< j≤n−1
cov(Yi,Y j)

Note that cov(YiY j) = E(XiX j)−E(Xi)E(X j). We claim that if j = i+ 1, the covariance
is non-zero. If i < j, then Yi depends on the orientation of magnets i and i+1, whereas Y j

depends on the orientation of magnets j and j+1.

Since Yi depends only on the orientations of magnets i and i+ 1, it follows that Yi and
Yj are independent whenever |i− j|> 1. Hence, Cov(Yi,Y j) = 0 for |i− j|> 1. It remains
to consider the case j = i+ 1. In this situation the random variables share the orienta-
tion of magnet i+ 1, so they are not independent, although, as we shall see, they are
uncorrelated. We compute

Cov(Yi,Yi+1) = E(YiYi+1)−E(Yi)E(Yi+1).

Since E(Yi) = E(Yi+1) =
1
2 , we have E(Yi)E(Yi+1) =

1
4 . To compute E(YiYi+1), note

that the triple of orientations (i, i+ 1, i+ 2) has 23 = 8 equally likely configurations. A
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configuration contributes to YiYi+1 = 1 exactly when both adjacent bonds are broken. A
direct check shows that exactly 2 of the 8 possibilities break both bonds. Hence,

E(YiYi+1) =
2
8
=

1
4
.

Consequently,

Cov(Yi,Yi+1) =
1
4
− 1

4
= 0.

Thus all covariances vanish, and we obtain

Var(N) =
n−1

∑
i=1

Var(Yi) = (n−1) · 1
4
=

n−1
4

.

□

Definition 7.3 (correlation). The correlation of random variables X and Y , denoted
by ρ(X ,Y ), is defined by

ρ(X ,Y ) =
cov(X ,Y )√

Var(X)Var(Y )
.

One would be more familiar with the formula given in the List of Formulae (MF26) during
his/her A-Level days. That is, the product moment correlation coefficient, r.

Definition 7.4 (product moment correlation coefficient).

r =
∑(x− x)∑(y− y)[√

∑(x− x)2
][√

∑(y− y)2
]

The two quantities ρ and r are of course equivalent. We can show that −1 ≤ ρ(X ,Y )≤ 1.

Proof. Note that cov(X ,Y )=E[(X−µX)(Y −µY )], Var(X)=E[(X−µX)
2] and Var(Y )=

E[(Y −µY )
2]. Hence, the original equation for ρ becomes

ρ(X ,Y ) =
E[(X −µX)(Y −µY )]√

E[(X −µX)2]E[(Y −µY )2]
.

Using the substitution U = X −µX and V = Y −µY ,

ρ(X ,Y ) =
E(UV )√

E(U2)E(V 2)
.

Assume that X and Y are continuous random variables, which would imply that U and
V are continuous random variables too. The proof will be the same for the discrete case,
just that the integrals become sums. We define f (t) to be the following polynomial in t:

f (t) = E[(tU +V )2]

Then, expanding the right side yields

f (t) = E
(
U2) t2 +2tE (UV )+E

(
V 2) .
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Note that f (t) ≥ 0 since Var(X) ≥ 0 if and only if E(X2) ≥ (E(X))2 ≥ 0. Hence, the
discriminant of f (t), ∆ must satisfy ∆ ≤ 0. That is,

(2E(UV ))2 −4(E(U2))(E(V 2))≤ 0.

Rearranging yields the formula

(E(UV ))2 ≤ E(U2)E(V 2),

which implies that −1 ≤ ρ(X ,Y ) ≤ 1. To conclude, we give a nice remark that the in-
equality (E(UV ))2 ≤ E(U2)E(V 2) is the famous Cauchy-Schwarz inequality.

The correlation coefficient is a measure of the degree of linearity between X and Y . A
value of ρ(X ,Y ) near +1 or −1 indicates a high degree of linearity between X and Y ,
whereas a value near 0 indicates a lack of such linearity. A positive value of ρ(X ,Y )
indicates that Y tends to increase as X does, whereas a negative value indicates that Y
tends to decrease as X increases. If ρ(X ,Y ) = 0, then X and Y are uncorrelated. If X and
Y are independent, then ρ(X ,Y ) = 0. However, the converse is not true.

Example 7.10. Consider the random variables X and Y with joint probability density
function given by

f (x,y) =

1
8(x

2 − y2)e−x if x > 0 and − x < y < x;

0 otherwise.

(a) Compute their covariance and their correlation.

(b) Are X and Y independent?

Solution.

(a) By symmetry, E (Y ) = 0 and E (XY ) = 0. Since

cov(X ,Y ) = E (XY )−E (X)E (Y ) ,

then cov(X ,Y ) = 0. So, the correlation of X and Y is 0.

(b) Observe that P(X > 1) > 0 and P(Y < 1) > 0 but P(X > 1 and Y < 1) = 0 so X
and Y are not independent.

Example 7.11. Consider the random variables X and Y with joint probability density
function given by

f (x,y) =

6
7

(
x2 + xy

2

)
if 0 < x < 1 and 0 < y < 2;

0, otherwise.

(a) Compute their covariance.

(b) Compute their correlation.

Solution.
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(a) We have
cov(X ,Y ) = E (XY )−E (X)E (Y ) .

Note that

E (XY ) =
∫ 2

0

∫ 1

0
xy · 6

7

(
x2 +

xy
2

)
dxdy

and

E (X) =
∫ 1

0
x · 6

7

(
x2 +

xy
2

)
dx and E (Y ) =

∫ 2

0
y · 6

7

(
x2 +

xy
2

)
dy.

Hence, cov(X ,Y ) =− 1
147 .

(b) The correlation coefficient is

ρ (X ,Y ) =
cov(X ,Y )√

Var(X) ·Var(Y )
=−0.0561.

Example 7.12. A set of 12 dice are thrown at once. A first player takes all the dice whose
value is 6, and the second player gets all dice with value ≤ 3. Write X and Y respectively
for the total value of their dice.

(a) Should we expect the covariance between X and Y to be positive or negative?

(b) Compute cov(X ,Y ).

Solution.

(a) We would expect it to be negative.

(b) Let

X =
12

∑
i=1

Xi and Y =
12

∑
i=1

Yi.

Here, each Xi and each Yi are indicator random variables so Xi = 6 if the outcome
of the ith die is 6; Yi is equal to the outcome of the ith die if the outcome of the ith

die is ≤ 3, otherwise the random variable takes on the value 0.

We have

cov(X ,Y ) = cov

(
12

∑
i=1

Xi,
12

∑
i=1

Yi

)
=

12

∑
i=1

cov(Xi,Yi) .

We have

E (Xi) = 6P(Xi = 6) = 1 and E (Yi) =
1
6
+

2
6
+

3
6
= 1.

Next, we compute E (XiYi). If the outcome of the ith die is 6, then Xi = 6 and
Yi = 0 so XiYi = 0. On the other hand, if the outcome of the ith die is ≤ 3, then Yi

takes on that value but Xi = 0. So, XiYi = 0. For other cases, XiYi = 0 too. Hence,
cov(X ,Y ) = 12 · (−1) =−12.
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Example 7.13. Let U be a number between 2 and 9 chosen at random. Let

X =

⌊
U
3

⌋
and Y =

1 if 4 ≤U ≤ 7;

0 otherwise.

(a) Identify the distribution of X and Y .

(b) Compute cov(X ,Y ).

(c) Are X and Y independent?

Solution.

(a) We have

fU (u) =

1
7 if 2 ≤ u ≤ 9;

0 otherwise.

By casework, it is easy to see that X is a discrete random variable where P(X = 0)=
1
7 , P(X = 1) = 3

7 , and P(X = 2) = 3
7 . Next, P(Y = 1) = 3

7 and P(Y = 0) = 4
7 so Y

is a Bernoulli random variable with parameter 3
7 .

(b) We have
cov(X ,Y ) = E (XY )−E (X)E (Y ) .

Note that E (X) = 9
7 and E (Y ) = 3

7 . It remains to compute E (XY ). Use the formula

E (XY ) = ∑
all x,y

xy ·P(X = x,Y = y) .

When Y = 1, then 4 ≤U ≤ 7 so X = 1 or X = 2. So,

E (XY ) = P(X = 1,Y = 1)+2P(X = 2,Y = 1) =
2
7
+2 · 1

7
.

Substituting everything, we have cov(X ,Y ) = 1
49 .

(c) If X and Y were independent, we would have

P(X = x,Y = y) = P(X = x)P(Y = y) .

However, observe that P(Y = 1 | X = 0) = 0 but P(Y = 1 | X = 2) > 0 so Y de-
pends on X . So, X and Y are dependent.

Example 7.14. In the game “president”, the best card is the 2. Two players each pick 5
cards at random from the same deck (without replacement). Let X and Y be the number
of 2’s each player has.

(a) Should we expect the covariance between X and Y to be positive or negative?

(b) Compute cov(X ,Y ).

Solution.
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(a) We should expect the covariance to be negative because if one player gets more 2’s,
fewer are left for the other so the counts move in the opposite direction.

(b) Let the four 2’s be c1, . . . ,c4. For each j, define

I j = 1
{

c j is in player one’s hand
}

and J j = 1
{

c j is in player two’s hand
}
.

Then,

X =
4

∑
j=1

I j and Y =
4

∑
j=1

J j.

So,

E
(
I j
)
= E

(
J j
)
=

5
52

so E (X) = E (Y ) =
5 ·4
52

=
5
13

.

Also, for the same card j, I jJ j = 0 because a card cannot be in both hands. For
distinct cards (i.e. j ̸= k), we have

P
(
I j = 1,Jk = 1

)
=

5
52

· 5
51

.

Hence,

E (XY ) = ∑
j ̸=k

E
(
I jJk
)
= 4 ·3 · 5

52
· 5

51
=

25
221

.

So, cov(X ,Y ) =− 100
2873 .

7.3 Conditional Expectation

Definition 7.5 (conditional expectation). If X and Y are jointly distributed discrete
random variables, then if pY (y)> 0,

E(X |Y = y) = ∑
all x

xpX |Y (x|y).

If X and Y are jointly distributed continuous random variables, then if fY (y)> 0,

E(X |Y = y) =
∫

∞

−∞

x fX |Y (x|y) dx.

Note that for both the discrete and continuous cases, we can replace X with g(X) and the
formula will just have minor tweaks to it. That is,

E(g(X)|Y = y) = ∑
all x

g(x)pX |Y (x|y) for the discrete case and

E(g(X)|Y = y) =
∫

∞

−∞

g(x) fX |Y (x|y) dx for the continuous case

Hence,

E

(
n

∑
i=1

Xi|Y = y

)
=

n

∑
i=1

E(Xi|Y = y).

We can compute expectations and probabilities by conditioning.
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Proposition 7.3 (law of total expectation).

E (X) = E (E (X | Y ))

Example 7.15 (Ross p. 390 Question 1). A player throws a fair die and simultaneously
flips a fair coin. If the coin lands heads, then she wins twice, and if tails, then she wins
one-half of the value that appears on the die. Determine her expected winnings.

Solution. Let the die outcome be D and the coin outcome be C. The winnings W depend
on both — if C is heads, then W = 2D; if C is tails, then W = 1

2D. So

E (W ) = E (W |C = heads)P(C = heads)+E (W |C = tails)P(C = tails)

= E (2D) · 1
2
+E

(
1
2

D
)
· 1

2

which is equal to 5
4E (D). Since E (D) = 3.5, then the result follows. □

Example 7.16. 30 fair dice are thrown.

(a) What is the expected number of 6’s?

(b) On average, how many Yahtzees (i.e. 5 dice with the same value) do we obtain?

(c) Is the number of Yahtzees a binomial random variable?

(d) Is the number of Yahtzees of 6’s a binomial random variable?

Solution.

(a) Let N denote the number of 6’s. Then, N ∼ B
(
30, 1

6

)
so E (N) = 1

6 ·30 = 5.

(b) For each 5-subset of the 30 dice, the probability that all 5 show the same face is
6
65 =

1
64 . The expected number of Yahtzees is(

30
5

)
· 1

64 = 109.96.

(c) No. If you index each 5-subset with an indicator for ‘this 5-subset is a Yahtzee’,
these indicators are not independent as overlapping subsets share dice. So the total
is not binomial.

(d) Again, the answer is no. Whether two different 5-subsets are all 6’s is again de-
pendent when the subsets overlap. Equivalently, this count equals to

(X6
5

)
, where

X6 ∼ B
(
30, 1

6

)
which does not follow a binomial distribution.

Example 7.17. Consider the pair of integer-valued random variables (N,K) with joint
distribution given by

P(N = n,K = k) =


(e−1)e−2nnk

k! if n ≥ 1 and k ≥ 0;

0 otherwise.
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(a) Compute E (N | K = 0).

(b) What is the distribution of E (K | N)?

(c) Compute E (NK).

Solution.

(a) We have

P(K = k) =
∞

∑
n=1

(e−1)e−2nnk

k!
=

e−1
k!

∞

∑
n=1

nk

e2n .

So,

P(K = 0) = (e−1)
∞

∑
n=1

1
e2n =

1
e+1

.

As such,

E (N | K = 0) =
∞

∑
n=1

n · P(N = n and K = 0)
P(K = 0)

which is equal to (
e2 −1

) ∞

∑
n=1

n
e2n =

1
1− e−2 .

(b) We have

P(N = n) =
∞

∑
k=0

(e−1)e−2nnk

k!
=

e−1
en .

So,

P(K = k | N = n) =
(e−1)e−2nnk

k!
· en

e−1
=

e−nnk

k!
.

As such, K | N = n ∼ Po(n). As such, E (K | N) = N.

(c) By the law of total expectation (Proposition 7.3),

E (NK) = E (E (NK | N)) = E (NE (K | N)) = E
(
N2) .

Recall that
P(N = n) =

e−1
en

so

E
(
N2)= (e−1)

∞

∑
n=1

n2

en =
e(e+1)

(e−1)2 .

Example 7.18. Consider the pair of integer-valued random variables (X ,Y ) with joint
distribution given by

P(X = k,y = l) =

 1
e2 · 1

l!(k−l)! if 0 ≤ l ≤ k;

0 otherwise.

(a) Compute E (X | Y = 0).

(b) What is the distribution of 2E (Y | X)?
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(c) Compute E (XY ).

Solution.

(a) We have

P(Y = 0) =
∞

∑
k=0

P(X = k) =
∞

∑
k=0

1
e2 ·

1
k!

=
1
e
.

Hence,

E (X | Y = 0) =
∞

∑
x=0

x ·P(X = x | Y = 0) =
∞

∑
x=0

x · P(X = x and Y = 0)
P(Y = 0)

.

Substituting the relevant probabilities, we have

E (X | Y = 0) =
∞

∑
k=0

k ·
1
e2 · 1

k!
1
e

= 1.

(b) We have
E (Y | X) = ∑

y
y ·P(Y = y | X = x) .

Hence,

E (Y | X) =
k

∑
l=0

l ·
1
e2 · 1

l!(k−l)!

P(X = k)
.

Note that

P(X = k) =
k

∑
l=0

1
e2 ·

1
l!(k− l)!

=
1
e2 ·

2k

k!
.

As such,

E (Y | X = k) =
k
2

so 2E (Y | X) = X .

Since

P(X = k) =
e−2 ·2k

k!
,

then X ∼ Po(2) so 2E (Y | X) follows a Poisson distribution with parameter 2.

(c) The trick is to observe that if Y =U and X =U +V , then

P(U = l,X = k− l) =
e−1

l!
· e−1

(k− l)!
.

Hence, U ∼ Po(1) and V ∼ Po(1). So,

E (XY ) = E
(
U2)+E (UV ) = Var(U)+ [E (U)]2 +E (U)E (V )

which is equal to 1+1+1 ·1 = 3.

Example 7.19. Consider the pair of discrete random variables (N,K) with joint probabil-
ity mass function

P(N = n,K = k) =


c

(n+2
3 )

if 1 ≤ k ≤ n;

0 otherwise.
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(a) Find the value of c.

(b) Compute E (N | K = k).

(c) Compute E
(
2K | N = n

)
.

(d) Compute P(E (K | N = 3)≥ 5) and P(E (K | N)≥ 5).

Solution.

(a) We have
∞

∑
n=1

n

∑
k=1

c(n+2
3

) = 1.

So, one can deduce that c = 1
3 .

(b) We have

P(N = n | K = k) =
P(N = n and K = k)

P(K = k)
.

Note that

P(K = k) =
∞

∑
n=k

1/3(n+2
3

) = 3
k (k+1)

.

Hence,

E (N | K = k) =
∞

∑
n=k

n ·P(N = n | K = k) = 2k.

(c) We have

E
(
2K | N = n

)
=

n

∑
k=1

2k ·P(K = k | N = n) .

Note that

P(N = n) =
n

∑
k=1

1/3(n+2
3

) = 2
(n+2)(n+1)

.

Hence,

E
(
2K | N = n

)
=

1
n

n

∑
k=1

2k =
2(2n −1)

n
.

(d) For the first probability, we have

E (K | N = n) =
n+1

2
.

So, the first probability is equal to 0. One can then work out that the second proba-
bility is equal to P(N ≥ 9) = 0.2.

Example 7.20. Consider the pair of discrete random variables (N,K) with joint probabil-
ity density function

P(N = n,K = k) =

 c
n if 1 ≤ k ≤ n ≤ 10;

0 otherwise.

(a) Find the value of c.

(b) Compute E (N | K = k).
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(c) Compute E
(
K2 | N = n

)
.

(d) Compute P
(
E
(
K2 | N = 5

)
≤ 10

)
and P

(
E
(
K2 | N

)
≤ 10

)
.

Solution.

(a) We have

∑
n,k

c
n
= 1 so

10

∑
n=1

n

∑
k=1

c
n
= 1.

Hence, c = 0.1.

(b) We have

P(N = n | K = k) =
P(N = n and K = k)

P(K = k)
.

We have

P(K = k) =
10

∑
n=k

c
n

so P(N = n | K = k) =
1

11− k
.

Hence,

E (N | K) =
10

∑
n=k

n ·P(N = n | K = k) =
10

∑
n=k

n
11− k

=
110− k2 + k

2(11− k)
.

(c) We have P(N = n) = c so P(K = k | N = n) = 1
n . Hence,

E
(
K2 | N

)
=

n

∑
k=1

k2 ·P(K = k | N = n) =
n

∑
k=1

k2

n
=

(n+1)(2n+1)
6

.

(d) We have

E
(
K2 | N = 5

)
= 11 > 10

so the first probability is equal to 0. For the second probability, since the support of
N takes on integers, then

P
(
E
(
K2 | N

)
≤ 10

)
= P

(
E
(
K2 | N

)
< 11

)
= P

(
2N2 +3N −65 < 0

)
= P

(
−13

2
< N < 5

)
Since P(N = n) = 1

10 , the second probability is equal to 0.4.

Example 7.21. Consider the pair of continuous random variables (X ,Y ) with joint distri-
bution given by

f (x,y) =

c(2x+ y) if 0 < x < y < 1;

0 otherwise.

(a) Find the value of c.

(b) Compute E (X | Y = y). For which value of y is this properly defined?
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(c) Compute

P
(

E (Y | X)≤ 1
2

)
.

Solution.

(a) We have ∫ 1

0

∫ y

0
c(2x+ y) dydx = 1

so c = 1.5.

(b) We have

E (X | Y = y) =
∫ y

0
x · f (x,y)

fY (y)
dx =

7
12

y.

(c) We have

fX (x) =
∫ 1

x

3
2
(2x+ y) dy =

3
4
(1−5x)(1+ x) .

So,

E (Y | X = x) =
∫ 1

x

y · 3
2 (2x+ y)

3
4 (1−5x)(1+ x)

dx.

The rest of the working is trivial!

Example 7.22. Consider the pair of continuous random variables (X ,Y ) with joint distri-
bution given by

f (x,y) =

c(2x+ y)e−y if 0 < x < y;

0 otherwise.

(a) Find the value of c.

(b) Compute E (X | Y = y) for y > 0.

Solution.

(a) We have ∫
∞

0

∫ y

0
c(2x+ y)e−y dxdy = 1

so c = 1
4 .

(b) We have

E (X | Y = y) =
∫ y

0
x ·

fX ,Y (x,y)
fY (y)

dy.

Note that
fY (y) =

∫ y

0

1
4
(2x+ y)e−y dx =

1
2

y2e−y

Substituting everything yields

E (X | Y = y) =
∫ y

0
x ·

1
4 (2x+ y)e−y

1
2y2e−y

dx =
7

12
y.
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Example 7.23. Consider the pair of continuous random variables (X ,Y ) with joint distri-
bution

f (x,y) =

c
(
2x+ y2)e−2y if 0 < x < y;

0 otherwise.

(a) Find the value of c.

(b) Compute E (X | Y ).

(c) Compute E (X (1+Y )).

Solution.

(a) We have

c
∫

∞

0

∫ y

0

(
2x+ y2)e−2y dxdy = 1

so c = 1.6.

(b) We have

fX |Y (x | y) =
2x+ y2

y2 + y3 .

Hence,

E (X | Y ) =
∫ y

0
x · 2x+ y2

y2 + y3 dx =
2
3Y + 1

2Y 2

1+Y
.

(c) We have

E (X (1+Y )) = E (E (X (1+Y ) | Y )) = E (1+Y )E (X | Y )

which is equal to

E
(

2
3

Y +
1
2

Y 2
)
= 3.3.

Example 7.24. Consider the pair of continuous random variables (X ,Y ) with joint density
function

f (x,y) =

c(x+ y)2 if −1 < x < 1 and −1 < y < 1;

0 otherwise.

(a) Find the value of c.

(b) Compute E (X | Y ). What is E (Y | X)?

(c) Compute E
(
XY 2).

Solution.

(a) We have ∫ 1

−1

∫ 1

−1
c(x+ y)2 dxdy = 1

so c = 3
8 .
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(b) We have

fY (y) =
∫ 1

−1

3
8
(x+ y)2 dx =

3
8

(
2
3
+2y2

)
.

So,

E (X | Y ) =

∫ 1

−1

∫ 1

−1
x fX ,Y (x,y) dxdy

fY (y)
=

2y
1+3y2 .

By symmetry, E (Y | X) = 2x
1+3x2 .

(c) We have

E
(
XY 2)= ∫ 1

−1

∫ 1

−1
xy2 · 3

8
(x+ y)2 dxdy = 0.

Example 7.25. When playing Pokémon Red or Blue, capturing a Chansey is one of the
ultimate challenges. Indeed, they only appear with 4% chance, and for each turn, get
captured with 5% chance and otherwise flee with 25% chance.

(a) If you encountered n Pokemon, on average how many Chansey did you capture?

(b) Pokémon actually spawn randomly following a Poisson distribution, with an aver-
age of 2 Pokemon per minute. On average, how many Chansey did you capture
after playing for one hour?

Solution.

(a) Let X be the number of Chansey captured. Then, X ∼ B(n, p), where p is to be
found. The probability that a Chansey is eventually captured is a geometric sum.
That is,

∞

∑
k=1

0.70k−1 ·0.05 =
1
6
.

The probability p that a random encounter results in a captured Chansey is

P(encounter Chansey) ·P(eventually capture | encounter Chansey)

which is 0.04 · 1
6 = 1

150 . Hence, p = 1
150 . As such, E (X) = n

150 .

(b) Let Y denote the number of Pokémon spawning per hour. Then, Y ∼ Po(120). By
considering our notation in (a), we have

X | Y ∼ B
(

Y,
1

150

)
and Y ∼ Po(120) .

We need to find E (X). By the law of total expectation (Proposition 7.3),

E (X) = E (E (X | Y )) = E
(

Y
150

)
=

1
150

·120 = 0.8.
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Example 7.26. When playing Pokémon Red or Blue, our first opportunity to capture a
Pikachu is in the Viridian forest, where they appear with 5% chances, and are captured
throwing a Pokéball with probability 0.1865.

(a) If we encountered 10 Pokémon, what is the probability that none of them were
Pikachu?

(b) Assuming that whenever we encounter a Pikachu we throw Pokéballs until capture.
After encountering 10 Pokémon, how many Pokéballs did we throw on average?

Solution.

(a) Let N denote the number of Pikachu encountered. Then, N ∼ B(10,0.05) so
P(N = 0) = 0.9510.

(b) For every Pikachu encountered, let Bi denote the number of Pokéballs used to cap-
tured it. Then, define B = B1 + . . .+BN . We wish to find E (B). We have

E (B) = E (B1 + . . .+BN)

= E (E (B1 + . . .+BN | N))

= E (E (B1 | N))+ . . .+E (E (BN | N))

= E (Bi)E (N)

Note that N ∼ B(10,0.05) and Bi ∼ Geo(0.1865) so E (B) = 2.68.

Example 7.27. In the Texas hold’em variant of poker, players start by receiving 2 cards
and have to place an initial bet accordingly. A first player has a strategy where they add
the total T of their two cards (seeing J, Q, K as 11, 12, 13) and places a (continuous)
uniform bet X between 0 and T . The second player uses a similar strategy and places a
(continuous) uniform bet Y between 0 and 30N where N is the number of faced values (J,
Q, or K) they have in their hands.

(a) Which player places the highest average bet?

(b) What is the covariance of the 2 bets? Do we expect it to be positive or negative?

Solution.

(a) Let the first player’s two-card total be T . Then, X ∼U (0,T ). Next, let the second
player’s number of face cards be N. Then, Y ∼U (0,30N). Hence,

E (X | T ) =
T
2

and E (Y | N) = 15N.

By the law of total expectation (Proposition 7.3),

E (X) = E (E (X | T )) = E
(

T
2

)
=

1
2

E (T )

and
E (Y ) = 15E (N) .
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Note that
E (T ) =

1+2+ . . .+13
13

= 14.

Also, E (N) = 2 · 3
13 so E (X)> E (Y ).

(b) Recall from (a) we had E (X) = 7 and E (Y ) = 90
13 . We have

cov(X ,Y ) = E (XY )−E (X)E (Y ) .

We have

cov(X ,Y ) = cov(E (X | T ) ,E (Y | N)) = cov
(

T
2
,15N

)
=

15
2

cov(T,N) .

We shall compute cov(T,N) using indicator random variables. We index the cards
i = 1, . . . ,52 with values vi and let Ai be the indicator that card i is in player 1’s
hand and Bi for player 2’s hand; let F be the 12 face cards. Then,

T = ∑
i

viAi and N = ∑
j∈F

B j.

Hence,
cov(T,N) = ∑

i
∑
j∈F

(
E
(
AiB j

)
−E (Ai)E

(
B j
))

.

Uniformly dealing two disjoint 2-card hands gives E (Ai) =
1
26 and E

(
B j
)
= 1

26 .
Also,

E
(
AiB j

)
=

0 if i = j;
1

650 if i ̸= j.

Hence for i ̸= j, the difference is 1
650 −

1
676 = 1

16900 , while for i = j, it is − 1
676 .

Using the fact that

∑
i∈F

vi = 4(11+12+13) = 144 and ∑
i̸∈F

vi = 4(1+ . . .+10) = 220,

then one can deduce that cov(T,N) = 12
325 so cov(X ,Y ) = 18

65 .

Example 7.28 (stopping-time expectation problem). You play a simplified slot machine
where, every time you place your bet, you receive an integer number uniform between
0 and 9 (we are not interested in the reward here). You then opt for the following strat-
egy: start by betting $1 for the first game, then, for each subsequent game, bet the value
displayed by the machine. Thus, you stop playing whenever you get a 0.

(a) On average, how long do you play this game?

(b) On average, how much do you bet?

Solution. Let X1,X2 . . . be independent and identically distributed uniform random vari-
ables on 0,1, . . . ,9, where Xi is the value shown after the ith game. Also, we define
T = min{t ≥ 1 : Xt = 0}.
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(a) Since P(Xi = 0) = 0.1, then the stopping time T follows a geometric distribution
with parameter 0.1. Then, E (T ) = 10.

(b) Let Bk denote the amount we bet on the kth game. Then, for k ≥ 2, we have

B1 = 1 and Bk =

Xk−1 if T ≥ k;

0 otherwise.

The condition T ≥ k means that X1, . . . ,Xk−1 ̸= 0. Define

S =
∞

∑
k=1

Bk = 1+
∞

∑
k=2

Bk.

We wish to compute E (S). Note that for k ≥ 2, we have

E (Bk) = E
(
Xk−11{T≥k}

)
= P(T ≥ k)E (Xk−1 | T ≥ k)

which is equal to

(0.9)k−1 · 1+2+ . . .+9
9

= 5(0.9)k−1 .

Hence, the answer is 46.

Definition 7.6 (conditional variance). The conditional variance of X given Y = y is
defined as

Var(X |Y ) = E((X −E(X |Y ))2|Y ).

A useful relationship between Var(X) and Var(X |Y ), called the law of total variance, is
as follows:

Proposition 7.4 (law of total variance).

Var(X) = E(Var(X |Y ))+Var(E(X |Y ))

Example 7.29. A standard dice is thrown before flipping as many fair coins as given by
the dice value. We then count the number of heads counted by the coins.

(a) What is the expected number of heads?

(b) What is the variance of the number of heads?

Solution.

(a) Let X be the random variable denoting the number on the die and Y denoting the
number of heads. Then, X is a discrete uniform random variable on {1, . . . ,6}
and Y ∼ B

(
X , 1

2

)
. So, E (Y | X) = 1

2X . Hence, by the law of total expectation
(Proposition 7.3),

E (Y ) = E (E (Y | X)) = E
(

1
2

X
)
=

7
4
.
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(b) We use the law of total variance (Proposition 7.4), so

Var(Y ) = E (Var(Y | X))+Var(E (Y | X)) .

We have

Var(Y | X) = X · 1
2
· 1

2
=

1
4

X .

Hence,

Var(Y ) = E
(

1
4

X
)
+Var

(
1
2

X
)
=

77
48

.

Example 7.30. A game is played where we flip a coin until it lands on head, and for any
time we flip a tail, we get to throw a standard die. We then add all the values given by the
different dice (this total value possibly being 0 if we flipped a head first).

(a) What is the expected total value of the dice?

(b) What is the variance of the total value of the dice?

Solution.

(a) Let N denote the total number of tails before the first head. Then, P(N = n) = 1
2n+1 .

For each tail, we roll a standard die and its outcome is Xi, where Xi follows a discrete
uniform random variable on {1, . . . ,6}. The total score is

S =
N

∑
i=1

Xi.

Then, by the law of total expectation (Proposition 7.3),

E (S) = E (E (S | N)) = n ·E (Xi) = 3.5n.

So, E (S) = 3.5E (N) = 3.5.

(b) By the law of total variance (Proposition 7.4),

Var(S) = E (Var(S | N))+Var(E (S | N = n)) .

Recall that

E (S | N) = 3.5n and Var(S | N) = nVar(Xi) =
35
12

n.

Hence,

Var(S) = E
(

35
12

N
)
+Var(3.5N) =

35
12

E (N)+3.52 Var(N)

which is equal to 329
12 .
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Example 7.31 (ST2131 AY19/20 Sem 2). Let N be a Poisson random variable with mean
1. Let (ξi)i∈N be i.i.d. standard normal random variables. Define

X :=
N

∑
i=1

ξi = ξ1 +ξ2 + . . .+ξN .

Find the mean and variance of X .

Solution. By the law of total expectation (Proposition 7.3),

E(X) =
n

∑
i=1

E(X |N = i)P(N = i)

=
n

∑
i=1

E(X |N = i) · e−1

i!

= E(ξ1) ·
e−1

1!
+E(ξ1 +ξ2) ·

e−1

2!
+ . . .+E(ξ1 +ξ2 + . . .+ξn) ·

e−1

n!

= 0 · e−1

1!
+0 · e−1

2!
+ . . .+0 · e−1

n!
= 0

For the variance, by the law of total variance (Proposition 7.4),

Var(X) = E(Var(X |N))+Var(E(X |N)) = E(N Var(X)) = E(N) = 1.

□

7.4 Moment Generating Function
The moment generating function (MGF) of a real-valued random variable, X , is an alter-
native specification of its probability distribution. It provides the basis of an alternative
route to analytical results compared with working directly with PDFs or CDFs. There are
particularly simple results for the MGFs of distributions defined by the weighted sums of
random variables. However, not all random variables have MGFs.

Definition 7.7 (moment generating function). The MGF of a random variable X ,
denoted by MX , is defined as

MX(t) = E
(
etX) . (7.2)

If X is a discrete random variable with PDF pX , then

MX(t) = ∑
all x

etx pX(x). (7.3)

If X is a continuous random variable with PDF fX , then

MX(t) =
∫

∞

−∞

etx fX(x) dx. (7.4)
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We call such a function a moment generating function because it generates all the mo-
ments of this random variable X . Indeed, for n ≥ 0,

E (Xn) = M(n)
X (0),

where

M(n)
X (0) =

dn

dtn MX(t) when t is evaluated at 0.

Proof. Using series expansion,

E(etX) = E

(
∞

∑
k=0

(tX)k

k!

)
=

∞

∑
k=0

E(Xk)tk

k!
=

∞

∑
k=0

M(k)
X (0)tk

k!
.

The result follows by equating the coefficient of tn.

Example 7.32. For example,

M (t) =
e3t

3− et

is not a proper moment generating function because M2 (0) ̸= 1.

Example 7.33. For example,

M (t) =
2e3t (2− et)

3− et

is not a proper moment generating function because M′
3 (0) = 2.5 and M′′

3 (0) = 5 so the
variance of the distribution is negative.

Example 7.34. For example,

M (t) =
e2t (3− et)2

5− e4t

is not a proper moment generating function. To see why, although M (0) = 1, but we see
that the denominator 5−e4t tends to 0 as t tends to 1

4 ln5, so for t > 1
5 ln4, the denominator

becomes negative, giving M (t) < 0, contradicting (7.2) in relation to the exponential
function.

Proposition 7.5. The MGF of a random variable satisfies two properties. We state
them.

(i) Multiplicativity: If X and Y are independent, then

MX+Y (t) = MX(t)MY (t).

(ii) Let X and Y be random variables with MGFs being MX and MY respectively.
If there exists h > 0 such that

MX(t) = MY (t) for all −h < t < h.

Then, X and Y have the same distribution, i.e. fX = fY .
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Example 7.35. Let N be the discrete random variable with probability mass function

P(N = n) =
1

n(n+1)
for all n ≥ 1.

(a) Find the moment generating function of N.

(b) Deduce the value of E (N).

Solution.

(a) We have

MN (t) =
∞

∑
n=1

etn · 1
n(n+1)

=
∞

∑
n=1

etn

n(n+1)
=

∞

∑
n=1

etn
(

1
n
− 1

n+1

)
.

By considering series expansion, observe that

∞

∑
n=1

etn

n
=− ln

(
1− et)

so
MN (t) = 1−

(
1− e−t) ln

(
1− e−t) .

(b) E (N) = M′ (0) so one can show that this goes to infinity. In fact, this is not surpris-
ing since E (N) is just a translated sum of the harmonic series so it will diverge.

Example 7.36. Let N be the discrete random variable with probability mass function

P(N = n) = c
(

1
3n +

1
n!

)
for n ≥ 1.

(a) Find the value of c.

(b) Find the moment generating function of N.

(c) Compute E (N).

Solution.

(a) We have
∞

∑
n=1

c
(

1
3n +

1
n!

)
= 1

so c = 2
2e−1 .

(b) We have

MN (t) =
∞

∑
n=1

ent · 2
2e−1

(
1
3n +

1
n!

)
which is equal to

2
2e−1

∞

∑
n=1

(
et

3

)n

+
2

2e−1

∞

∑
n=1

ent

n!
.

Note that
∞

∑
n=1

(
et

3

)n

=
et

3− et which holds for t < ln3
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and
∞

∑
n=1

ent

n!
= exp

(
et)−1

so the moment generating function is equal to

MN (t) =
2

2e−1

[
et

3− et + exp
(
et)−1

]
.

(c) One can show that

E (N) = M′
N (0) =

2e+ 3
2

2e−1
.

Example 7.37. We say that n ∈ Z is congruent to 2 mod 4 if and only if there exists k ∈ Z
such that n−2 = 4k. Let N be the discrete random variable with distribution

P(N = n) =


c

2
n
2

if n ≡ 2 (mod4) ;

0 otherwise
.

(a) Compute the moment generating function of N.

(b) What should the value of c be?

(c) Compute E (N).

(d) Compute Var(N).

Solution.

(a) We have

MN (t) = ∑
n≡2 (mod4)

etn · c
2

n
2

which is equal to

c
(

e2t

2
2
2
+

e6t

2
6
2
+

e10t

2
10
2
+ . . .

)
=

ce2t

2
2
2

(
1+

e4t

22 +
e8t

24 + . . .

)
=

2ce2t

4− e4t .

(b) We have

c
(

1

2
2
2
+

1

2
6
2
+

1

2
10
2
+ . . .

)
= 1

so c = 1.5.

(c) We have M′
N (0) = 10

3 .

(d) We have E
(
N2)= M′′

N (0) so Var(N) = 64
9 .

Example 7.38. Let X be the continuous random variable with probability density function

f (x) =

6x(1− x) if 0 < x < 1;

0 otherwise.
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(a) Find the moment generating function of X .

(b) Deduce the value of E (X).

Solution.

(a) We have

MX (t) =
∫ 1

0
etx ·6x(1− x) dx =

6
t3

[
et (t −2)+ t +2

]
.

(b) We have
E (X) = M′

X (0) = 0.5.

Example 7.39. Let X be the continuous random variable with probability density function

f (x) =

c(2+ x)e−x if x > 0;

0 otherwise.

Note that ∫
∞

0
c(2+ x)e−x dx = 1 so c =

1
3
.

(a) Find the moment generating function of X .

(b) Compute E (X).

Solution.

(a) We have

MX (t) =
∫

∞

0
etx f (x) dx =

1
3

∫
∞

0
(2+ x)etx−x dx =

3−2t

3(1− t)2

which holds for t < 1.

(b) We have

M′
X (t) =

2
3
(1− t)−3 (2− t)

so E (X) = M′
X (0) = 4

3 .

Example 7.40. Let X be the random variable with probability density function

f (x) =

∑
4
k=1 ck3e−kx if x > 0;

0 otherwise.

(a) Compute the moment generating function of X .

(b) What should the value of c be?

(c) Compute E (X).

(d) Compute Var(X).

Solution.
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(a) The moment generating function is

MX (t) =
∫

∞

0
etx

4

∑
k=1

ck3e−kx dx = c
4

∑
k=1

k3
∫

∞

0
e(t−k)x dx

which is equal to

c
(

1
1− t

+
8

2− t
+

27
3− t

+
64

4− t

)
.

(b) Since MX (0) = 1, then c = 1
30 .

(c) Note that

MX (t) =
1

30

(
1

1− t
+

8
2− t

+
27

3− t
+

64
4− t

)
We have E (X) = M′

X (0) = 1
3 .

(d) Note that E
(
X2)= M′′

X (0) = 4
15 so using the formula Var(X) = E

(
X2)−(E (X))2,

we have Var(X) = 7
45 .

We now state and prove the MGFs for some random variables.

Proposition 7.6 (MGF of Bernoulli random variable). If X ∼ Bernoulli(p), then

M(t) = 1− p+ pet .

Proof. By (7.3), M(t) = et(0)P(X = 0)+ et(1)P(X = 1) = (1− p)+ pet .

Proposition 7.7 (MGF of binomial random variable). If X ∼ B(n, p), then

M(t) = (1− p+ pet)n.

Proof. By (7.3) and writing it in sigma notation,
n

∑
k=0

ekt
(

n
k

)
pkqn−k = qn

n

∑
k=0

(
n
k

)(
pet

q

)k

= qn
(

1+
pet

q

)n

= (1− p+ pet)n.

Proposition 7.8 (MGF of geometric random variable). If X ∼ Geo(p), then

M(t) =
pet

1−qet .

Proof. By (7.3),

M(t) =
n

∑
k=1

ekt pqk−1 =
p
q

n

∑
k=1

(qet)
k
=

pet

1−qet .

Example 7.41. If X ∼ Geo(p), find an expression for E
(
X3).

Solution. The third moment, or E(X3), is the coefficient of t3 divided by 3! = 6 in the
series expansion of M(t). □
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Proposition 7.9 (MGF of Poisson random variable). If X ∼ Po(λ ), then

M(t) = exp(λ (et −1)).

Proof. By (7.3),

M(t) =
n

∑
k=0

ekte−λ λ k

k!
= e−λ

n

∑
k=0

(λet)k

k!
= e−λ

(
eλet
)
= exp(λ (et −1))

Example 7.42. Let P1,P2, . . . be a sequence of independent Poisson random variables with
parameters λ1,λ2, . . .. Let Xn = P1 + . . .+Pn.

(a) Find the moment generating function of X1.

(b) Find the moment generating function of X2.

(c) Find the moment generating function of Xn for any n ≥ 1.

(d) What is the distribution of Xn?

Solution.

(a) We have X1 ∼ Po(λi) so

P(X1 = k) =
e−λ1λ k

1
k!

.

So (alternatively, we can use Proposition 7.9 directly),

MX1 (t) =
∞

∑
k=0

etkP(X1 = k) = e−λ1
∞

∑
k=0

etkλ k
1

k!
= exp

(
λ1
(
et −1

))
.

(b) By the additivity property of the Poisson random variable (Proposition 4.16), X2 ∼
Po(λ1 +λ2) so

P(X2 = k) =
e−(λ1+λ2) (λ1 +λ2)

k

k!
.

So,

MX2 (t) =
∞

∑
k=0

etkP(X2 = k) = exp
(
(λ1 +λ2)

(
et −1

))
.

(c) In a similar fashion,

MXn (t) = exp
(
(λ1 +λ2 + . . .+λn)

(
et −1

))
.

(d) From (c), we see that Xn represents a Poisson random variable with parameter λ1+

. . .+λn, where we used the multiplicativity of MGFs (Proposition 7.5).

Example 7.43. Let N be a Poisson random variable with parameter λ and X be a binomial
random variable with parameters N and p.

(a) Compute the moment generating function of X .
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(b) Identify the distribution of X .

(c) What is the distribution of N −X?

(d) Are X and N −X independent?

Solution.

(a) We have N ∼ Po(λ ). By the law of total expectation (Proposition 7.3), we have
E (X) = E (E (X | N)). Note that

MX (t) = E
(
etX)= E

(
E
(
etX | N

))
.

We wish to find
E
(
etX | N = n

)
where N ∼ B(n, p) .

We have

E
(
etX | N = n

)
=

∞

∑
k=0

etk
(

n
k

)
pk (1− p)n−k =

(
pet +1− p

)n
.

Hence,
E
(
etX | N

)
=
(

pet +1− p
)N

.

This implies that

MX (t) = E
((

pet +1− p
)N
)
= exp

(
λ p
(
et −1

))
.

(b) From the moment generating function of X in (a), we see that X ∼ Po(λ p).

(c) Given N = n, we know that X ∼ B(n, p) so N −X ∼ B(n,1− p). However, N ∼
Po(λ ). Using the same technique as in (a), the moment generating function of
N −X is

MN−X (t) = E
(

et(N−X)
)
= E

(
E
(

et(N−X)
)
| N
)
.

We already know that

E
(
e−tX | N = n

)
=
(
1− p+ pe−t)n

so
MN−X (t) = E

((
et (1− p+ pe−t))N

)
which is equal to exp(λ (1− p)(et −1)). Hence, N −X ∼ Po(λ (1− p)).

(d) We just showed that X ∼ Po(λ p) and N −X ∼ Po(λ (1− p)). As such, the joint
distribution is

P(X = k,N = n) = P(N = k) ·P(X = k | N = n) =
e−λ λ n

n!

(
n
k

)
pk (1− p)n−k .

Hence,
P(X = k,N −X = m) = P(X = k,N = k+m) .
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So,

P(X = k,N −X = m) =
e−λ λ k+m

(k+m)!

(
k+m

k

)
pk (1− p)m = e−λ λ k pk

k!
· λ m(1− p)m

m!
.

This factors as

P(X = k,N −X = m) = P(X = k) ·P(N −X = m) .

Hence, X and N −X are independent.

Proposition 7.10 (MGF of uniform random variable). If X ∼U(a,b), then

M(t) =
ebt − eat

t(b−a)
.

Proof. By (7.4),

M(t) =
∫ a

−∞

ekt

b−a
dk+

∫ b

a

ekt

b−a
dk+

∫
∞

b

ekt

b−a
dk =

∫ b

a

ekt

b−a
dk =

ebt − eat

t(b−a)

Example 7.44. For example,

M (t) =
eπt − eet

t (π − e)

is a proper moment generating function because by Proposition 7.10, it is the moment
generating function of a continuous uniform random variable on [e,π].

Proposition 7.11 (MGF of normal random variable). If X ∼ N(µ,σ2), then

M(t) = exp
(

µt +
σ2t2

2

)
.

Proof. By (7.4),

MX(t) =
1

σ
√

2π

∫
∞

−∞

exp
(

tk− (k−µ)2

2σ2

)
dk

=
1

σ
√

2π

∫
∞

−∞

exp
(
− 1

2σ2

(
k− (µ +σ

2t)
)2

+
(µ +σ2t)2 −µ2

2σ2

)
dk

= exp
(

µt +
σ2t2

2

)
· 1

σ
√

2π

∫
∞

−∞

exp
(
− 1

2σ2

(
k− (µ +σ

2t)
)2
)

dk

= exp
(

µt +
σ2t2

2

)
,

since the integral equals 1 (it is the total mass of a N(µ +σ2t,σ2) density).

Example 7.45. Let X be the standard normal random variable and N be a Poisson random
variable with parameter λ . So,

X ∼ N (0,1) and N ∼ Po(λ ) .
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(a) What is the moment generating function of X?

(b) What is the moment generating function of N?

(c) What is the moment generating function of N −λ?

(d) Show by using the moment generating function method that

N −λ√
λ

is similar to X as λ → ∞.

Solution.

(a) From Proposition 7.11, we have

MX (t) = exp
(

1
2

t2
)

where t ∈ R.

(b) From Proposition 7.9, we have

MN (t) = exp
(
λ
(
et −1

))
where t ∈ R.

(c) We have

MN−λ (t) = E
(

et(N−λ )
)
= E

(
etN)E

(
e−tλ

)
which is equal to

e−tλ exp
(
λ
(
et −1

))
= exp

(
λ
(
et −1− tλ

))
.

(d) Let Y = N−λ√
λ

. Then,

MY (t) = E
[

exp
(

t (N −λ )√
λ

)]
= e−

tλ√
λ E
(

e
t√
λ

N
)
= e−t

√
λ MN

(
t√
λ

)
.

Then,

MY (t) = exp
(

λ

(
et/

√
λ −1− t√

λ

))
.

Expand et/
√

λ as λ → ∞ to obtain

et/
√

λ = 1+
t√
λ
+

t2

2λ
+

t3

6λ 3/2 +O
(

1
λ 2

)
.

The result follows.

Proposition 7.12 (MGF of exponential random variable). If X ∼ Exp(λ ), then

M(t) =
λ

λ − t

for t < λ .
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Proof. By (7.4),

M(t) =
∫

∞

0
etk

λe−λk dk =
λ

λ − t

M(t) is only defined for t < λ because the expectation of an exponential random variable
is always positive. To justify this, if f (x) = λe−λx, then E(X) = 1

λ
. By the definition of

the exponential distribution, as λ > 0, the result follows.

Example 7.46. For example,

M (t) =
6

(1− t)(2− t)(3− t)

is a proper moment generating function. We see that M3 (0) = 1. Recall from Propo-
sition 7.12 that the moment generating function of an exponential random variable with
parameter λ is λ

λ−t . As

M3 (t) =
1

1− t
· 2

2− t
· 3

3− t
,

then by the multiplicativity property of moment generating functions (Proposition 7.5),
we see that M3 is the moment generating function of E1 +E2 +E3, where E1,E2,E3 are
independent exponential random variables, where Ek ∼ Exp(k).

Example 7.47. Let X be a random variable with moment generating function given by

MX (t) =
e2t (2+ e2t)

3(2− et)
.

(a) Is X discrete or continuous?

(b) Compute E (X).

(c) Characterise the distribution of X .

Solution.

(a) Observe that

MX (t) =
e2t (2+ e2t)

3
· 1

2− et =
e2t (2+ e2t)

3

∞

∑
k=0

(
et

2

)k

.

Hence,

MX (t) =
1
6

∞

∑
k=0

[
2e(2+k)t + e(4+k)t

]
· 1

2k

so X is a discrete random variable.

(b) Note that

M′
X (t) =

e2t (8+8e2t −2et −3e3t)
3(2− et)2

so M′
X (0) = E (X) = 11

3 .
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(c) From (a), we know that X is a discrete random variable. As

MX (t) =
∞

∑
k=0

ektP(X = k) ,

then we see from (a) that

MX (t) =
e2t

3

∞

∑
k=0

ekt

2k +
e4t

6

∞

∑
k=0

ekt

2k .

It follows that P(X = x)= 0 if x< 2, P(X = 2)= 1
3 , P(X = 3)= 1

6 and P(X = x)=
2−(x−2) if x ≥ 4.

Example 7.48. Let N be the discrete random variable with moment generating function

M (t) = 1+
(
1− e2t)eet

.

(a) Find E (N).

(b) Characterise the distribution of N.

Solution.

(a) We have E (N) = M′ (0) =−2e.

(b) One sees that M′′ (0) =−8e < 0 which is impossible since this represents E
(
N2).

As such, M (t) cannot be the moment generating function of a random variable.

Example 7.49. Using the moment generating function, how that the following relation-
ships are correct as n → ∞.

(a) A discrete uniform random variable on {1/n,2/n, . . . ,n/n} is similar to a continu-
ous uniform on [0,1].

(b) A binomial random variable with parameters n and λ/n is similar to a Poisson
random variable with parameter λ .

(c) A geometric random variable with parameter λ/n is similar to an exponential ran-
dom variable with parameter λ .

Solution.

(a) One can show that the moment generating function of a discrete uniform random
variable on {1/n,2/n, . . . ,n/n} is

et/n (1− et)

n
(
1− et/n

) for t ̸= 0.

Then, consider the limit as n → ∞ for which we would obtain some function, and
because moment generating functions uniquely characterise the distribution, the
result follows.
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(b) Let X ∼ B(n, p), where p = λ/n so X ∼ B
(

n, λ

n

)
. So,

MX (t) =
[

1+
λ

n

(
et −1

)]n

.

Next, let Y ∼ Po(λ ). Then,

MY (t) = exp
(
λ
(
et −1

))
.

Let n go to infinity, then the result follows.

(c) Again, find the MGF of each then the result follows.





Chapter 8
Limit Theorems

8.1 Statistical Inequalities

Probability Theory is often used to describe the behaviour of random phenomena. How-
ever, in many practical situations, we are interested not in the outcome of a single trial,
but in the cumulative or average behaviour of many random variables such as the total
number of successes in repeated trials, or the average outcome of a random experiment
performed many times. This is where limit theorems come in: they describe how sums,
averages, and distributions of random variables behave in the long run.

Theorem 8.1 (Markov’s inequality). Let X be a non-negative random variable. For
a > 0,

P(X ≥ a)≤ E(X)

a
.

Proof. We only prove this for the continuous random variable X . The discrete case is
very similar, just that the integral is replaced by summation.

E (X) =
∫

∞

−∞

x f (x) dx
∫

∞

0
x f (x) dx since X is non-negative.

We can bound this below by

E (X)≥
∫

∞

a
x f (x) dx ≥

∫
∞

a
a f (x) dx = aP(X ≥ a)

which concludes the proof.

Theorem 8.2 (Chebyshev’s inequality). Let X be a random variable with finite mean
µ and variance σ2. Then, for a > 0, we have

P(|X −µ| ≥ a)≤ σ2

a2 .

203
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Proof. Applying Markov’s inequality (Theorem 8.1),

P(|X −µ| ≥ a) = P
(
(X −µ)2 ≥ a2

)
≤

E
[
(X −µ)2

]
a2 =

Var(X)

a2 .

Example 8.1 (STEP 3 2016 Question 12). The probability of a biased coin landing
heads up is 0.2. It is thrown 100n times, where n is an integer greater than 1. Let α be
the probability that the coin lands heads up N times, where 16n ≤ N ≤ 24n. We can use
Chebyshev’s inequality to prove the following two results:

(i) α ≥ 1− 1
n

(ii)

1+n+
n2

2!
+ · · ·+ n2n

(2n)!
≥
(

1− 1
n

)
en (8.1)

However, in the test, their form of Chebyshev’s inequality (Theorem 8.2) is slightly dif-
ferent. That is for k > 0,

P(|X −µ|> kσ)≤ 1
k2 .

Solution.

(i) We first recognise that this is a setup modelling a binomial distribution. Let X be
the random variable denoting the number of times the coin lands heads up, out of
100n. Then, α = P(|X − 20n| ≤ 4n). Note that E(X) = 20n, Var(X) = 16n and
|X −20n| ≤ 4n. Removing the modulus, 16n ≤ X ≤ 24n, which indeed satisfies the
original inequality that 16n ≤ N ≤ 24n. By Chebyshev’s inequality (Theorem 8.2),

P(|X −20n|> 4n)≤ 16n
(4n)2

1−P(|X −20n| ≤ 4n)≤ 1
n

1− 1
n
≤ P(|X −20n| ≤ 4n)

α ≥ 1− 1
n

and the result follows.

(ii) This is quite interesting. Observe that the left side of the inequality in (8.1) is the
partial sum of the Maclaurin series of en. If we can prove that

1+n+
n2

2!
+ · · ·+ n2n

(2n)!
≥ αen,

then we are done. Recall that the only discrete random variable we studied which
contains the exponential function is the Poisson random variable. Suppose Y ∼
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Po(n). Then, µ =σ2 = n. Set a= n. Substituting these into Chebyshev’s inequality
(Theorem 8.2) yields

P(|Y −n|> n)≤ 1
n
.

We consider the modulus inequality first. This is equivalent to Y −n ≥ n or Y −n ≤
−n, which implies that Y ≥ 2n or Y ≤ 0 respectively. The latter does not make
sense because the support of Y is the non-negative integers. Thus, the inequality
becomes

P(Y > 2n)≤ 1
n

so 1− 1
n
≤ P(Y ≤ 2n).

Hence,

1− 1
n
≤

2n

∑
i=0

e−nni

i!
so

2n

∑
i=0

ni

i!
≥ αen

which concludes our proof.

The importance of Markov’s and Chebyshev’s inequalities (Theorems 8.1 and 8.2 respec-
tively) is that they enable us to derive bounds on probabilities when only the mean, or
both the mean and the variance, of the probability distribution are known. Of course, if
the actual distribution were known, then the desired probabilities can be exactly computed
and we would not need to resort to bounds.

Theorem 8.3 (Jensen’s inequality). If X is a random variable and φ is a convex
function, then

φ(E(X))≤ E(φ(X)).

Corollary 8.1. For x ≥ 0, the graph of φ(x) = xn, where n ∈ N, is convex. Hence,

E(Xn)≥ (E(X))n for n ∈ N.

Corollary 8.2. If Var(X) = 0, then X is a constant. In other words, P(X = E(X)) =

1. We say that X is a degenerate random variable.

Proof. By Chebyshev’s inequality (Theorem 8.2), for any n ≥ 1,

0 ≤ P
(
|X −µ|> 1

n

)
≤ Var(X)

1/n2 = 0.

By the squeeze theorem, it implies that

P
(
|X −µ|> 1

n

)
= 0.

Taking limits on both sides and using the continuity property of probability,

0 = lim
n→∞

P
(
|X −µ|> 1

n

)
= P

(
lim
n→∞

{
|X −µ|> 1

n

})
= P(X ̸= µ).

This asserts that P(X = µ) = 1.
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8.2 Laws of Large Numbers (LLN)
One of the central goals of Probability Theory is to understand how random behaviour
averages out over time. In many applications, we rely on repeated sampling to estimate
some unknown quantity. A natural question then arises: as we increase the number of
observations, does the average outcome become closer to the true value? The laws of
large numbers (LLN) provide a rigorous answer to this question.

Theorem 8.4 (weak law of large numbers (WLLN)). Let X1,X2, . . . ,Xn be a se-
quence of independent and identically distributed random variables, with a common
mean µ . We define the sample mean to be

X =
1
n
(X1 +X2 + . . .+Xn).

Then, for any ε > 0,
lim
n→∞

P
(∣∣X −µ

∣∣≥ ε
)
= 0.

In other words, the sample mean converges to the expected value as n → ∞.

Proof. We shall prove this theorem only under the additional assumption that the random
variables have a finite variance σ2. As It is clear that E(X) = µ and Var(X) = σ2

n , then
by Chebyshev’s inequality (Theorem 8.2),

P
(
|X −µ| ≥ ε

)
≤ σ2

nε2 .

As n → ∞, the expression on the right side of the inequality tends to 0.

Theorem 8.5 (strong law of large numbers (SLLN)). Let X1,X2, . . . ,Xn be a se-
quence of independent and identically distributed random variables, each having a
finite mean µ = E(Xi). Recall how the sample mean is defined when we introduced
the WLLN. Then, the SLLN states that as n → ∞,

X → µ.

In probabilistic terms,
P
({

lim
n→∞

X = µ

})
= 1.

The weak law states that for a specified large n, the average X is likely to be near µ .
Thus, it leaves open the possibility that |X −µ|> ε happens an infinite number of times,
although at infrequent intervals.

In contrast, the strong law shows that this almost surely will not occur. Note that it does
not imply that with probability 1, we have that for any ε > 0, the inequality |X −µ| < ε

holds for all large enough n since the convergence is not necessarily uniform on the set
where it holds. Almost sure convergence implies convergence in probability, but the con-
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verse is not true. The proof is out of the scope of our discussion as it is with reference to
Probability Theory at a higher level.

8.3 Central Limit Theorem (CLT)
The central limit theorem (CLT) is one of the most remarkable results in Probability
Theory. It states that the sum of a large number of independent random variables has a
distribution that is approximately normal. Hence, it not only provides a simple method
for computing approximate probabilities for sums of independent random variables, but
it also helps explain the remarkable fact that the empirical frequencies of so many natural
populations exhibit bell-shaped curves.

We will only study one form of the CLT and it is known as the classical CLT. A fun
fact is that if you were to go to Wikipedia, you will find three other types of CLT which
are namely the Lyapunov CLT, Lindenberg CLT and the multidimensional CLT. All these
will be out of scope of our discussion. Without further ado, we state the simplest form of
the CLT — the classical CLT.

Theorem 8.6 (central limit theorem). Let X1,X2, . . . ,Xn be a sequence of indepen-
dent and identically distributed random variables, each having mean µ and variance
σ2. Then, the distribution of

X1 +X2 + . . .+Xn −nµ

σ
√

n

tends to the standard normal as n → ∞.

Lemma 8.1. We have two results, one of which is related to the sum of Xi’s, and
one is related to the sample mean.

(i)
X1 +X2 + . . .+Xn ∼ N(nµ,nσ

2) approximately

(ii)
1
n
(X1 +X2 + . . .+Xn)∼ N

(
µ,

σ2

n

)
approximately

Example 8.2. Consider the continuous random variable X with probability density func-
tion

f (x) =

(1+2x)e−2x if x > 0;

0 otherwise.

We sample independent and identically distributed samples X1, . . . ,Xn with the same dis-
tribution as X .

(a) State the central limit theorem satisfied by X1 + . . .+Xn.
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(b) What is the probability that X1 + . . .+X100 is larger than 70?

Solution.

(a) First, note that E (X) = 0.75 and Var(X) = 0.4375. Let Sn = X1 + . . .+Xn. By the
central limit theorem (Theorem 8.6),

Sn −nµ

σ
√

n
=

Sn −0.75n√
0.4375n

∼ N (0,1) .

approximately.

(b) We wish to find P(X1 + . . .+X100)> 70. Equivalently, we need P(S100 > 70) so

P
(

S100 −0.75 ·100√
0.4375 ·100

)
>

70−0.75 ·100√
0.4375 ·100

=−0.755928946018.

So, the answer is 0.776.

Example 8.3. Consider the discrete random variable X with probability mass function

P(X = n) =
2+n
2n+2 for n ∈ N.

We sample independent and identically distributed random variables X1, . . . ,Xn with the
same distribution X .

(a) State the central limit theorem satisfied by X1 + . . .+Xn.

(b) What is the probability that X1 + . . .+X100 > 100?

Solution.

(a) We note that
E (X) = 2.5 and Var(X) = 3.25.

Define Sn = X1 + . . .+Xn. By the central limit theorem (Theorem 8.6),

Sn −2.5n√
3.25n

∼ N (0,1) approximately.

(b) Equivalently, we wish to find P(S100 > 100). By the central limit theorem (Theo-
rem 8.6),

P
(

S100 −2.5 ·100√
3.25 ·100

>
100−2.5 ·100√

3.25 ·100

)
which is approximately 1.

Example 8.4. We want to connect two cities 1km from each other using electric cables.
The cable company provides us cable parts with a random length following the distribu-
tion (in meters)

f (x) =

c
(
x+ x2) if 1 < x < 2;

0 otherwise.

We then attach these cables together to create a longer cable and connect the two cities.
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(a) What is the value of c? Compute E (X) and Var(X).

(b) Using the central limit Theorem, how many cables should we order to be at least
95% confident that we have enough cables?

(c) If we order 630 cables, what is the probability that we can connect the two cities?

Solution.

(a) c = 6
23 . Consequently,

E (X) =
73
46

= 1.5869 and Var(X) = 0.077221.

(b) Let Sn = X1 + . . .+Xn. Then, by the central limit theorem (Theorem 8.6),

Sn −1.5869n√
0.077221n

∼ N (0,1) approximately.

We need to find the smallest value of n such that P(X1 + . . .+Xn > 1000) > 0.95.
Hence,

P
(

Sn >
1000−1.5869n√

0.077221n

)
> 0.95.

As such, n = 638.

(c) We wish to find
P(X1 + . . .+X630 > 1000)

which is equal to

P
(

Z >
1000−1.5869 ·630√

0.077221 ·630

)
= P(Z > 0.036272)

which is equal to 0.512.

Example 8.5. When playing a slot machine at the casino, the probability of our gain is
given by the random variable N with distribution

P(N = n) =



1
2 if n = 0,
1
5 if n = 1,
1
5 if n = 2,
1
10 if n = 5,

0 otherwise.

We keep playing until our total earnings are $100.

(a) Compute E(N) and Var(N).

(b) Using the central limit theorem, how many times should we play in order to be at
least 95% confident that we earned enough?

(c) If we play 100 times, what is the probability that we did not reach our goal yet?
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Solution.

(a) We have E (N) = 1.1 and Var(N) = 2.29.

(b) Let the number of times be n. Define Sn = N1 + . . .+Nn, where the Ni’s are inde-
pendent and identically distributed. By the central limit theorem (Theorem 8.6),

Sn −nµ

σ
√

n
=

Sn −1.1n√
2.29n

∼ N (0,1) .

We need to find n such that P(Sn > 100)> 0.95. Hence,

P
(

Z >
100−1.1n√

2.29n

)
> 0.95.

Hence, n = 116.

(c) We wish to find P(S100 < 100), which is equal to

P
(

Z <
99.5−100 ·1.1√

2.29 ·100

)
= 0.244

by continuity correction.

Example 8.6. Let X be a normal random variable with mean 0 and variance σ2 and N be
a binomial random variable with parameters n and p.

(a) What is the moment generating function of X?

(b) What is the moment generating function of N?

(c) What is the moment generating function of N −np?

(d) Show by using the moment generating function that

N −np√
n

is similar to X with σ
2 = p(1− p) where n → ∞.

(e) Explain why this is a direct application of the central limit theorem.

Solution.

(a) By Proposition 7.11, we have

MX (t) = exp
(

σ2t2

2

)
.

(b) By Proposition 7.7, we have

MN (t) =
(
1− p+ pet)n

.

(c) Let Y = N −np. Then,

MY (t) = E
(
etY)= E

(
etNe−t(np)

)
= e−nptE

(
etN)= e−nptMN (t)

so we conclude that
MY (t) = e−npt (1− p+ pet)n

.
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(d) Let Zn =
N−np√

n . We see that

MZn (t) = E
(

et·N−np√
n

)
= E

(
e

t√
n ·(N−np)

)
= MN−np

(
t√
n

)
= MY

(
t√
n

)
.

Hence,
MZn (t) = e−np t√

n
(

1− p+ pe
t√
n
)n

.

Taking natural logarithm on both sides yields

lnMZn (t) =−ptn
√

n ln
(

1− p+ pe
t√
n
)
.

Thereafter, apply Taylor series expansion which would yield the desired result.

(e) This result is a direct application of the central limit theorem because the quantity
N−np√

n is exactly

N −np√
n

=
1√
n

(
n

∑
i=1

Xi −np

)
=

1√
n

(
n

∑
i=1

Xi − p

)
.

By the central limit theorem (Theorem 8.6), for independent and identically dis-
tributed random variables with finite mean µ and variance σ2,

1
σ
√

n

n

∑
i=1

(Xi −µ)

converges in distribution to the standard normal N (0,1). In our case, set µ = p and
σ2 = p(1− p), and the result follows. One should recall that this is precisely the
de Moivre-Laplace theorem (Theorem 5.4), which is a special case of the central
limit theorem for Bernoulli random variables.
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