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Chapter 1
Functions

1.1 Sets and Operations

A set is a collection of objects. It is usually denoted by a capital letter, say A,B,C, or S.
For any set A, the objects a,b,c in A are called the elements of the set A. We can write
the elements of a set by listing all its elements regardless of its order. For example, we
have the finite set {1,2} consisting of 2 elements and the infinite set {2,3,5,7,11, . . .}
consisting of prime numbers.

For any set A, if a is an element of A, we write a ∈ A; otherwise, we write a /∈ A. This is
known as the membership relation.

Definition 1.1 (subset). For any two sets A and B, if every element of A is also an
element of B, then we say that A is a subset of B, which is denoted by A ⊆ B. If A
is not a subset of B, we write A ̸⊆ B.

Definition 1.2 (equality of sets). We say that two sets A and B are equal if and only
if they have the same collection of elements regardless of order. That is to say,

A = B if and only if A ⊆ B and B ⊆ A. (1.1)

For students who have had exposure to MA1100 Basic Discrete Mathematics, we say
that (1.1) is the antisymmetric property of the subset relation.

We now discuss some operations on sets. Let A,B,E be three sets.

• The union A∪B refers to be the set of all x such that x ∈ A or x ∈ B (see (a) in
Figure 1.1)

• The intersection A∩B refers to be the set of all x such that x ∈ A and x ∈ B (see (b)
in Figure 1.1)
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2 CHAPTER 1. FUNCTIONS

• The set-theoretic difference E \A denotes the set of all x such that x ∈ E but x ̸∈ A
(see (c) in Figure 1.1)

• The Cartesian product A×B refers to the set of all pairs (x,y) such that x ∈ A and
y ∈ B

A B

(a) A∪B

A B

(b) A∩B

E

A B

(c) E \A

Figure 1.1: Some set operations

Throughout the course, we will adopt the standard notations Z,N,Q,R to denote the
integers, the positive integers/natural numbers, the rational numbers, and the real num-
bers respectively1. The empty set /0 uniquely represents the set containing no elements.
Similarly, we can define Z+ to be the positive integers, and Z−,R+,R− etc. are defined
similarly. We can also restrict a set by adding a condition as a subscript. For example,
Z≥0 denotes the set of non-negative integers.

For any a,b ∈ R with a ≤ b, every interval in R is either an open interval (a,b), a closed
interval [a,b], a half-open interval (either (a,b] or [a,b)), an unbounded open interval (i.e.
(a,∞)), an unbounded closed interval (i.e. (−∞,b]), or the entire real line. Some might
refer to this as the interval classification theorem in R. For interested readers, refer to p.
84-86 of J. Munkres ‘Topology’ [2].

1.2 Functions
Let A and B be two sets. A function f : A → B is a rule which assigns each element in A to
a unique element in B. For any a ∈ A, the unique element in B that is assigned to by f is
called the image of a, which is denoted by f (a). Here, we refer to A and B as the domain
and codomain of f respectively. The range of f : A → B is the set of images f (x) where
x ∈ A. Note that because x ∈ A implies f (x) ∈ B, it implies that the range of a function is
always a subset of the codomain.

We define the graph of f , Γ( f ), to be the set

G( f ) = {(x, f (x)) : x ∈ A} .

Suppose A ⊆R and B ⊆R. Then, Γ( f )⊆ A×B ⊆R×R=R2 so we infer that the graph
Γ( f ) is a subset of the Cartesian plane R2.

1Some readers might regard 0 to be a natural number but we will not because we follow the traditional
definition where natural numbers are the positive integers used for counting.



Chapter 2
The Formal Definition of a Limit

2.1 Using Intuition
In elementary geometry, a straight line in the plane is uniquely determined by two distinct
points. Let A(x0,y0) and B(x1,y1) be two distinct points in R. Also, let (x,y) be a point
on a line ℓ which passes through points A and B. Then,

y− y0

x− x0
=

y1 − y0

x1 − x0

denotes the slope (or gradient) of ℓ.

Say we have the function f (x) = x2 + 3. As x approaches 2, the value of f (x) gets
closer to 7. As such, we write

lim
x→2

f (x) = 7.

Intuitively, if by taking x to be sufficiently close (but not equal) to a, the value of f (x) be-
comes arbitrarily close to the number L, then we say that the limit of f (x), as x approaches
a, equals L. We write

lim
x→a

f (x) = L or as x → a we have f (x)→ L. (2.1)

We will see in Chapter 2.2 that this intuitive definition of a limit is not rigorous at all (that
is why it is merely an intuition). Also, note that the value of the mentioned limit in (2.1)
only depends on the values of f (x) for x near a and does not depend on the value of f (x)
for x at a. For example, consider the limit

lim
x→0

x2

x
. (2.2)

One can use an online tool like Desmos to obtain the sketch of the function in (2.2). We
say that x = 0 is a removable singularity of the function even though the limit exists and
is finite even though f (0) is not originally defined. The numerator and denominator have
a common factor of x, and one can then deduce that the limit is 0.

3



4 CHAPTER 2. THE FORMAL DEFINITION OF A LIMIT

Consider the parabola y = x2. Fix the point P(1,1) on the parabola and let Q
(
x,x2)

be another point on the same curve with x ̸= 1. The slope of the secant line through P and
Q is

x2 −1
x−1

.

This slope depends on the choice of Q, i.e. on the parameter x. Intuitively, if we let
Q move along the parabola and approach the point P, the secant line should approach a
limiting position, which we call the tangent line to the parabola at P. To make sense of
this limiting process, we must understand what it means for a quantity depending on x to
approach some value as x approaches a certain point.

As another motivation, consider the motion of a falling object in a uniform gravitational
field. Ignoring air resistance, its displacement from the starting point at time t is given by
s(t) = 1

2gt2, where g > 0 is the gravitational constant. The average velocity of the object
over the time interval [5,5+h] (with h ̸= 0) is

v =
s(5+h)− s(5)
(5+h)−5

=
1
2

g(10+h) .

As h becomes very small, the average velocity over [5,5+h] should approach the instan-
taneous velocity at t = 5. Again this is a limiting process: we want to understand what
happens as h → 0. These two examples (tangent lines and instantaneous velocity) mo-
tivate the formal study of the limits of functions (a more rigorous discussion in Chapter
2.2).

We now discuss some limit laws (Propositions 2.1 and 2.2 and Theorem 2.3).

Proposition 2.1 (basic limit laws). We have the following:

(i) Constant function: For any c ∈ R, the constant function f (x) = c is not
affected by x. So for any a ∈ R,

lim
x→a

c = c.

(ii) For any a ∈ R,
lim
x→a

x = a

(iii) Scalar multiple: Let c ∈ R be arbitrary. Then,

lim
x→a

(c f (x)) = c lim
x→a

f (x) .

Proposition 2.2 (basic limit laws). Suppose

lim
x→a

f (x) = L and lim
x→a

g(x) = M.

Then, the following hold:
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(i) Sum and difference: We have

lim
x→a

[ f (x)±g(x)] = lim
x→a

f (x)± lim
x→a

g(x) = L±M

(ii) Product: We have

lim
x→a

[ f (x)g(x)] = lim
x→a

f (x) · lim
x→a

g(x) = LM

(iii) Quotient: We have

lim
x→a

f (x)
g(x)

=
lim
x→a

f (x)

lim
x→a

g(x)
=

L
M

provided that lim
x→a

g(x) ̸= 0

The rules in Proposition 2.2 are natural if we think of replacing f (x) by its limit L and
g(x) by its limit M. From (ii) of Proposition 2.2, one might naturally extend it to the limit
of a product of multiple functions. That is, given functions f1 (x) , . . . , fn (x), we have

lim
x→a

[ f1 (x) . . . fn (x)] = lim
x→a

f1 (x) · . . . · lim
x→a

fn (x) .

In particular, if all the functions are equal, i.e. f1 = . . . = fn = f , then the limit of the
product of n copies of f can be written as follows:

lim
x→a

[ f (x) . . . f (x)] = lim
x→a

f (x) · . . . · lim
x→a

f (x)

which is equivalent to saying that for any n ∈ N, we have

lim
x→a

( f (x))n =
(

lim
x→a

f (x)
)n

.

After some discussion on exponentiation, what about taking the nth root, where n ∈ N?
Suppose

lim
x→a

f (x) = L and lim
x→a

g(x) = A.

Then,

An =
(

lim
x→a

n
√

f (x)
)n

= lim
x→a

(
n
√

f (x)
)n

= lim
x→a

f (x) = L,

where we could pull the limit symbol out by our earlier discussion on exponentiation. So,
provided that n

√
f (x) is well-defined, we have A = n

√
L.

Theorem 2.1 (direct substitution). Let f be a polynomial or a rational function,
and let a be a point in the domain of f . Then

lim
x→a

f (x) = f (a) .

The property in Theorem 2.1 is usually referred to as continuity at the point a. Thus,
polynomials and rational functions are continuous at every point of their domain. See
Chapter 3 for further discussion on the continuity of functions.
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Proof. We first prove the result for polynomials. Let

f (x) = cnxn + cn−1xn−1 + · · ·+ c1x+ c0

be a polynomial of degree n. By definition, c0, . . . ,cn ∈ R and cn ̸= 0. By the limit laws
in Proposition 2.2, we have

lim
x→a

f (x) = lim
x→a

(cnxn + · · ·+ c1x+ c0)

= cn lim
x→a

xn + · · ·+ c1 lim
x→a

x+ lim
x→a

c0.

By Proposition 2.1, it is easy to deduce that

lim
x→a

f (x) = cnan + · · ·+ c1a+ c0 = f (a) .

We then prove the result for rational functions. Suppose f (x) = P(x)
Q(x) , where P and Q are

polynomials and Q is not identically zero. So, the domain of f is {x ∈ R : Q(x) ̸= 0}. If
a is in the domain of f , then Q(a) ̸= 0. By the polynomial case,

lim
x→a

P(x) = P(a) and lim
x→a

Q(x) = Q(a) ̸= 0.

Using the quotient law (Proposition 2.2),

lim
x→a

f (x) = lim
x→a

P(x)
Q(x)

=
lim
x→a

P(x)

lim
x→a

Q(x)
=

P(a)
Q(a)

= f (a)

and the result follows.

We then discuss one-sided limits. Sometimes, the behaviour of a function as x ap-
proaches a from the left and from the right can be different. So, we introduce one-sided
limits.

Definition 2.1 (right-hand limit, intuitive). We say that the right-hand limit of f (x)
as x approaches a equals L, and write

lim
x→a+

f (x) = L,

if by taking x sufficiently close to a with x > a, the values f (x) become arbitrarily
close to L.

Definition 2.2 (left-hand limit, intuitive). We say that the left-hand limit of f (x) as
x approaches a equals L, and write

lim
x→a−

f (x) = L,

if by taking x sufficiently close to a with x < a, the values f (x) become arbitrarily
close to L.
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Theorem 2.2. The two-sided limit lim
x→a

f (x) = L exists and equals L if and only if

lim
x→a+

f (x) = L and lim
x→a−

f (x) = L.

Example 2.1 (absolute value). Consider the function f (x) = |x|. For x > 0, we have
|x|= x, so

lim
x→0+

|x|= lim
x→0+

x = 0.

For x < 0, we have |x|=−x, so

lim
x→0−

|x|= lim
x→0−

(−x) = 0.

Since both one-sided limits exist and are equal to 0, we obtain

lim
x→0

|x|= 0.

One affirms the validity of Theorem 2.2.

Example 2.2. Consider the function |x|
x defined for x ̸= 0. For x > 0, |x|

x = 1, so

lim
x→0+

|x|
x

= 1.

For x < 0, |x|
x =−1, so

lim
x→0−

|x|
x

=−1.

The two one-sided limits are different, hence the two-sided limit does not exist.

Definition 2.3 (infinite limits, intuitive). Let f be defined near a (except possibly
at a).

(i) We write
lim
x→a

f (x) = ∞

if by taking x sufficiently close to a, the values f (x) become arbitrarily large

(ii) We write
lim
x→a

f (x) =−∞

if by taking x sufficiently close to a, the values f (x) become arbitrarily large
negative numbers

Although it is convenient to write expressions such as lim
x→a

f (x) = ∞, we should keep
in mind that ∞ is not a real number. Thus, strictly speaking, a limit that is equal to ∞ or
−∞ is considered to diverge (it does not exist as a finite real number). However, infinite
limits are very useful in describing vertical asymptotic behaviour of functions.

Example 2.3. Let f (x) = 1
x2 . As x approaches 0, the values of f (x) become arbitrarily

large. Informally, we write

lim
x→0

1
x2 = ∞.
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Theorem 2.3 (squeeze theorem). Let f ,g,h be functions such that f (x)≤ g(x)≤
h(x) for all x near a except possibly at a. If

lim
x→a

f (x) = lim
x→a

h(x) = L then lim
x→a

g(x) = L.

This can be proven using the formal definition of the limit (Definition 2.4) but we
will not prove it in this set of notes. For interested readers, we refer you to the proof of
Theorem 14.3 on p. 47 of R. Johnsonbaugh’s ‘Foundations of Mathematical Analysis’
[3].

Example 2.4. Consider the limit

lim
x→0

x2 sin
(

1
x

)
.

For x ̸= 0, we know that (which is the trick)

−1 ≤ sin
(

1
x

)
≤ 1 so − x2 ≤ x2 sin

(
1
x

)
≤ x2.

One can refer to Figure 2.1.

−0.4 −0.2 0.2 0.4

−0.1

0.1

x

y

Figure 2.1: Graph of y = x2 sin
(1

x

)
with envelopes y =±x2

Since
lim
x→0

(
−x2)= 0 and lim

x→0
x2 = 0,

the squeeze theorem (Theorem 2.3) implies that

lim
x→0

x2 sin
(

1
x

)
= 0.

2.2 The Formal Definition of a Limit
The intuitive definition of a limit in Chapter 2.1 referred to phrases like ‘arbitrarily close’
and ‘sufficiently close’. To make these ideas mathematically precise, we use the ε-δ
formulation.
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Definition 2.4 (formal definition of a limit). Let f be a function defined on an open
interval containing a, except possibly at a. Then,

lim
x→a

f (x) = L

if for every ε > 0, there exists δ > 0 such that whenever 0 < |x−a| < δ , we have
| f (x)−L|< ε .

In Definition 2.4, the number δ may depend on ε and on the function f , but it must
not depend on the choice of x. Once an ε > 0 is fixed, we choose a single δ > 0 that works
for all x satisfying 0 < |x−a| < δ . We give a pictorial definition of Definition 2.4 (see
Figure 2.2). It says the following: given any ε > 0, we can find an interval (a−δ ,a+δ )

with the point a removed, such that whenever x lies in this interval, the value f (x) lies
inside the interval (L− ε,L+ ε). In symbols,

0 < |x−a|< δ ⇒ | f (x)−L|< ε.

y

x
O

L
L+ ε

L− ε

aa−δ a+δ

y = f (x)

Figure 2.2: Pictorial illustration of the formal definition of a limit

Example 2.5. We now give a proof of (i) of Proposition 2.1 using the formal definition
of a limit (Definition 2.4). That is, to show that for any constant c ∈R and any a ∈R, we
have

lim
x→a

c = c.

Solution. Let c and a be given and let ε > 0 be arbitrary. We need to construct δ > 0 such
that

0 < |x−a|< δ ⇒ |c− c|< ε.

However, |c− c| = 0, which is strictly less than any ε > 0. Thus, any positive δ works;
for instance, we may choose δ = 1. This verifies Definition 2.4. □

Example 2.6. Use the formal definition of a limit (Definition 2.4) to prove that

lim
x→3

(4x−5) = 7.
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Solution. Let ε > 0 be arbitrary. We compute

|(4x−5)−7|= |4x−12|= 4 |x−3| .

We want to ensure that this is less than ε . Thus, it suffices to ensure that that 4 |x−3|< ε ,
or equivalently, |x−3|< ε

4 . As such, we choose δ = ε

4 . This implies that

0 < |x−3|< δ ⇒ |(4x−5)−7|= 4 |x−3|< 4δ = ε

which concludes the proof. □

The ε-δ proofs often require estimates using the following classical result in Theorem
2.4, known as the triangle inequality.

Theorem 2.4 (triangle inequality). For all a,b ∈ R,

|a+b| ≤ |a|+ |b| and |a|− |b| ≤ |a+b| .

Proof. The first inequality |a+b| ≤ |a|+ |b| is standard; one way to show it is to square
both sides and use |ab| ≤ |a| |b|. We omit the full proof here.

For the second inequality, note that

|a|= |(a+b)+(−b)| ≤ |a+b|+ |−b|= |a+b|+ |b| .

Rearranging gives |a|− |b| ≤ |a+b| which concludes the proof.

Example 2.7. Use the formal definition of a limit (Definition 2.4) to prove that

lim
x→3

x2 = 9.

Solution. Let ε > 0 be arbitrary. We need to find δ > 0 such that

0 < |x−3|< δ ⇒
∣∣x2 −9

∣∣< ε.

We first estimate ∣∣x2 −9
∣∣= |x−3| |x+3| .

To control |x+3|, we can impose a preliminary restriction on |x−3|. For instance, if
we require that |x−3| < 1, then x ∈ (2,4), and therefore |x+3| ≤ 7. Thus, under the
conditions |x−3|< 1 and |x−3|< δ , we have∣∣x2 −9

∣∣= |x−3| |x+3| ≤ |x−3| ·7 ≤ 7δ .

To guarantee
∣∣x2 −9

∣∣< ε , it is enough to impose 7δ ≤ ε , or equivalently, δ ≤ ε

7 . We must
enforce both |x−3|< 1 and |x−3|< ε

7 . Thus we choose δ = min
{

1, ε

7

}
. Consequently,

0 < |x−3|< δ ⇒ |x−3|< 1 and |x−3|< ε

7
,

and so ∣∣x2 −9
∣∣≤ 7 |x−3|< 7 · ε

7
= ε.

This completes the proof. □
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Example 2.8 (MA2002 AY21/22 Sem 1). Using only the ε-δ definition of a limit (Defi-
nition 2.4), prove that

lim
x→−1

1
x2 = 1.

Solution. Let ε > 0 be arbitrary. We wish to prove that for any ε > 0, there exists δ > 0
such that

|x+1|< δ ⇒
∣∣∣∣ 1
x2 −1

∣∣∣∣< ε.

Setting |x+1|< 1/2, we have

−1
2
−1 < x <

1
2
−1 so − 3

2
< x <−1

2
.

Hence,
3
2
< 1− x <

5
2

and
4
9
≤ 1

x2 ≤ 4.

As such, we can choose δ = min
{1

2 ,
ε

10

}
so that∣∣∣∣ 1

x2 −1
∣∣∣∣= |1− x2|

x2 =
|1+ x||1− x|

x2 < δ (5/2) ·4 = 10δ = ε,

thus proving the result. □

We now show how the basic limit laws follow from the precise definition.

Theorem 2.5. Recall (i) of Proposition 2.1. That is, suppose lim
x→a

f (x) = L and
c ∈ R. Then,

lim
x→a

c f (x) = cL.

Proof. If c = 0, then c f (x) = 0 and the statement reduces to lim
x→a

0 = 0, which we have

already proved. Now, assume that c ̸= 0. Let ε > 0 be arbitrary. We want |c f (x)− cL|<
ε . Note that

|c f (x)− cL|= |c| | f (x)−L| .

If we ensure that
| f (x)−L|< ε

|c|
,

then automatically
|c f (x)− cL|< ε.

Since lim
x→a

f (x) = L, there exists δ > 0 such that

0 < |x−a|< δ ⇒ | f (x)−L|< ε

|c|
.

For this choice of δ ,

0 < |x−a|< δ ⇒ |c f (x)− cL|= |c| | f (x)−L|< ε.

Thus, lim
x→a

c f (x) = cL, which completes the proof.
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Theorem 2.6 (sum law). Recall (i) of Proposition 2.2. Suppose lim
x→a

f (x) = L and

lim
x→a

g(x) = M. Then,

lim
x→a

( f (x)+g(x)) = L+M.

Proof. Let ε > 0 be given. We want to find δ > 0 such that

0 < |x−a|< δ ⇒ |( f (x)+g(x))− (L+M)|< ε.

By the triangle inequality (Theorem 2.4),

|( f (x)+g(x))− (L+M)|= |( f (x)−L)+(g(x)−M)|
≤ | f (x)−L|+ |g(x)−M| .

It is enough to choose δ so that each of the two terms on the right is bounded by ε/2.
Since lim

x→a
f (x) = L, there exists δ1 > 0 such that

0 < |x−a|< δ1 ⇒ | f (x)−L|< ε

2
.

Similarly, since lim
x→a

g(x) = M, there exists δ2 > 0 such that

0 < |x−a|< δ2 ⇒ |g(x)−M|< ε

2
.

Set δ = min{δ1,δ2} (we need δ to be sufficiently small so we take the minimum). Then,

0 < |x−a|< δ ⇒ | f (x)−L|< ε

2
and |g(x)−M|< ε

2
.

Hence,
|( f (x)+g(x))− (L+M)| ≤ ε

2
+

ε

2
= ε.

This proves the sum law.

Using the sum and constant multiple laws, one can prove the difference law

lim
x→a

( f (x)−g(x)) = L−M

by writing f − g = f +(−1)g. The product and quotient laws require more work. We
omit the full proofs here, but the key idea is always the same: start from the desired
inequality |. . .|< ε and work backwards to find suitable constraints on |x−a|, then close
the argument using the precise definition.

Definition 2.5 (right-hand limit, precise). We say that the right-hand limit of f (x)
as x approaches a equals L, and write

lim
x→a+

f (x) = L,

if for every ε > 0 there exists δ > 0 such that

0 < x−a < δ ⇒ | f (x)−L|< ε.
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Definition 2.6 (left-hand limit, precise). We say that the left-hand limit of f (x) as
x approaches a equals L, and write

lim
x→a−

f (x) = L,

if for every ε > 0 there exists δ > 0 such that

0 < a− x < δ ⇒ | f (x)−L|< ε.

The equivalence between the two-sided and one-sided definitions can be proved di-
rectly from these precise formulations. Figure 2.3 depicts Definition 2.5 by showing how,
for a given ε > 0, we can find a δ > 0 such that all points x with 0 < x−a < δ are mapped
by f into the horizontal ε-band around L.

x

y

a

L
L+ ε

L− ε

a+δ

Figure 2.3: Formal definition of right-hand limit

Definition 2.7 (infinite limit, precise). Let f be defined on an open interval con-
taining a, except possibly at a.

(i) We write
lim
x→a

f (x) = ∞

if for every M > 0 there exists δ > 0 such that

0 < |x−a|< δ ⇒ f (x)> M.

See Figure

(ii) We write
lim
x→a

f (x) =−∞

if for every M < 0 there exists δ > 0 such that

0 < |x−a|< δ ⇒ f (x)< M.

Figure 2.4 gives a depiction of Definition 2.7. In the picture, the horizontal dashed
line at height y = M represents an arbitrary large threshold, while the two vertical dashed
lines at x = a−δ and x = a+δ mark the endpoints of the interval (a−δ ,a+δ ) around
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a. The shaded rectangle above the line y = M between these two vertical lines illustrates
the set of points (x,y) with 0 < |x−a|< δ and y > M. No matter how large we make M,
we can always find a sufficiently small neighbourhood of a (excluding the point a itself)
on which all the values of f lie above this horizontal level.

x

y

a

M

a−δ a+δ

Figure 2.4: Formal definition of an infinite limit: lim
x→a

f (x) = ∞

Example 2.9. Show that

lim
x→0

1
x2 = ∞.

Solution. Let M > 0 be arbitrary. We wish to find δ > 0 such that

0 < |x−0|< δ ⇒ 1
x2 > M.

The inequality 1
x2 > M is equivalent to 0 < |x|< 1√

M
. Thus, it suffices to choose δ = 1√

M
.

Then,

0 < |x|< δ ⇒ 1
x2 > M.

Since this works for every M > 0, the result follows. □

Theorem 2.7 (equality of limits for coinciding functions). Suppose that f (x)= g(x)
for all x in some open interval containing a, except possibly at a itself. If

lim
x→a

f (x) = L then lim
x→a

g(x) = L.

Proof. There exists r > 0 such that

0 < |x−a|< r ⇒ f (x) = g(x) .

Let ε > 0. Since lim
x→a

f (x) = L, there exists δ1 > 0 such that

0 < |x−a|< δ1 ⇒ | f (x)−L|< ε.
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Set δ = min{r,δ1}. Then

0 < |x−a|< δ ⇒ f (x) = g(x) and | f (x)−L|< ε.

Hence,
|g(x)−L|= | f (x)−L|< ε.

By the precise definition, lim
x→a

g(x) = L.

Lemma 2.1. Let f be a function such that f (x)≥ 0 for all x in some open interval
containing a, except possibly at a. If lim

x→a
f (x) = L, then L ≥ 0.

Proof. Suppose on the contrary that L < 0. Let ε =−L > 0. By the formal definition of
a limit, there exists δ > 0 such that

0 < |x−a|< δ ⇒ | f (x)−L|< ε.

The inequality | f (x)−L|< ε implies

L− ε < f (x)< L+ ε.

But here L− ε = L− (−L) = 2L < 0 and L+ ε = 0. Thus, for 0 < |x−a|< δ ,

2L < f (x)< 0.

In particular, f (x) < 0 for x near a. This contradicts the assumption f (x) ≥ 0 near a.
Hence, our assumption L < 0 is impossible, and we must have L ≥ 0.

Theorem 2.8. Suppose f (x) ≥ g(x) for all x in some open interval containing a,
except possibly at a. If lim

x→a
f (x) = L and lim

x→a
g(x) = M, then L ≥ M.

Proof. Define h(x) = f (x)−g(x). Then h(x)≥ 0 near a, and

lim
x→a

h(x) = lim
x→a

f (x)− lim
x→a

g(x) = L−M.

By Lemma 2.1, L−M ≥ 0, hence L ≥ M.





Chapter 3
Continuity

3.1 Introduction

In the study of limits, we saw that for many functions the limit of f (x) as x → a coincides
with the value f (a) whenever the latter is defined. Such points are precisely the points
where the function is continuous.

For polynomials and rational functions, we have the following fundamental property:

Theorem 3.1 (direct substitution property). Let f be a polynomial or a rational
function, and let a be a point in the domain of f . Then,

lim
x→a

f (x) = f (a) .

Thus, for polynomials and rational functions, finite limits at points in their domain can
be computed simply by substituting x = a. In particular, any polynomial is continuous on
R, and any rational function is continuous on its domain.

We now formulate the general definition.

Definition 3.1 (continuity at a point). Let f be a function and let a ∈ R. We say
that f is continuous at a if

lim
x→a

f (x) = f (a) .

If f is not continuous at a, we say that f is discontinuous at a.

We shall unpack Definition 3.1. As such, continuity at a point a consists of three
separate conditions:

(i) f (a) is defined (that is, a lies in the domain of f )

(ii) the limit lim
x→a

f (x) exists as a real number

17
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(iii) the value of this limit equals the function value: lim
x→a

f (x) = f (a)

Using the precise ε-δ notion of limit, continuity at a can be written as follows (see Propo-
sition 3.1):

Proposition 3.1. A function f is continuous at a if and only if for every ε > 0 there
exists δ > 0 such that

|x−a|< δ ⇒ | f (x)− f (a)|< ε.

Note that the condition 0< |x−a| is no longer necessary in the definition of continuity
in Proposition 3.1 because we also require the inequality at x = a, where both sides are
equal.

3.2 Types of Discontinuities

When a function fails to be continuous at a point, it is useful to classify the type of
discontinuity. We begin by discussing what a removable discontinuity is with an example.
Let

f (x) =
x2 − x−2

x−2
where x ̸= 2.

We can factor the numerator as x2 −x−2 = (x−2)(x+1), so for x ̸= 2, we have f (x) =
x+1. So,

lim
x→2

f (x) = lim
x→2

(x+1) = 3,

but f (2) is not defined since x = 2 is excluded from the domain. As such, f is discon-
tinuous at 2, even though the limit exists. This leads to the following notion (Definition
3.2):

Definition 3.2 (removable discontinuity and continuous extension). Let f be a func-
tion and a ∈ R such that the limit lim

x→a
f (x) exists. If either

• f (a) is not defined, or

• f (a) is defined but f (a) ̸= lim
x→a

f (x),

then we say that f has a removable discontinuity at a. Next, define a new function
f1 as follows:

f1 (x) =

 f (x) x ̸= a;

lim
x→a

f (x) x = a.

Then, f1 is continuous at a and is called the continuous extension of f at a.

Definition 3.3 (infinite discontinuity). Let f be a function and a ∈R. Suppose that
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at least one of the one-sided limits is infinite, i.e.

lim
x→a+

f (x) =±∞ or lim
x→a−

f (x) =±∞.

Then the vertical line x = a is called a vertical asymptote of the graph of y = f (x),
and we say that f has an infinite discontinuity at a.

For rational functions, vertical asymptotes occur exactly at the zeros of the denomi-
nator (after cancellation of common factors).

Proposition 3.2. Let f (x) = P(x)
Q(x) be a rational function, where P and Q are poly-

nomials with no common factor of positive degree. Then f has an infinite disconti-
nuity at a if and only if Q(a) = 0.

Another important type of discontinuity occurs when left and right limits are finite but
unequal. We call these jump discontinuities (Definition 3.4).

Definition 3.4 (jump discontinuity). Let f be a function and a ∈ R. Suppose that
both one-sided limits lim

x→a−
f (x) and lim

x→a+
f (x) exist as real numbers, but

lim
x→a−

f (x) ̸= lim
x→a+

f (x) .

Then we say that f has a jump discontinuity at a.

Example 3.1 (floor function). For each x ∈ R, there exists a unique integer n such that
n ≤ x < n+1. This integer is denoted by ⌊x⌋ and called the floor (or greatest integer) of
x (Figure 3.1). For every n ∈ Z, we have

lim
x→n+

⌊x⌋= n and lim
x→n−

⌊x⌋= n−1,

so these two one-sided limits are different and the two-sided limit does not exist. Thus,
⌊x⌋ has a jump discontinuity at each n ∈ Z.
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x

y

−3 −2 −1 1 2 30

−3

−2

−1

1

2

3

Figure 3.1: Graph of the floor function y = ⌊x⌋

Definition 3.5 (one-sided continuity). Let f be a function and a ∈ R.

(i) We say that f is continuous from the right at a if

lim
x→a+

f (x) = f (a)

(ii) We say that f is continuous from the left at a if

lim
x→a−

f (x) = f (a)

The relation between one-sided and two-sided continuity is as follows:

Theorem 3.2. A function f is continuous at a if and only if it is continuous from
both the left and the right at a. That is,

lim
x→a

f (x) = f (a) ⇔ lim
x→a−

f (x) = f (a) and lim
x→a+

f (x) = f (a) .

Definition 3.6 (continuity on intervals). Let f be a function and let I be an interval.

(i) f is continuous on (a,b) if f is continuous at every point x ∈ (a,b)

(ii) f is continuous on [a,b] if f is continuous at every x ∈ (a,b), f is continuous
from the right at a, and f is continuous from the left at b

(iii) f is continuous on [a,b) if f is continuous at every x ∈ (a,b) and f is contin-
uous from the right at a

(iv) f is continuous on (a,b] if f is continuous at every x ∈ (a,b) and f is contin-
uous from the left at b



3.3. ALGEBRA OF CONTINUOUS FUNCTIONS 21

3.3 Algebra of Continuous Functions
We next show that continuity is preserved under the usual algebraic operations.

Theorem 3.3 (algebra of continuous functions). Let f and g be functions that are
continuous at a, and let c ∈ R be a constant. Then, the following hold:

(i) the function x 7→ c f (x) is continuous at a

(ii) the sum f +g is continuous at a

(iii) the difference f −g is continuous at a

(iv) the product f g is continuous at a

(v) the quotient f/g is continuous at a whenever g(a) ̸= 0

Proof. Since f and g are continuous at a, then

lim
x→a

f (x) = f (a) and lim
x→a

g(x) = g(a) .

The basic limit laws in Propositions 2.1 and 2.2 then give

lim
x→a

c f (x) = c f (a) and lim
x→a

(
f (x)+g(x)

)
= f (a)+g(a) ,

and similarly for the difference, product, and (when g(a) ̸= 0) quotient. In each case, the
limit equals the value of the corresponding function at x = a, so the resulting function is
continuous at a.

Proposition 3.3. The constant function f (x) = c is continuous on R.

Proof. Let a ∈ R and ε > 0 be arbitrary. Take any δ > 0, for instance δ = 1. Then,

|x−a|< δ ⇒ | f (x)− f (a)|= |c− c|= 0 < ε.

Hence, lim
x→a

f (x) = f (a) = c.

Proposition 3.4. The identity function f (x) = x is continuous on R.

Proof. Let a ∈ R and ε > 0 be arbitrary. Choose δ = ε . If |x−a|< δ , then

| f (x)− f (a)|= |x−a|< δ = ε,

and the result follows.

We then discuss the continuity of power functions. Let n ∈ N. A power function is of
the form x 7→ xn.

Proposition 3.5. Each power function xn with n ∈ N is continuous on R.
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Proof. We can prove this by induction on n. The case n = 1 is the identity function which
has already been treated in Proposition 3.4. If xn is continuous and the identity function
is continuous, then the product xn+1 = xn · x is continuous by (iv) of Theorem 3.3. Thus,
all powers are continuous.

Next, recall that a monomial has the form cxn with c ∈R. Since it is the product of the
constant function c and the continuous power function xn, every monomial is continuous
on R. A polynomial is a finite sum of monomials. That is,

P(x) = cnxn + · · ·+ c1x+ c0

so by repeated use of Theorem 3.3, we obtain the following result (Theorem 3.4):

Theorem 3.4. Every polynomial is continuous on R.

Recall that a rational function is a quotient R(x) = P(x)
Q(x) , where P and Q are polyno-

mials and Q is not the zero polynomial. The domain of R is {x ∈ R : Q(x) ̸= 0}. Using
the quotient rule for continuous functions ((v) of Theorem 3.3), we obtain the following
result (Theorem 3.5):

Theorem 3.5. Every rational function is continuous on its domain.

3.4 Substitution in Limits
We now consider how limits behave under change of variables.

Theorem 3.6 (substitution in limits). Let f and g be functions. Suppose that

1. lim
x→a

f (x) = b

2. lim
y→b

g(y) = c

3. f (x) ̸= b for all x in some open interval around a, except possibly at x = a

Then,
lim
x→a

g( f (x)) = c.

Proof. Let ε > 0 be arbitrary. Because lim
y→b

g(y) = c, there exists δ2 > 0 such that

0 < |y−b|< δ2 ⇒ |g(y)− c|< ε.

Because lim
x→a

f (x) = b, there exists δ > 0 such that

0 < |x−a|< δ ⇒ 0 < | f (x)−b|< δ2.

Now for such x,
0 < | f (x)−b|< δ2 ⇒ |g( f (x))− c|< ε.
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Hence,
0 < |x−a|< δ =⇒ |g( f (x))− c|< ε,

which proves the claim.

A particularly important special case is the substitution x = a+h. If we let h = x−a,
then x → a with x ̸= a corresponds to h → 0 with h ̸= 0. This yields the following result
(Theorem 3.7):

Theorem 3.7. For any function f and any a ∈ R,

lim
x→a

f (x) = lim
h→0

f (a+h) ,

provided at least one of these limits exists.

Consequently, continuity at a can also be characterised by a limit in the increment h.
As such, a function f is continuous at a if and only if

lim
h→0

f (a+h) = f (a) .

The substitution theorem in Theorem 3.7 can be simplified considerably when the outer
function is continuous.

Theorem 3.8 (limit of a composite function). Suppose that

lim
x→a

f (x) = b

and that g is continuous at b. Then,

lim
x→a

g( f (x)) = g(b) .

Proof. Since g is continuous at b, for every ε > 0, there exists δ2 > 0 such that

|y−b|< δ2 ⇒ |g(y)−g(b)|< ε.

Because lim
x→a

f (x) = b, there exists δ > 0 such that

0 < |x−a|< δ ⇒ | f (x)−b|< δ2.

Combining the two implications (with y = f (x)) yields

0 < |x−a|< δ =⇒ |g( f (x))−g(b)|< ε,

which proves the desired limit.

Because the limit of f (x) as x → a is f (a) whenever f is continuous at a, we also
obtain a simple continuity rule for composites (Theorem 3.9).
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Theorem 3.9 (continuity of a composite function). If f is continuous at a and g is
continuous at f (a), then the composite function g◦ f defined by

(g◦ f )(x) = g( f (x))

is continuous at a.

Proof. We have

lim
x→a

g( f (x)) = g
(

lim
x→a

f (x)
)
= g( f (a)) = (g◦ f )(a) .

Thus, lim
x→a

(g◦ f )(x) = (g◦ f )(a) and the result follows.

3.5 Root Functions and Rational Powers
Let n ∈ N. The nth root function is x 7→ x1/n = n

√
x. When n is odd, n

√
x is defined for all

x ∈ R as the unique real number y such that yn = x. When n is even, n
√

x is defined for
x ≥ 0 as the unique number y ≥ 0 such that yn = x.1

Theorem 3.10. Let n ∈ N. Then the function x 7→ n
√

x is continuous on R if n is
odd, and continuous on [0,∞) if n is even.

A complete proof uses the fact that the function x 7→ xn is continuous and strictly
monotone on its domain, and therefore has a continuous inverse. Instead, we give an
explicit ε-δ proof in the important case x 7→

√
x at a positive point in Theorem 3.11.

Theorem 3.11. The square-root function x 7→
√

x is continuous at every a > 0.

Proof. Fix a > 0 and let ε > 0 be arbitrary. We must find δ > 0 such that

0 < |x−a|< δ ⇒
∣∣√x−

√
a
∣∣< ε.

First, since
√

x is defined only for x ≥ 0, we must ensure that our δ is small enough so
that x ≥ 0 whenever |x−a|< δ . It suffices to require δ ≤ a. Then,

0 < |x−a|< δ ≤ a ⇒ x > a−δ ≥ 0. (3.1)

For such x, we have ∣∣√x−
√

a
∣∣= |x−a|√

x+
√

a
<

|x−a|√
a

≤ δ√
a
,

because
√

x+
√

a ≥
√

a. Thus it is enough to choose δ such that δ/
√

a ≤ ε , i.e. δ ≤ ε
√

a.
Combining this with the earlier restriction δ ≤ a (3.1), we set δ = min{a,ε

√
a}. Then,

0 < |x−a|< δ ⇒
∣∣√x−

√
a
∣∣< δ√

a
≤ ε,

which proves continuity at a.
1For readers interested in the proof of this result, please refer to Theorem 1.21 of W. Rudin’s classic

‘Principles of Mathematical Analysis’ [4]. You have been warned.



3.6. TRIGONOMETRIC FUNCTIONS AND THEIR CONTINUITY 25

We then discuss continuity for rational powers of x. Every rational number r ∈Q can
be written uniquely as r = m/n, where m ∈ Z, n ∈ N and gcd(m,n) = 1. If n is odd, we
define

xm/n =
(

n
√

x
)m for all x ∈ R.

On the other hand, if n is even, we define

xm/n =
(

n
√

x
)m for x ≥ 0.

Theorem 3.12. For every rational r ∈ Q, the power function x 7→ xr is continuous
on its natural domain.

We give a rough sketch of the proof. Write r = m/n with m and n as per the above
discussion. Then, xr = ( n

√
x)m is a composition and product of continuous functions,

hence is continuous on the domain where it is defined.

3.6 Trigonometric Functions and their Continuity

A geometric argument (Figure 3.2) shows that for 0 < x < π/2, we have

0 < sinx < x.

To see why, we consider the unit circle centred at the origin O. Let P = (1,0) be the point
where the circle intersects the positive x-axis, and let x be an angle satisfying 0 < x < π

2 .
We draw the radius from O making an angle x with the positive x-axis; its endpoint on the
unit circle is denoted by A. Since 0 < x < π

2 , the point A lies in the first quadrant and has
coordinates A = (cosx,sinx). In particular, sinx > 0.

A basic geometric fact about circles is that between two distinct points on a circle, the
straight line segment (the chord) joining them is always shorter than the corresponding
circular arc. In our situation, the straight line segment PA (chord) is shorter than the arc
P̂A, so |PA|< x. Moreover, the vertical segment BA is one side of the right-angled triangle
△OBA and is certainly shorter than the hypotenuse PA. It follows that |BA|< |PA|< x.
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Figure 3.2: Geometric illustration of 0 < sinx < x for 0 < x < π/2

Therefore, as x → 0+,

0 ≤ sinx ≤ x ⇒ lim
x→0+

sinx = 0

by the squeeze theorem. For negative x, the identity sin(−x) = −sinx implies that for
−π/2 < x < 0, we have x < sinx < 0. Again, squeezing between x and 0 shows that

lim
x→0−

sinx = 0.

Hence, the two-sided limit exists and equals 0, which is also sin0. Therefore by Theorem
2.2, sinx is continuous at 0.

For the cosine function, one can show that for |x|< π/2, we have

1− x2 ≤ cosx ≤ 1.

As x → 0, both bounding functions tend to 1, so the squeeze theorem yields

lim
x→0

cosx = 1 = cos0.

Thus, cosx is continuous at 0.

Recall that the addition formulae for sine and cosine are

sin(a+b) = sinacosb+ cosasinb

cos(a+b) = cosacosb− sinasinb

These can be proved geometrically, but we omit the proof. Using these formulae and the
continuity at 0, we can show continuity at any a ∈ R (Theorem 3.13).
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Theorem 3.13. For every a ∈ R,

lim
x→a

sinx = sina, and lim
x→a

cosx = cosa.

Hence, sinx and cosx are continuous on R.

Proof. Let x = a+h. Then h → 0 as x → a. Using the addition formulae, we have

sin(a+h) = sinacosh+ cosasinh

cos(a+h) = cosacosh− sinasinh

Taking limits as h → 0 and using lim
h→0

sinh = 0 and lim
h→0

cosh = 1, we obtain

lim
x→a

sinx = sina ·1+ cosa ·0 = sina

lim
x→a

cosx = cosa ·1− sina ·0 = cosa

Thus the result follows.

The remaining trigonometric functions are defined in terms of sinx and cosx by

tanx =
sinx
cosx

cotx =
cosx
sinx

secx =
1

cosx
cscx =

1
sinx

.

Since sinx and cosx are continuous everywhere, and quotients of continuous functions
are continuous wherever the denominator is non-zero, we obtain the following theorem
(Theorem 3.14):

Theorem 3.14. The functions sinx and cosx are continuous on R. The functions
tanx and secx are continuous on

R\
{

π

2
+ kπ | k ∈ Z

}
where cosx = 0,

and the functions cotx and cscx are continuous on

R\{kπ | k ∈ Z} where sinx = 0.

3.7 Intermediate Value Theorem
One of the most fundamental consequences of continuity is the intermediate value theo-
rem, which formalizes the intuitive idea that the graph of a continuous function has no
jumps.

Theorem 3.15 (intermediate value theorem, simple version). Let f be continuous
on a closed interval [a,b]. Suppose that f (a)< 0< f (b) or f (a)> 0> f (b). Then,
there exists a point c ∈ (a,b) such that

f (c) = 0.
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See Figure 3.3 for a geometric interpretation of Theorem 3.15.

x

y

O a b

y = f (x)

f (a)< 0

f (b)> 0

c
f (c) = 0

Figure 3.3: Illustration of the intermediate value theorem

Theorem 3.15 asserts the existence of at least one root in (a,b) but it does not pro-
vide its exact location or the number of roots. A more general formulation is as follows
(Theorem 3.16):

Theorem 3.16 (intermediate value theorem, general version). Let f be continuous
on [a,b] and suppose that f (a) ̸= f (b). If N is any number between f (a) and f (b)
(i.e. either f (a)< N < f (b) or f (b)< N < f (a)), then there exists c ∈ (a,b) such
that

f (c) = N.

The simple version (Theorem 3.15) is recovered by setting N = 0. Also, Figure 3.4
gives a geometric interpretation of Theorem 3.16.

x

y

O a b

y = f (x)

f (a)

f (b)

N
(c,N)

c

Figure 3.4: Illustration of the intermediate value theorem

Example 3.2. Show that the equation

4x3 −6x2 +3x−2 = 0 (3.2)
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has at least one real root.

Solution. Let f (x) = 4x3−6x2+3x−2. Since f is a polynomial, it is continuous on R by
Theorem 3.4. We see that f (0) =−2 < 0 and f (2) = 12 > 0. By the intermediate value
theorem (Theorem 3.15), there exists c ∈ (0,2) such that f (c) = 0. Thus the equation
(3.2) has at least one real solution in that interval. □





Chapter 4
Differentiation and Applications

4.1 Definition of the Derivative
Consider the curve given by y = f (x) = x2. We would like to find the equation of the
tangent line at the point P =

(
a,a2). For a nearby point

Q = (a+h, f (a+h)) =
(

a+h,(a+h)2
)
,

the slope of the secant line PQ is

mPQ =
f (a+h)− f (a)

h
=

(a+h)2 −a2

h
.

If this slope tends to a limit as h → 0, we interpret the limit as the slope of the tangent
line at P.

Definition 4.1 (derivative using first principles). Let f be a function and let a be in
its domain. We say that f is differentiable at a if the limit

lim
h→0

f (a+h)− f (a)
h

exists as a finite real number. In that case the limit is called the derivative of f at a
and is denoted by f ′ (a):

f ′ (a) = lim
h→0

f (a+h)− f (a)
h

(4.1)

Equivalently, using the variable x approaching a, we say that f is differentiable at a
with derivative f ′ (a) if and only if

f ′ (a) = lim
x→a

f (x)− f (a)
x−a

(4.2)

To see why, set h = x−a so that x = a+h and x → a is equivalent to h → 0. Then,

f (x)− f (a)
x−a

=
f (a+h)− f (a)

h
,

and the two limits (4.1) and (4.2) coincide.

31
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Definition 4.2 (tangent line). If f is differentiable at a, the tangent line to the curve
y = f (x) at the point (a, f (a)) is the line with equation

y = f ′ (a)(x−a)+ f (a) .

Example 4.1. Let f (x) = x2 −8x+9. Compute f ′ (3).

f ′ (3) = lim
h→0

f (3+h)− f (3)
h

.

We have f (3+h) =−6−2h+h2 and f (3) =−6. So,

f (3+h)− f (3)
h

=

(
−6−2h+h2)− (−6)

h
=

−2h+h2

h
=−2+h.

Taking h → 0 gives
f ′ (3) = lim

h→0
(−2+h) =−2.

Hence, f is differentiable at x = 3 with derivative f ′ (3) = −2, and the tangent line at
x = 3 is given by the equation y =−2x.

Example 4.2 (a function defined piecewise). Define

f (x) =

x2 sin
(1

x

)
if x ̸= 0;

0; if x = 0.

We compute f ′ (0) as follows:

f ′ (0) = lim
h→0

f (h)− f (0)
h

= lim
h→0

h2 sin
(1

h

)
h

= lim
h→0

hsin
(

1
h

)
.

For h ̸= 0, we have −1 ≤ sin
(1

h

)
≤ 1 so

∣∣sin
(1

h

)∣∣≤ 1. Thus,∣∣∣∣hsin
(

1
h

)∣∣∣∣≤ |h| so −|h| ≤ hsin
(

1
h

)
≤ |h| .

Since
lim
h→0

(−|h|) = 0 and lim
h→0

|h|= 0,

the sqeueze theorem (Theorem 2.3) yields

lim
h→0

hsin
(

1
h

)
= 0.

Therefore, f ′ (0) = 0. The tangent line at x = 0 is the x–axis.

Example 4.3 (falling body). Let s = s(t) describe the position of a particle moving along
a straight line at time t. The instantaneous velocity at time a is defined to be the derivative

v(a) = s′ (a) .

The speed at t = a is the absolute value

|v(a)|=
∣∣s′ (a)∣∣ .
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Suppose a ball is dropped from rest near the Earth’s surface, so that its height is

s(t) =
1
2

gt2 where t ≥ 0

and g ≈ 9.8m/s2 is the gravitational acceleration. Then,

s′ (t) = lim
h→0

1
2g(t +h)2 − 1

2gt2

h
= lim

h→0

1
2g
(
2th+h2)

h
= lim

h→0

1
2

g(2t +h) = gt.

Thus, the instantaneous velocity after 5 seconds is s′ (5) = 5g ≈ 49m/s.

4.2 Derivative as a Function
Definition 4.1 gives, for each fixed a, a number f ′ (a) whenever the limit exists. In many
cases, we can express the derivative for all x at once. Let f be a function. The derivative
of f is the function f ′ defined (by its values at points where the limit exists) by

f ′ (x) = lim
h→0

f (x+h)− f (x)
h

.

Equivalently,

f ′ (x) = lim
z→x

f (z)− f (x)
z− x

.

The process of computing f ′ is called differentiation.

Example 4.4. Let f (x) =
1
x

, where x ̸= 0. Fix a ̸= 0. Then

f ′ (a) = lim
x→a

f (x)− f (a)
x−a

= lim
x→a

1
x −

1
a

x−a
= lim

x→a

a− x
ax(x−a)

= lim
x→a

−1
ax

=− 1
a2 .

Thus, the derivative function is

f ′ (x) =− 1
x2 where x ̸= 0.

Definition 4.3. A function f is said to be differentiable on an open interval I if it is
differentiable at each point a ∈ I.

Theorem 4.1. If f is differentiable at a, then f is continuous at a.

Proof. Assume f is differentiable at a, so by (4.2),

lim
x→a

f (x)− f (a)
x−a

= f ′ (a)

exists. We want to show
lim
x→a

f (x) = f (a) .

For x ̸= a, the trick is to write

f (x)− f (a) =
f (x)− f (a)

x−a
· (x−a) .
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Hence,

f (x) =
f (x)− f (a)

x−a
· (x−a)+ f (a) .

Taking limits as x → a and using the algebra of limits,

lim
x→a

f (x) =
(

lim
x→a

f (x)− f (a)
x−a

)(
lim
x→a

(x−a)
)
+ lim

x→a
f (a) = f ′ (a) ·0+ f (a) = f (a) .

Thus, f is continuous at a.

Note that the converse of Theorem 4.1 is false. That is, continuity does not imply
differentiability. A standard example is f (x) = |x|, which is continuous everywhere but
not differentiable at 0.

Example 4.5 (MA2002 AY21/22 Sem 1). Let

f (x) =

e−1/x2
if x ̸= 0;

0 if x = 0.

Show that f is twice differentiable and find f ′′(x).

Solution. For x ̸= 0, we have f (x) = e−1/x2
. Then,

f ′ (x) = e−1/x2
· 2

x3 =
2
x3 e−1/x2

where x ̸= 0.

Differentiating again using the product rule (Theorem 4.2) yields

f ′′ (x) =
4−6x2

x6 e−1/x2
where x ̸= 0.

We have found an expression for f (x). Now, we shall prove that f is twice differentiable
on R by first proving that f ′ exists at 0 (i.e. prove that f ′ (0) exists and we will see that it
is equal to 0) and then proving that f ′′ exists at 0 (i.e. prove that f ′′ (0) exists and we will
see that it is equal to 0). By (4.2), we have

f ′ (0) = lim
h→0

f (h)− f (0)
h

= lim
h→0

e−1/h2

h
= 0.

Here, we used L’Hôpital’s rule (Theorem 4.20), which will be covered in due course.
Hence, f ′ exists at 0 and f ′ (0) = 0.

Next, for h ̸= 0, by (4.2) again, we have

f ′ (h)− f ′ (0)
h

=
f ′ (h)

h
=

2
h4 e−1/h2

.

Again, by a repeated application of L’Hôpital’s rule (Theorem 4.20), we have

f ′′ (0) = lim
h→0

f ′ (h)− f ′ (0)
h

= 0.

Therefore, f is twice differentiable on R. To conclude,

f ′′ (x) =

4−6x2

x6 e−1/x2
if x ̸= 0;

0 if x = 0.

□
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4.3 Differentiation Rules
We now develop general rules that allow us to differentiate combinations of functions
more easily.

Proposition 4.1. Let c ∈ R be a constant and f be differentiable at x. Then,

d
dx

(c) = 0 and
d
dx

(c f (x)) = c f ′ (x) .

Proof. For the constant function f (x) = c,

d
dx

(c) = lim
h→0

c− c
h

= lim
h→0

0 = 0.

For the constant multiple, we have

(c f )′ (x) = lim
h→0

c f (x+h)− c f (x)
h

= lim
h→0

c
f (x+h)− f (x)

h
= c f ′ (x) .

Proposition 4.2. If f and g are differentiable at x, then so are f +g and f −g, and

( f +g)′ (x) = f ′ (x)+g′ (x) and ( f −g)′ (x) = f ′ (x)−g′ (x) .

Proof. For the sum,

( f +g)′ (x) = lim
h→0

( f (x+h)+g(x+h))− ( f (x)+g(x))
h

= lim
h→0

f (x+h)− f (x)
h

+ lim
h→0

g(x+h)−g(x)
h

= f ′ (x)+g′ (x) .

The difference rule follows by writing f −g = f +(−1)g and using the constant multiple
rule (Proposition 4.1).

We then introduce the product and quotient rules (Theorems 4.2 and 4.3) but omit
their proofs.

Theorem 4.2 (product rule). If f and g are differentiable at x, then f g is differen-
tiable at x and

( f g)′ (x) = f ′ (x)g(x)+ f (x)g′ (x) .

Theorem 4.3 (quotient rule). Let f and g be differentiable at x and assume g(x) ̸=
0. Then (

f
g

)′
(x) =

f ′ (x)g(x)− f (x)g′ (x)

(g(x))2 .
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Theorem 4.4 (power rule for integer exponents). Let n ∈ Z. Then the function
x 7→ xn is differentiable on its domain and

d
dx

(xn) = nxn−1, (4.3)

for all x ∈ R if n ≥ 0, and for all x ̸= 0 if n < 0.

Proof. First suppose n ∈ N. By the binomial theorem,

(x+h)n = xn +

(
n
1

)
xn−1h+

(
n
2

)
xn−2h2 + · · ·+hn.

Hence,

(x+h)n − xn

h
=

(
n
1

)
xn−1 +

(
n
2

)
xn−2h+ · · ·+hn−1.

Taking h → 0 yields
d
dx

(xn) =

(
n
1

)
xn−1 = nxn−1.

For n = 0, we have x0 = 1 and the derivative is 0 = 0 ·x−1, which is consistent with (4.3).

For n ∈ Z−, write n = −m with m ∈ N. Then xn = 1
xm . Using the quotient rule (The-

orem 4.3) together with the case for m > 0, one finds

d
dx

(xn) =−mxm−1

x2m =−mx−m−1 = nxn−1,

for x ̸= 0.

Corollary 4.1. Every polynomial

P(x) = anxn + · · ·+a1x+a0

is differentiable on R, and

P′ (x) = nanxn−1 + · · ·+2a2x+a1.

Proof. A polynomial is a finite sum of constant multiples of integer power functions. By
the power rule and the sum and constant multiple rules (Theorem 4.4 and Propositions
4.2 and 4.1 respectively), the derivative is as stated.

As a result, every rational function R(x) = P(x)
Q(x) , where P and Q are polynomials and

Q(x) ̸= 0, is differentiable on its domain, with derivative given by the quotient rule.

Next, we discuss derivatives of trigonometric functions. We recall the classical geometric
inequalities for 0 < h < π

2 as follows:

sinh < h < tanh =
sinh
cosh

.
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Recall that this can be proven by considering Figure 3.2. From this, we get

cosh <
sinh

h
< 1 where 0 < h <

π

2
.

A similar argument for negative h shows that for −π

2 < h < 0, we have

cosh <
sinh

h
< 1.

Hence, for all h with 0 < |h|< π

2 , we have

cosh <
sinh

h
< 1.

Letting h → 0, we get
lim
h→0

cosh = 1 and lim
h→0

1 = 1,

and by the squeeze theorem (Theorem 2.3), we have

lim
h→0

sinh
h

= 1. (4.4)

To obtain cosh−1
h , for 0 < h < π

2 we have

cosh−1 > cos2 h−1 =−sin2 h,

and cosh−1 < 0, so

−sin2 h
h

<
cosh−1

h
< 0.

As h → 0+, we have

lim
h→0+

(
−sin2 h

h

)
= lim

h→0+

(
sinh

h
· (−sinh)

)
= 1 ·0 = 0.

Thus by the squeeze theorem (Theorem 2.3),

lim
h→0+

cosh−1
h

= 0.

A similar argument for h → 0− shows

lim
h→0

cosh−1
h

= 0. (4.5)

Theorem 4.5. For all x ∈ R, we have

d
dx

(sinx) = cosx and
d
dx

(cosx) =−sinx. (4.6)

Proof. For sinx, we have

d
dx

(sinx) = lim
h→0

sin(x+h)− sinx
h

= lim
h→0

sinxcosh+ cosxsinh− sinx
h

= lim
h→0

(
sinx · cosh−1

h
+ cosx · sinh

h

)
= sinx ·0+ cosx ·1 by (4.4) and 4.5)
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which is equal to cosx.

For cosx,

d
dx

(cosx) = lim
h→0

cos(x+h)− cosx
h

= lim
h→0

cosxcosh− sinxsinh− cosx
h

= lim
h→0

(
cosx · cosh−1

h
− sinx · sinh

h

)
= cosx ·0− sinx ·1 by (4.4) and 4.5)

which is equal to −sinx.

Using the quotient rule (Theorem 4.3) and the derivatives in (4.6). For all x in the
respective domains, one can deduce that

d
dx

(tanx) = sec2 x

d
dx

(cotx) =−csc2 x

d
dx

(secx) = secx tanx

d
dx

(cscx) =−cscxcotx

For example, one can see that

d
dx

(tanx)=
d
dx

(
sinx
cosx

)
=

cosx · cosx− sinx · (−sinx)
cos2 x

=
cos2 x+ sin2 x

cos2 x
=

1
cos2 x

= sec2 x.

Theorem 4.6 (chain rule). Let f be differentiable at x and g be differentiable at
f (x). Then the composition g◦ f is differentiable at x and

(g◦ f )′ (x) = g′ ( f (x)) f ′ (x) .

Equivalently, if y = f (x) and z = g(y), then

dz
dx

=
dz
dy

· dy
dx

.

We now discuss higher derivatives. Let f be a function. The zeroth derivative of f is
f itself and is denoted by f (0). For n ∈N, the nth derivative of f is defined recursively by

f (n) =
(

f (n−1)
)′
.

We say f is n times differentiable if f (n) exists on the domain of interest. If y = f (x), the
nth derivative is denoted by

f (n) (x) =
dny
dxn .
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Let f be a differentiable function. If f ′ is differentiable, then the second derivative of f
is the derivative of f ′:

f ′′ =
(

f ′
)′
.

If y = f (x), we also write

f ′′ (x) =
d2y
dx2 .

Intuitively, f ′ (x) measures the rate of change of f (x) with respect to x, and f ′′ (x) mea-
sures the rate of change of f ′ (x), giving information about the curvature of the graph.

Example 4.6 (position, velocity and acceleration). Let s = s(t) be the position of a parti-
cle moving along a line. The velocity is v(t) = s′ (t) and the acceleration is a(t) = v′ (t) =
s′′ (t).

For instance, if s(t) = t3 −6t2 +9t, then

v(t) = s′ (t) = 3t2 −12t +9 and a(t) = s′′ (t) = 6t −12.

4.4 Implicit Differentiation
An equation of the form

F (x,y) = 0

is said to define y as an implicit function of x near a point (x0,y0) on the curve if,
in some neighbourhood of x0, there exists a differentiable function y = y(x) such that
F (x,y(x)) = 0 and y(x0) = y0.

Recall that the unit circle is given by the equation x2 + y2 = 1. For a point (x0,y0) on
the circle with y0 > 0, we can solve explicitly to obtain y =

√
1− x2. So, near such a

point y is an explicit function of x. For y0 < 0, we can write y = −
√

1− x2. However,
near the points (±1,0) the graph fails the vertical line test, so y is not a single-valued
function of x there.

We now discuss the method of implicit differentiation. The idea is as follows: if F (x,y) =
0 and y = y(x) is a differentiable implicit function, then differentiating both sides with
respect to x (using the chain rule for y) gives an equation involving dy/dx, from which
dy/dx can be solved. In using implicit differentiation, we assume differentiability of the
implicit function; this method does not by itself prove differentiability.

Example 4.7 (unit circle). Consider x2 + y2 = 1. Differentiating both sides with respect
to x gives

d
dx

(
x2)+ d

dx

(
y2)= d

dx
(1) ⇒ 2x+2y

dy
dx

= 0.

Solving for dy
dx gives dy

dx =−x
y . At a point P = (x0,y0) with y0 ̸= 0, this gives the slope of

the tangent line at P, which is −x0
y0

.
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Example 4.8 (power rule extends to rational exponents). Assume x > 0, and let r = m
n

with m ∈ Z and n ∈ N, gcd(m,n) = 1. Define

y = xr = xm/n.

Then, xm = yn. Differentiating both sides with respect to x yields

d
dx

(xm) =
d
dx

(yn) ⇒ mxm−1 = nyn−1 dy
dx

.

Thus,
dy
dx

=
m
n

xm−1

yn−1 .

Since yn−1 =
(

xm/n
)n−1

= xm(n−1)/n, we get

dy
dx

=
m
n

xm−1−m(n−1)
n =

m
n

x
m
n −1 = rxr−1.

Thus, the power rule extends to rational exponents on (0,∞).

Example 4.9. Consider the curve

x3 + y3 = 3xy.

This is known as the folium of Descartes (Figure 4.1). It is a rational algebraic curve
with a characteristic loop in the first quadrant and a node at the origin. In the special
case shown here (with parameter a = 1), the folium has a notable point at

(3
2 ,

3
2

)
and an

oblique asymptote given by the line x+ y+1 = 0.

x

y

x3 + y3 = 3xy

Figure 4.1: The folium of Descartes x3 + y3 = 3xy

Differentiating both sides with respect to x, we have

3x2 +3y2 dy
dx

= 3y+3x
dy
dx

.
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Rearranging,

3y2 dy
dx

−3x
dy
dx

= 3y−3x2 so
(
3y2 −3x

) dy
dx

= 3
(
y− x2) .

Thus,
dy
dx

=
y− x2

y2 − x
.

4.5 Extreme Values

Definition 4.4 (absolute maxima and minima). Let f be a real-valued function with
domain D ⊆ R.

(i) We say that f has an absolute maximum value at c ∈ D if

f (c)≥ f (x) for every x ∈ D.

Then f (c) is called the absolute maximum (or global maximum) of f on D.

(ii) We say that f has an absolute minimum value at c ∈ D if

f (c)≤ f (x) for every x ∈ D.

Then f (c) is called the absolute minimum (or global minimum) of f on D.

The absolute maximum and minimum are collectively called the extreme values of
f on D.

Example 4.10. Let

f (x) = 3x4 −16x3 +18x2 on the closed interval [−1,3.5] .

One can check that f (−1) = 37 and f (3) = −27. On the domain [−1,3.5], the largest
value is 37, attained at x =−1, and the smallest value is −27, attained at x = 3. Thus,

max
[−1,3.5]

f = 37 and min
[−1,3.5]

f =−27.

Definition 4.5 (local maxima and minima). Let f be a real-valued function with
domain D ⊆ R and let c ∈ D.

(i) We say that f has a local maximum value at c if there exists an open interval
I with c ∈ I such that

f (c)≥ f (x) for all x ∈ I ∩D.

(ii) We say that f has a local minimum value at c if there exists an open interval
I with c ∈ I such that

f (c)≤ f (x) for all x ∈ I ∩D.



42 CHAPTER 4. DIFFERENTIATION AND APPLICATIONS

Local maxima and minima are also called relative extrema, and together they are
called local extreme values.

Note that local extreme values are always attained at interior points of the domain: if
f has a local extremum at c, then c is not an endpoint of D (unless D has isolated points).

Theorem 4.7 (extreme value theorem). Let f be continuous on a finite closed in-
terval [a,b]. Then, there exist points c,d ∈ [a,b] such that

f (c)≤ f (x)≤ f (d) for every x ∈ [a,b] .

In particular, f attains both an absolute minimum and an absolute maximum on
[a,b].

The extreme value theorem (Theorem 4.7) guarantees the existence but not uniqueness
of the extreme values. The following conditions are essential:

(i) If f is not continuous on [a,b], it may fail to attain its extrema

(ii) If the interval is not closed or not bounded, f may fail to attain a maximum or
minimum

Definition 4.6 (critical point). Let f be a function and c an interior point of its
domain. We call c a critical point of f if either of the following holds:

(i) f ′ (c) exists and f ′ (c) = 0 (a stationary point), or

(ii) f ′ (c) does not exist

Theorem 4.8 (Fermat’s theorem). Let f be a function and c an interior point of its
domain. If f has a local maximum or local minimum at c and f is differentiable at
c, then

f ′ (c) = 0.

Proof. Assume f has a local minimum at c and is differentiable at c. Then there exists
δ > 0 such that

f (c)≤ f (x) for all x ∈ (c−δ ,c+δ ) .

For x > c with x close to c we have

f (x)− f (c)
x− c

≥ 0

because the numerator is non-negative and the denominator is positive. Hence

lim
x→c+

f (x)− f (c)
x− c

≥ 0. (4.7)

Similarly, for x < c close to c we have f (x)≥ f (c) and x− c < 0, so

f (x)− f (c)
x− c

≤ 0,
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and therefore,

lim
x→c−

f (x)− f (c)
x− c

≤ 0. (4.8)

Since f is differentiable at c, these one-sided limits both exist and are equal to f ′ (c), so

f ′ (c) = lim
x→c+

f (x)− f (c)
x− c

= lim
x→c−

f (x)− f (c)
x− c

.

Combining the inequalities (4.7) and (4.8) respectively, we obtain f ′ (c)≥ 0 and f ′ (c)≤
0, hence f ′ (c) = 0. The case of a local maximum is similar.

Note that if f has a local extreme value at c, then c must be a critical point. The
converse is false: critical points need not correspond to local extrema.

Combining the extreme value theorem (Theorem 4.7 with Fermat’s theorem (Theorem
4.8) gives a practical way to find global extrema on a closed interval. We call this the
closed interval method (Theorem 4.9).

Theorem 4.9 (closed interval method). Let f be continuous on [a,b]. Then, the
absolute maximum and minimum values of f on [a,b] are attained either at the
endpoints a or b, or at critical points c ∈ (a,b) of f .

To find the extreme values of f on [a,b], we proceed as follows:

(i) Compute f (a) and f (b)

(ii) Find all critical points c ∈ (a,b), and compute f (c) at each such point

(iii) The largest of these values is the absolute maximum; the smallest is the ab-
solute minimum

Example 4.11. Let

f (x) = x3 −3x2 +1 where x ∈
[
−1

2
,4
]
.

Then,
f ′ (x) = 3x2 −6x = 3x(x−2) ,

so the critical points are x= 0 and x= 2, both interior to the interval. We have f
(
−1

2

)
= 1

8 ,
f (0) = 1, f (2) =−3, and f (4) = 17. Hence, the absolute minimum is −3 at x = 2, and
the absolute maximum is 17 at x = 4.

Theorem 4.10 (Rolle’s theorem). Let f be a function such that the following hold:

(i) f is continuous on [a,b]

(ii) f is differentiable on (a,b) and

(iii) f (a) = f (b)
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Then, there exists at least one point c ∈ (a,b) such that f ′ (c) = 0.

Try to see how Rolle’s theorem applies to the graph in Figure 4.2.

x

y

y = f (x)

a bc1 c2

Figure 4.2: Example of a graph that satisfies Rolle’s theorem

Proof. If f is constant on [a,b], then f ′ (x) = 0 for all x ∈ (a,b) and the result is trivial.

Otherwise, f is not constant. By the extreme value theorem (Theorem 4.7), f attains
an absolute maximum and an absolute minimum on [a,b]. Since f (a) = f (b) and f
is not constant, at least one of these extreme values must occur at some interior point
c ∈ (a,b). At such a point c, f has a local extremum, so by Fermat’s theorem (Theorem
4.8), f ′ (c) = 0.

Theorem 4.11 (mean value theorem). Let f be a continuous function on [a,b] and
differentiable on (a,b). Then, there exists c ∈ (a,b) such that

f ′ (c) =
f (b)− f (a)

b−a
.

See Figure 4.3 for a geometric interpretation of the mean value theorem.

x

y

y = f (x)

a bc1 c2

Figure 4.3: Geometric interpretation of the mean value theorem

Proof. Consider the auxiliary function

h(x) = f (x)−
[

f (b)− f (a)
b−a

(x−a)+ f (a)
]
.
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This is the difference between f and the straight line joining the points (a, f (a)) and
(b, f (b)). The function h is continuous on [a,b] and differentiable on (a,b). Furthermore,
h(a) = 0 and h(b) = 0. By Rolle’s theorem (Theorem 4.10), there exists c ∈ (a,b) such
that h′ (c) = 0. However,

h′ (x) = f ′ (x)− f (b)− f (a)
b−a

so 0 = h′ (c) = f ′ (c)− f (b)− f (a)
b−a

which is the desired identity.

We then discuss some consequences of the mean value theorem.

Theorem 4.12. Let f be continuous on an interval I and differentiable on the inte-
rior of I.

(i) If f ′ (x) = 0 for every interior point x of I, then there exists a constant C such
that f (x) =C for all x ∈ I

(ii) If f ′ (x) = g′ (x) for every interior point x of I, where f and g are continuous
on I and differentiable on its interior, then there exists a constant C such that

f (x) = g(x)+C for all x ∈ I

Proof. We first prove (i). Take any a,b ∈ I with a < b. The restriction of f to [a,b] is
continuous and differentiable on (a,b). By the mean value theorem (Theorem 4.11), there
exists c ∈ (a,b) with

f ′ (c) =
f (b)− f (a)

b−a
.

But f ′ (c) = 0 by assumption, hence f (b) = f (a). Therefore f is constant on I.

For (ii), the trick is to define h(x) = f (x)− g(x). Then, h is continuous on I, differen-
tiable on the interior of I, and h′ (x) = 0 there. By (i) there is a constant C with h(x) =C
on I, i.e. f (x) = g(x)+C.

Example 4.12. Using Theorem 4.12, one can prove the Pythagorean identity

sin2 x+ cos2 x = 1 for all x ∈ R.

Set f (x) = sin2 x+cos2 x. Then, one can deduce that f ′ (x) = 0 so f is constant. Evaluat-
ing at x = 0 gives f (0) = 1, hence f (x) = 1.

4.6 Monotonicity and Concavity

Definition 4.7 (increasing and decreasing functions). Let I ⊆ R be an interval.

(i) A function f is increasing on I if for all a,b ∈ I with a < b we have

f (a)< f (b) .
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(ii) A function f is decreasing on I if for all a,b ∈ I with a < b we have

f (a)> f (b) .

Theorem 4.13 (increasing/decreasing test). Let f be continuous on an interval I
and differentiable on the interior of I.

(i) If f ′ (x)> 0 for every interior point x of I, then f is increasing on I

(ii) If f ′ (x)< 0 for every interior point x of I, then f is decreasing on I

Proof. We will only prove (i) as (ii) is analogous. Take a,b ∈ I with a < b. By the mean
value theorem (Theorem 4.11), there exists c ∈ (a,b) with

f ′ (c) =
f (b)− f (a)

b−a
.

Since f ′ (c)> 0 and b−a > 0, it follows that f (b)− f (a)> 0, i.e. f (a)< f (b).

Theorem 4.14 (partial converse). Suppose that f is differentiable on an open inter-
val I.

(i) If f is increasing on I, then f ′ (x)≥ 0 for all x ∈ I

(ii) If f is decreasing on I, then f ′ (x)≤ 0 for all x ∈ I

Example 4.13 (MA2002 AY21/22 Sem 1). Let f (x) = x(x2 −1)2/3. Find the open inter-
vals on which f is increasing and decreasing.

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−4

−2

2

4

0
x

y

Figure 4.4: Graph of y = x
(
x2 −1

)2/3
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Solution. We have

f ′(x) = x · 2
3
(x2 −1)−1/3(2x)+(x2 −1)2/3

=
4
3

x2(x2 −1)−1/3 +(x2 −1)2/3

= (x2 −1)−1/3
(

7
3

x2 −1
)

Note that x =−1 and x = 1 are asymptotes of y = f ′(x). Setting f ′(x) = 0, we obtain x =
±
√

3/7. As such, the interval on which f is increasing is (−∞,−1)∪
(
−
√

3/7,
√

3/7
)
∪

(1,∞), and the interval on which f is decreasing is
(
−1,−

√
3/7
)
∪
(

1,
√

3/7
)

. □

We then introduce the first derivative test for local extrema (Theorem 4.15).

Theorem 4.15 (first derivative test). Let f be continuous at a critical point c and
differentiable on an open interval containing c, except possibly at c itself.

(i) If f ′ (x) changes sign from positive to negative as x increases through c, then
f has a local maximum at c

(ii) If f ′ (x) changes sign from negative to positive as x increases through c, then
f has a local minimum at c

(iii) If f ′ (x) does not change sign at c (e.g. positive on both sides, or negative on
both sides), then f has no local extremum at c

We will only give a proof of (ii) as the other cases are analogous.

Proof. Assume that f ′ (x) < 0 for x in some interval (a,c) and f ′ (x) > 0 for x in some
interval (c,b), with a < c < b. Then, f is decreasing on (a,c] and increasing on [c,b)
by Theorem 4.13. Hence, for every x ∈ (a,b), we have f (c) ≤ f (x), so f has a local
minimum at c.

Recall from our discussion in Chapter 4.3 that if f ′ exists on an interval and is dif-
ferentiable, then the second derivative of f is defined to be f ′′ (x) = ( f ′)′ (x). Before we
introduce the second derivative test, we need a lemma.

Lemma 4.1. If lim
x→a

g(x) exists and is positive, then there exists δ > 0 such that

g(x)> 0 for all x with 0 < |x−a|< δ .

Proof. Let L = lim
x→a

g(x)> 0. Take ε = L > 0. By Definition 2.4, there exists δ > 0 such
that

0 < |x−a|< δ ⇒ |g(x)−L|< ε = L.

Then, g(x)> L− ε = 0 for all such x.

Theorem 4.16 (second derivative test). Let f be twice differentiable at c with
f ′ (c) = 0.
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(i) If f ′′ (c)> 0, then f has a local minimum at c

(ii) If f ′′ (c)< 0, then f has a local maximum at c

Proof. We will only prove (i). Assume f ′ (c) = 0 and f ′′ (c) > 0. By first principles
(Definition 4.1), we have

f ′′ (c) = lim
x→c

f ′ (x)− f ′ (c)
x− c

= lim
x→c

f ′ (x)
x− c

.

Define

g(x) =
f ′ (x)
x− c

for x ̸= c so lim
x→c

g(x) = f ′′ (c)> 0.

By Lemma 4.1, there exists δ > 0 such that g(x)> 0 whenever 0 < |x− c|< δ . Thus,

x < c ⇒ x− c < 0 and g(x)> 0 ⇒ f ′ (x)< 0

and

x > c ⇒ x− c > 0 and g(x)> 0 ⇒ f ′ (x)> 0.

So f ′ is negative to the left of c and positive to the right of c, and the first derivative test
implies that f has a local minimum at c. The case f ′′ (c)< 0 is analogous.

Note that if f ′ (c) = 0 and f ′′ (c) = 0, the second derivative test is inconclusive: f may
have a local maximum, a local minimum, or neither. For example, say f (x) = x3. Then,
f ′ (0) = f ′′ (0) = 0 but f has no local extremum. On the other hand, if g(x) = x4, then
f ′ (0) = f ′′ (0) = 0 and it has a local minimum at x = 0.

Example 4.14 (MA2002 AY21/22 Sem 1). Continuing from Example 4.16, let f (x) =
x(x2 −1)2/3. Find the x-coordinates of the local maximum and minimum points of f .

Solution. We first set f ′(x) = 0. Then, we see that x =±
√

3/7, for which the local max-
imum occurs at x =

√
3/7 and the local minimum occurs at x =−

√
3/7.

Earlier, we showed that

f ′(x) = (x2 −1)−1/3
(

7
3

x2 −1
)

so f ′(x)→−∞ as x →−1 or x → 1. Consider an ε-neighbourhood at the point x = −1,
where ε > 0 is arbitrarily small. Note that f (−1) = 0, but f (−1−ε)< 0 and f (−1+ε)<

0, which asserts that a local maximum occurs at x = −1. In a similar fashion, f (1) = 0,
but f (1− ε)> 0 and f (1+ ε)> 0, which asserts that a local minimum occurs at x = 1.

To summarise, the local minima are at x = −
√

3/7 and x = 1, and the local maxima
are at x =

√
3/7 and x =−1. □

Definition 4.8 (concavity). Let f be differentiable on an open interval I.



4.6. MONOTONICITY AND CONCAVITY 49

(i) We say that f is concave up on I if for any a,b ∈ I with a ̸= b,

f (b)− f (a)> f ′ (a)(b−a) . (4.9)

Geometrically, the graph of f lies above all its tangent lines on I.

(ii) We say that f is concave down on I if for any a,b ∈ I with a ̸= b,

f (b)− f (a)< f ′ (a)(b−a) .

Geometrically, the graph of f lies below all its tangent lines on I.

Theorem 4.17. Let f be differentiable on an open interval I.

(i) If f is concave up on I, then f ′ is increasing on I

(ii) If f is concave down on I, then f ′ is decreasing on I

Proof. We will only prove (i). Assume f is concave up. Take a < b in I. From the
concavity inequalities (4.9) applied to pairs (a,b) and (b,a), and using the mean value
theorem (Theorem 4.11), one can show that

f ′ (a)<
f (b)− f (a)

b−a
< f ′ (b) ,

so f ′ (a) < f ′ (b) for all a < b, which means f ′ is increasing. The concave down case is
similar.

Theorem 4.18 (concavity test). Let f be twice differentiable on an open interval I.

(i) If f ′′ (x)> 0 for all x ∈ I, then f is concave up on I

(ii) If f ′′ (x)< 0 for all x ∈ I, then f is concave down on I

We only prove (i) as (ii) is analogous.

Proof. Note that f ′′ = ( f ′)′. If f ′′ (x)> 0 on I, then f ′ is increasing on I, so f is concave
up.

Example 4.15 (MA2002 AY21/22 Sem 1). Continuing from Example 4.16, let f (x) =
x(x2 −1)2/3. Find the open intervals on which f is concave up and concave down.

Solution. As
f ′′ (x) =

4
9

x
(
7x2 −9

)(
x2 −1

)−4/3
,

f is concave up when f ′′ > 0. That is,
(
−3/

√
7,−1

)
∪ (−1,0)∪

(
3/
√

7,∞
)
.

On the other hand, f is concave down when f ′′ < 0. That is,
(
−∞,−3/

√
7
)
∪ (0,1)∪

(1,3/
√

7). □
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Definition 4.9 (inflection point). Let f be continuous at c. We say that f has an
inflection point at c if the concavity of f changes at c; that is, f is concave up on
one side of c and concave down on the other side.

Theorem 4.19. If f has an inflection point at c and f is twice differentiable at c,
then f ′′ (c) = 0.

Proof. Without loss of generality, suppose f changes from concave down to concave up
at c. Then, f ′ is decreasing on (a,c) and increasing on (c,b) for some a < c < b. Hence
f ′ has a local minimum at c as shown in Figure 4.5.

x

y

O c

y = f ′(x)

local minimum

Figure 4.5: The derivative f ′ is decreasing on (a,c), increasing on (c,b), so f ′ has a local
minimum at c

Since f ′ is differentiable at c, Fermat’s theorem (Theorem 4.8) applied to f ′ yields
( f ′)′ (c) = 0, i.e. f ′′ (c) = 0.

Example 4.16 (MA2002 AY21/22 Sem 1). Continuing from Example 4.16, let f (x) =
x(x2 −1)2/3. Find the x-coordinates of the inflection points of f .

Solution. x = 0, x =−3/
√

7 and x = 3/
√

7 since the concavity of f change here. □

To sketch the graph of a reasonably nice function f , one systematically uses the in-
formation given by f ′, f ′′. The general strategy is as follows:

(i) Determine the domain of f , and identify intercepts and any asymptotes

(ii) Compute f ′ (x) and find all critical points in the domain

(iii) Use the sign of f ′ to determine intervals where f is increasing or decreasing, and
to locate local maxima and minima (first derivative test)

(iv) Compute f ′′ (x), study its sign to determine intervals where f is concave up or
concave down, and find possible inflection points

(v) Combine all this information to draw a qualitative graph
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4.7 Optimisation Problems
Many applied problems ask us to maximise or minimise a quantity (area, volume, cost,
distance, time, etc.) subject to some constraints. The general strategy is as follows:

(i) Read the problem carefully and understand what is being optimized

(ii) Introduce variables and express the quantity to be optimised as a function F (x) of
a single variable by eliminating other variables using the constraints

(iii) Determine the domain of F (x) from the context (often an interval of possible val-
ues)

(iv) Find critical points of F and, together with endpoints, determine which give the
desired absolute maximum or minimum (using the closed interval method or the
increasing/decreasing test)

Example 4.17. Suppose a farmer has 3000 metres of fencing and wishes to fence off a
rectangular field that borders a river. Suppose he does not need fencing along the river-
bank. What are the dimensions of the field that has the largest area?

x x

y

Solution. Let x denote the length of each side perpendicular to the river, and let y denote
the length of the side parallel to the river. Since no fencing is needed along the riverbank,
the total length of fencing used is 2x+ y = 3000. The area A of the rectangular field is
A = xy. Using the constraint, we express y in terms of x so

y = 3000−2x.

Thus, the area as a function of x is

A(x) = x(3000−2x) = 3000x−2x2.

To maximise the area, we differentiate A(x) with respect to x to obtain

A′ (x) =
d
dx

(
3000x−2x2)= 3000−4x.
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We find the critical point by setting A′ (x) = 0 so x = 750. Next, we check that this critical
point gives a maximum. The second derivative is

A′′ (x) =
d
dx

(3000−4x) =−4 < 0,

so A(x) is concave down and x = 750 gives a maximum area. Substituting x = 750 into
the constraint equation 2x + y = 3000, we find y, which is y = 1500. Therefore, the
rectangular field with the largest area has dimensions

x = 750 metres (perpendicular to the river) and y = 1500 metres (along the river).

□

Example 4.18. A cylindrical can must hold volume V = 1 m3. Find the dimensions that
minimize the surface area (and hence the cost of metal).

r

h

Solution. Let r be the radius and h the height. Then,

V = πr2h = 1 so h =
1

πr2 ,

and the total surface area is

A(r) = 2πr2 +2πrh = 2πr2 +2πr · 1
πr2 = 2πr2 +

2
r
, where r > 0.

As such,

A′ (r) = 4πr− 2
r2 =

4πr3 −2
r2 .

Setting A′ (r) = 0 gives 4πr3 −2 = 0, so r =
( 1

2π

)1/3
. One can check that A′ is negative

for small r and positive for large r, hence this gives the unique minimum. Using h = 1
πr2 ,

we obtain the corresponding optimal height. □



4.7. OPTIMISATION PROBLEMS 53

Example 4.19. Find the point on the parabola y2 = 2x that is closest to the point (1,4).

x

y

O

y2 = 2x

(1,4)

(2,2)

1 2 3 4

1

2

3

4

Solution. A point on the parabola has coordinates (x,y) with y2 = 2x. The squared dis-
tance to (1,4) is

D2 = (x−1)2 +(y−4)2 .

Using x = y2

2 , write

D2 (y) =
(

y2

2
−1
)2

+(y−4)2 .

It is enough to minimise D2 (y) for y ∈ R. After expanding and simplifying, one obtains

D2 (y) =
1
4

y4 −8y+17 so
(
D2)′ (y) = y3 −8

so the critical points satisfy y3 = 8, i.e. y = 2. Checking the sign of the derivative shows
that this gives the minimum. The corresponding x is x = y2

2 = 4
2 = 2. Hence, the point

(2,2) on the parabola is closest to (1,4). □

Example 4.20 (Snell’s law). Consider two homogeneous optical media separated by a
planar interface. Let A be a point in medium 1 where the speed of light is v1 and B be a
point in medium 2 where the speed of light is v2. Suppose a ray of light travels from A to
B as shown in Figure 4.6.

Let θ1 denote the angle of incidence (angle between the incident ray and the normal
to the interface) and θ2 denote the angle of refraction (angle between the refracted ray
and the normal to the interface). This gives us the standard setup where Snell’s law states
that

sinθ

v1
=

sinθ

v2
,

or equivalently, n1 sinθ1 = n2 sinθ2, where ni = c/vi is the refractive index in medium i.
Here, c denotes the speed of light in vacuum, which is approximately 3×108 m/s.
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A

B

θ1

θ2

Medium 1

Medium 2

Incident ray

R
efracted

ray

Normal

Figure 4.6: Ray of light travelling from A to B

From the point of view of optimisation, Snell’s law can be derived from Fermat’s
principle of least time: among all possible paths that a ray of light could take from A to
B, the actual path is the one that minimises the travel time. To make this precise, place a
coordinate system so that the interface is the x–axis and medium 1 lies above the interface
while medium 2 lies below it (Figure 4.6). Let

A = (−a,h1) ∈ medium 1 and B = (b,−h2) ∈ medium 2,

where a,b,h1,h2 > 0 are fixed. Any broken path from A to B that consists of a straight
segment in medium 1 meeting a straight segment in medium 2 at some point P on the
interface can be described by P = (x,0). We treat x as the variable to be chosen so that
the travel time is minimised.

The distance from A to P is
AP =

√
(x+a)2 +h2

1,

and the distance from P to B is

PB =

√
(b− x)2 +h2

2.

Since the speed of light in medium i is vi, the time taken to traverse each segment is
distance divided by speed. Thus, the total travel time as a function of x is

T (x) =
AP
v1

+
PB
v2

=
1
v1

√
(x+a)2 +h2

1 +
1
v2

√
(b− x)2 +h2

2. (4.10)

We now have an optimisation problem, which is to find x ∈ R that minimises T (x). As-
suming T is differentiable and the minimiser occurs at an interior point, a necessary con-
dition is T ′ (x) = 0. Differentiating both sides of (4.10), we obtain

T ′ (x) =
x+a

v1

√
(x+a)2 +h2

1

− b− x

v2

√
(b− x)2 +h2

2

.
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Setting T ′ (x) = 0 gives

x+a

v1

√
(x+a)2 +h2

1

=
b− x

v2

√
(b− x)2 +h2

2

.

Next, we interpret the fractions in terms of the angles of incidence and refraction. As
mentioned, θ1 is the angle between the incident ray AP and the normal, and θ2 is the
angle between the refracted ray PB and the normal. Because the normal is vertical, the

horizontal component of AP is |x+a| and the length of AP is
√
(x+a)2 +h2

1, so

sinθ1 =
horizontal component of AP

|AP|
=

|x+a|√
(x+a)2 +h2

1

.

Similarly,

sinθ2 =
|b− x|√

(b− x)2 +h2
2

.

Ignoring the absolute values (which only encode the orientation along the interface) and
comparing with the equation obtained from T ′ (x) = 0, we see that

sinθ1

v1
=

sinθ2

v2
.

Equivalently, in terms of refractive indices ni = c/vi, this is n1 sinθ1 = n2 sinθ2 which is
precisely Snell’s law!

Example 4.21 (MA2002 AY21/22 Sem 1). A triangle is bounded by the tangent line to
y = ex (where x < 1) and the axes. Find the coordinates of the tangent point so that the
triangle attains its largest area. Justify your answer.

−2 −1 1

1

2

P(−1,e−1)

(0,2e−1)

x

y

Figure 4.7: The graph of y = ex and a tangent line

Solution. We refer to Figure 4.7. Consider a point P(a,ea). The equation of the tangent
to P is

y− ea = ea(x−a) so y = eax−aea + ea.
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To find the y-intercept, set x = 0, so y = ea(1− a). To find the x-intercept, set y = 0, so
x = a−1.

Thus, the tangent intersects the y-axis and x-axis at (0,ea(1− a)) and (a− 1,0) respec-
tively. As a−1 < 0, the area of the triangle formed is

1
2
· ea(1−a) · (1−a) =−ea

2
· (1−a)2.

Now,

f ′(a) =−ea

2
· (a2 −1),

so f ′(a) = 0 implies a =−1 since a < 1. One can use the first derivative test (the second
derivative test fails here) to verify that at point P with coordinates (−1,e−1), the area of
the triangle formed is a maximum. □

Example 4.22 (MA2002 AY23/24 Sem 2). An auditorium with a flat floor has a large
screen on one wall. The lower edge of the screen is 3ft above eye level and the upper
edge of the screen is 10ft above the eye level. How far from the screen should you stand
to maximise your viewing angle θ? Give your answer in exact value.

10 ft

3 ft

x ft

screen

eye
θ

Solution. By applying Pythagoras’ theorem twice, the lengths of the bottom slant line
and the top slant line are

√
x2 +9 and

√
x2 +100 respectively.

10 ft

3 ft

7 ft

x ft

screen

eye
θ

Figure 4.8: Annotated figure
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By applying the cosine rule on the top triangle in Figure 4.8, we have

72 =
(√

x2 +9
)2

+
(√

x2 +100
)2

−2
√

x2 +9
√

x2 +100cosθ .

So,

cosθ =
30+ x2√

(x2 +9)(x2 +100)
.

By some tedious implicit differentiation, we have

−sinθ
dθ

dx
=

49x
(
x2 −30

)
[(x2 +9)(x2 +100)]3/2 .

Setting dθ

dx = 0, we have x = 0 or x = ±
√

30. Since x > 0, we only accept x =
√

30.
Subsequently, one can use the first derivative test to deduce that when x =

√
30, θ is at a

maximum. □

4.8 L’Hôpital’s Rule
When evaluating limits of the form

lim
x→a

f (x)
g(x)

,

it may happen that both numerator and denominator tend to zero or both tend to ±∞. In
these situations, the quotient is said to be in an indeterminate form of type

0
0

or
∞

∞
.

In such cases one can sometimes simplify the limit by applying H’Hôpital’s rule.

Theorem 4.20 (L’Hôpital’s rule: 0/0 case). Let f and g be differentiable on an
open interval I containing a (except possibly at a) and suppose that

lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0,

and that g′ (x) ̸= 0 for all x ∈ I \{a}. Assume that the limit

lim
x→a

f ′ (x)
g′ (x)

exists (finite or infinite). Then,

lim
x→a

f (x)
g(x)

= lim
x→a

f ′ (x)
g′ (x)

.

Theorem 4.21 (L’Hôpital’s rule: ∞/∞ case). Let f and g be differentiable on an
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open interval I containing a (possibly a =±∞). Suppose that

lim
x→a

| f (x)|= ∞ and lim
x→a

|g(x)|= ∞,

and that g′ (x) ̸= 0 for all x sufficiently close to a. If the limit

lim
x→a

f ′ (x)
g′ (x)

exists (finite or infinite), then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′ (x)
g′ (x)

.

Note that L’Hôpital’s rule may be applied repeatedly if the resulting limit is still of in-
determinate type. The hypotheses (differentiability, type of indeterminate form, existence
of the derivative quotient limit) in Theorems 4.20 and 4.21 are essential; the rule must not
be used blindly.

Also, based on my prior experience with this course, evaluating limits using series ex-
pansion, i.e. sinx ≈ x− x3

3! are not permitted.

Example 4.23. Evaluate

lim
x→0

sinx
x

.

Solution. As x → 0 both numerator and denominator tend to 0, so we have a 0/0 indeter-
minate form. Applying L’Hôpital’s rule (Theorem 4.20), we have

lim
x→0

sinx
x

= lim
x→0

cosx
1

= cos0 = 1.

Recall that this limit can also be proved using geometry and the squeeze theorem (Theo-
rem 2.3) as per our discussion in (4.4). □

Example 4.24. Evaluate

lim
x→∞

lnx
x
.

Solution. Both lnx and x tend to ∞ as x → ∞, so we have an ∞/∞ form. Applying
L’Hôpital’s rule (Theorem 4.21), we have

lim
x→∞

lnx
x

= lim
x→∞

1/x
1

= lim
x→∞

1
x
= 0.

□

Example 4.25. Evaluate
lim

x→0+
x lnx.

Solution. This is not in quotient form, but the trick is to rewrite the expression as

x lnx =
lnx
1/x

.
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As x → 0+, lnx →−∞ and 1/x → ∞, so we have an ∞/∞ form. Applying l’Hôpital’s rule
(Theorem 4.21), we have

lim
x→0+

x lnx = lim
x→0+

1/x
−1/x2 = lim

x→0+
(−x) = 0.

□

Example 4.26 (MA2002 AY21/22 Sem 1). Let f be an increasing continuous function
on R such that

lim
x→∞

1
x

∫ x

0
f (t) dt = 1.

Prove that lim
x→∞

f (x) exists and equals 1.1

Solution. We proceed by contradiction. Suppose on the contrary that the limit of f (x) as
x tends to infinity does not exist. Since f is an increasing function, by Definition 4.7, as
x increases, f will always increase and never level off from some value of x onwards. In
other words,

lim
x→∞

f (x) = ∞ so
∫ x

0
f (t) dt = ∞

However, by L’Hôpital’s rule (Theorem 4.21), we have

lim
x→∞

1
x

∫ x

0
f (t) dt = lim

x→∞
f (x) = ∞

which is a contradiction. Thus, the limit lim
x→∞

f (x) exists.

Now, we prove that the desired limit is equal to 1. Again, we proceed with contradic-
tion. First, suppose on the contrary that lim

x→∞
f (x)< 1. This means that for all real values

of x, we have f (x)< 1 because f is an increasing function. However, this implies

lim
x→∞

1
x

∫ x

0
f (t) dt < lim

x→∞

1
x

∫ x

0
dt = lim

x→∞

x
x
= 1

which is a contradiction.

Next, suppose on the contrary that lim
x→∞

f (x) > 1. Then, in a similar notion to Defini-

tion 2.7 (but not exactly), for all x > M, there exists M ≥ 0 such such that f (x)> 1, where
we again used the fact that f is increasing. The trick now is to define a constant

K =
∫ M

0
f (t) dt.

Thus,

lim
x→∞

∫ x

0
f (t) dt = lim

x→∞

(
K +

∫ x

M
f (t) dt

)
= ∞

because for x > M, we have∫ x

M
f (t) dt >

∫ x

M
dt = x−M so lim

x→∞

∫ x

M
f (t) dt > lim

x→∞
(x−M) = ∞.

By L’Hôpital’s rule (Theorem 4.21), we have

lim
x→∞

1
x

∫ x

0
f (t) dt = lim

x→∞
f (x)> 1

which is a contradiction. We conclude that the limit exists, and it must be equal to 1. □
1Interested readers should look up Cesàro mean.
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4.9 Injective Functions and Inverses

Definition 4.10 (injective function). Let f be a function with domain D ⊆ R. We
say that f is one-to-one (or injective) on D if for all a,b ∈ D,

a ̸= b ⇒ f (a) ̸= f (b) or equivalently f (a) = f (b)⇒ a = b.

The two formulations in Definition 4.10 are logically equivalent — they are contra-
positives of each other.

Example 4.27. We give some simple examples of injective functions.

(i) Let f (x) = x3 with domain R. If f (a) = f (b), then a3 = b3, so a = b.2 Hence, f
is one-to-one on R.

(ii) Let g(x) = 1
x with domain R\{0}. If g(a) = g(b), then 1

a = 1
b so a = b. As such,

g is one-to-one on R\{0}.

Definition 4.11 (inverse function). Let f : A → B be a one-to-one function with
domain A and range B. For each y ∈ B there exists a unique x ∈ A such that

y = f (x) .

The inverse function of f is the function f−1 : B → A defined by

f−1 (y) = x ⇔ y = f (x) for all x ∈ A,y ∈ B.

Thus B is the domain of f−1 and A is the range of f−1.

We now describe a method to find the inverse of a function algebraically. Suppose
f is one-to-one. Then, write y = f (x). Solve the equation y = f (x) for x in terms of y:
x = f−1 (y). We then interchange the roles of x and y to present the inverse function as
y = f−1 (x).

On the Cartesian plane, interchanging x and y is equivalent to reflecting across the line
y = x. Thus the graph of f−1 is the reflection of the graph of f across y = x.

Definition 4.12 (monotonic function). Let I be an interval. For all a,b ∈ I, a func-
tion f : I → R is said to be

(i) increasing on I if a < b ⇒ f (a)< f (b)

(ii) decreasing on I if a < b ⇒ f (a)> f (b)

Either case is called monotonic.

2Use the difference of cubes identity a3 − b3 = (a−b)
(
a2 +ab+b2

)
and argue why we should not

take into consideration a2 +ab+b2 = 0.



4.9. INJECTIVE FUNCTIONS AND INVERSES 61

Proposition 4.3. If f is increasing on I, then f is one-to-one on I. The same holds
if f is decreasing.

Proof. Suppose f is increasing. Let a,b ∈ I and assume f (a) = f (b). If a < b, then
because f is increasing, then f (a)< f (b) which is a contradiction. If a > b, then f (a)>
f (b), which is again a contradiction. Hence, neither a < b nor a > b is possible, so a = b.
Thus, f is one-to-one. The decreasing case is similar.

Theorem 4.22. Let f be continuous and one-to-one on an interval I. Then f is
either strictly increasing on I or strictly decreasing on I.

See the footnote3 for a rough sketch of the proof.

Theorem 4.23. Suppose f is one-to-one and continuous on an interval I. Then the
inverse f−1 is continuous on its domain.

Proof. Assume f is increasing (the decreasing case is analogous). Then, f−1 is increas-
ing on its domain. Let b be a point in the domain of f−1, and set a = f−1 (b) ∈ I.

To show right-continuity at b, let ε > 0 and choose ε1 ∈ (0,ε] such that [a,a+ ε1] ⊆ I.
Since f is increasing and continuous, we can set

δ = f (a+ ε1)−b > 0.

Then for 0 < y−b < δ , we have

b < y < f (a+ ε1)⇒ a < f−1 (y)< a+ ε1 ≤ a+ ε.

Thus,
∣∣ f−1 (y)−a

∣∣ < ε for y sufficiently close to b from the right. A similar argument
gives left-continuity, and the endpoint behaviour is handled one-sidedly. Hence, f−1 is
continuous.

Theorem 4.24 (derivative of inverse function). Let f be one-to-one and continuous
on an interval I, and let a be an interior point of I such that f is differentiable at a
with f ′ (a) ̸= 0. Let b = f (a). Then f−1 is differentiable at b and

(
f−1)′ (b) = 1

f ′ (a)
.

3Assume f is not monotone. Then there exist α,β ∈ I with α < β and f (α) > f (β ), and also some
a,b ∈ I with a < b and f (a)< f (b). One constructs a continuous function

g(x) = f (a+ x(α −a))− f (b+ x(β −b)) where 0 ≤ x ≤ 1,

and uses the intermediate value theorem (Theorem 3.16) to show that f must take the same value at two
different points, contradicting injectivity.



62 CHAPTER 4. DIFFERENTIATION AND APPLICATIONS

Equivalently, if y = f (x), then

dy
dx

= f ′ (x) ̸= 0 ⇒ dx
dy

=
1

f ′ (x)
.

Proof. Let y = f (x), so x = f−1 (y). Then by Definition 4.1, we have

(
f−1)′ (b) = lim

y→b

f−1 (y)− f−1 (b)
y−b

= lim
y→b

x−a
f (x)− f (a)

.

By continuity of f−1 at b, we have y → b implies x → a, and by injectivity, y ̸= b implies
x ̸= a. Thus (

f−1)′ (b) = lim
x→a

x−a
f (x)− f (a)

=
1

lim
x→a

f (x)− f (a)
x−a

=
1

f ′ (a)
.

The result follows.

4.10 Inverse Trigonometric Functions
The function sinx is not one-to-one on R, but it is strictly increasing on

[
−π

2 ,
π

2

]
with

range [−1,1].

Definition 4.13 (arcsine). For x∈ [−1,1], the unique y∈
[
−π

2 ,
π

2

]
such that siny= x

is denoted by y = arcsinx or y = sin−1 x. Thus,

arcsin : [−1,1]→
[
−π

2
,
π

2

]
is the inverse of sinx restricted to

[
−π

2
,
π

2

]
.

Note that the function arcsin is continuous on [−1,1] and differentiable on (−1,1)
with

d
dx

arcsinx =
1√

1− x2
where −1 < x < 1.

The function cosx is not one-to-one on R, but it is strictly decreasing on [0,π] with range
[−1,1].

Definition 4.14 (arccosine). For x ∈ [−1,1], the unique y ∈ [0,π] such that cosy = x
is denoted by y = arccosx or y = cos−1 x. Then,

arccos : [−1,1]→ [0,π] is the inverse of cosx restricted to [0,π] .

Again, note that the function arccos is continuous on [−1,1] and differentiable on
(−1,1) with

d
dx

arccosx =− 1√
1− x2

where −1 < x < 1.

Moreover,
arcsinx+ arccosx =

π

2
where −1 ≤ x ≤ 1.
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This identity follows from the fact that on the chosen principal branches sin
(

π

2 −θ
)
=

cosθ and uniqueness of inverses.

The tangent function tanx is strictly increasing and continuous on
(
−π

2 ,
π

2

)
with range

R.

Definition 4.15 (arctangent). For x ∈R, the unique y ∈
(
−π

2 ,
π

2

)
such that tany = x

is denoted by y = arctanx or y = tan−1 x. Then,

arctan : R→
(
−π

2
,
π

2

)
is the inverse tangent function.

4.11 Hyperbolic Functions

Definition 4.16. The hyperbolic sine and hyperbolic cosine functions are defined
for x ∈ R by

sinhx =
ex − e−x

2
and coshx =

ex + e−x

2
.

Note that the hyperbolic functions satisfy the identity

cosh2 x− sinh2 x = 1 for all x ∈ R.

Thus, the parametric curve parametrised by x = cosh t and y = sinh t lies on the hyperbola
x2 − y2 = 1 (the right branch, since cosh(t)> 0). Also, the derivatives are

d
dx

sinhx = coshx and
d
dx

coshx = sinhx.

Moreover, for all x ∈R, we have coshx ≥ 1 and sinhx is strictly increasing with range R.





Chapter 5
Integration and Applications

5.1 Integration as Area under a Curve

We begin with the intuitive problem of finding the area of a plane region. Suppose f :
[a,b]→ R is continuous and non–negative, and consider the region

R =
{
(x,y) ∈ R2 : a ≤ x ≤ b,0 ≤ y ≤ f (x)

}
.

We want to define the area A(R) in a rigorous way. The basic idea is to approximate R
by rectangles whose total area can be computed easily, and then pass to the limit as the
mesh of the partition goes to 0. We say that a partition P of the interval [a,b] is a finite
increasing sequence

P = {x0,x1, . . . ,xn} such that a = x0 < x1 < · · ·< xn = b

The norm of the partition P is

∥P∥= max
1≤i≤n

(xi − xi−1) .

For each subinterval [xi−1,xi], we choose a sample point x∗i ∈ [xi−1,xi]. The corresponding
Riemann sum of f with respect to P and the choice of sample points {x∗i } is

S ( f ;P,{x∗i }) =
n

∑
i=1

f (x∗i )∆xi where ∆xi = xi − xi−1.

Geometrically, f (x∗i )∆xi is the area of a rectangle with base [xi−1,xi] and height f (x∗i )
(see red rectangle in Figure 5.1), so the Riemann sum is the total area of these rectangles,
approximating A(R).

65
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y

x
O a b

∆x

f (x∗)

y = f (x)

Figure 5.1: Integration as area under a curve

Definition 5.1 (Riemann integrability criterion). Let f : [a,b] → R be a bounded
function. We say that f is Riemann integrable on [a,b] if there exists a real number
I with the property that for every ε > 0 there exists δ > 0 such that

∥P∥< δ ⇒ |S ( f ;P,{x∗i })− I|< ε

for every partition P of [a,b] and every choice of sample points {x∗i }. In that case
we write

I =
∫ b

a
f (x) dx and call this the definite integral of f from a to b.

Thus, the integral
∫ b

a
f (x) dx is the common limit of all Riemann sums for f over

partitions with norms tending to 0.

Theorem 5.1. If f : [a,b]→R is continuous, then f is Riemann integrable on [a,b].

We omit the proof; it relies on the fact that a continuous function on a closed interval
is uniformly continuous and bounded. This is definitely out of scope of the course — you
would need knowledge from MA3210 Mathematical Analysis II. See Theorem 51.10 of
[3] if you are interested in the proof. When we write

∫ b

a
f (x) dx,

we say that f is the integrand, x is the dummy variable of integration, a and b are the

lower and upper limits, and the symbol
∫

is the integral sign. The value of the integral
does not depend on the letter used for the dummy variable. That is to say,

∫ b

a
f (x) dx =

∫ b

a
f (t) dt =

∫ b

a
f (u) du.
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Example 5.1. Let c ∈ R be constant and consider f (x) = c on [a,b]. For any partition P
and any sample points, we obtain

S ( f ;P,{x∗i }) =
n

∑
i=1

c ∆xi = c
n

∑
i=1

∆xi = c(b−a) .

Therefore, ∫ b

a
c dx = c(b−a) .

This agrees with the elementary area formula for a rectangle of base (b−a) and height c.

Let f : [a,b]→ R be continuous and non–negative. Then, f is Riemann integrable on
[a,b] and ∫ b

a
f (x) dx

is equal to the ordinary Euclidean area of the region between the graph of f , the x-axis
and the vertical lines x = a and x = b. This follows by comparing the area of the region
with the areas of lower and upper step–function approximations built from Riemann sums
and letting the norm go to 0.

Proposition 5.1. Let f : [0,1]→ R be Riemann integrable on [0,1]. Then,

lim
n→∞

1
n

n

∑
k=1

f
(

k
n

)
=
∫ 1

0
f (x) dx.

Proof. Since f is Riemann integrable on [0,1], for any partition P = {x0,x1, . . . ,xn} of
[0,1], the Riemann integral is defined as:∫ 1

0
f (x)dx = lim

∥P∥→0

n

∑
i=1

f (ci)∆xi

where ci ∈ [xi−1,xi] and ∥P∥ = max
1≤i≤n

(xi − xi−1). The trick is to consider the uniform

partition with n subintervals

xk =
k
n

where k = 0,1,2, . . . ,n.

For this partition, we have ∆xk = xk − xk−1 =
k
n −

k−1
n = 1

n for all k, and ∥P∥= 1
n → 0 as

n → ∞. Say we choose the right endpoint as our sample point, i.e. ck = xk =
k
n . Then, the

Riemann sum becomes:

n

∑
k=1

f (ck)∆xk =
n

∑
k=1

f
(

k
n

)
· 1

n
=

1
n

n

∑
k=1

f
(

k
n

)
Since f is Riemann integrable and ∥P∥= 1

n → 0 as n → ∞, we have

lim
n→∞

1
n

n

∑
k=1

f
(

k
n

)
= lim

∥P∥→0

n

∑
k=1

f (ck)∆xk =
∫ 1

0
f (x)dx

and the result follows.
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Example 5.2. Use Riemann sum to find

lim
n→∞

n

∑
k=1

ln n

√
1+

k
n
.

Solution. We have

lim
n→∞

n

∑
k=1

ln n

√
1+

k
n
= lim

n→∞

1
n

n

∑
k=1

ln
(

1+
k
n

)
Using Proposition 5.1, the limit becomes

∫ 1

0
ln(1+ x) dx.

Using integration by parts (Theorem 5.18 though this will be formally discussed in Chap-
ter 5.6), we have∫ 1

0
ln(1+ x) dx = [x ln(1+ x)]10 −

∫ 1

0

x
x+1

dx = ln2−
∫ 1

0
1− 1

x+1
dx

which evaluates to 2 ln2−1. □

Let f and g be Riemann integrable on [a,b] and c ∈R is fixed. First, note that if a = b
and f is defined at a, then ∫ a

a
f (x) dx = 0.

If a < b, then ∫ a

b
f (x) dx =−

∫ b

a
f (x) dx.

These follow directly from the definition in terms of Riemann sums, by reversing the
orientation of the interval.

Theorem 5.2 (additivity). Let a,b,c ∈R with a ≤ c ≤ b, and assume f is integrable
on [a,b]. Then, ∫ c

a
f (x) dx+

∫ b

c
f (x) dx =

∫ b

a
f (x) dx.

Theorem 5.2 expresses the idea that the total signed area on [a,b] is the sum of the
signed areas on [a,c] and [c,b].

Theorem 5.3 (linearity). Let f ,g be integrable on [a,b] and c ∈ R. Then,∫ b

a
( f (x)+g(x)) dx =

∫ b

a
f (x) dx+

∫ b

a
g(x) dx∫ b

a
c f (x) dx = c

∫ b

a
f (x) dx
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Theorem 5.4 (order). If f (x)≥ g(x) for all x ∈ [a,b], then∫ b

a
f (x) dx ≥

∫ b

a
g(x) dx.

Corollary 5.1 (integral bounds). Let m and M be the minimum and maximum of
the continuous function f : [a,b]→ R. Then

m(b−a)≤
∫ b

a
f (x) dx ≤ M (b−a) .

Proof. We have m ≤ f (x) ≤ M for all x, hence m ≤ f (x) and f (x) ≤ M. Integrating
and using the linearity and constant-function formula (Theorem 5.3) yields the desired
inequalities.

The Fundamental Theorem of Calculus (FTC) establishes the precise connection be-
tween derivatives and integrals. It has two parts (Theorems 5.5 and 5.7).

Theorem 5.5 (Fundamental Theorem of Calculus Part I). Let f : [a,b] → R be
continuous. Define

F (x) =
∫ x

a
f (t) dt where x ∈ [a,b] .

Then, F is differentiable on (a,b) and

F ′ (x) = f (x) for all x ∈ (a,b) .

Proof. Fix x ∈ (a,b). Let h ̸= 0 be arbitrarily small enough such that x+ h ∈ [a,b], we
have

F (x+h)−F (x)
h

=
1
h

(∫ x+h

a
f (t) dt −

∫ x

a
f (t) dt

)
=

1
h

∫ x+h

x
f (t) dt.

If h > 0, then this quantity equals

1
h

∫ x+h

x
f (t) dt,

while if h < 0 we can rewrite it as

1
h

∫ x

x+h
f (t) dt.

In both cases, it is the average value of f over an interval shrinking to the fractional part
of x, denoted by {x}. Since f is continuous at x, by Proposition 3.1, for every ε > 0 there
exists δ > 0 such that |t − x|< δ implies | f (t)− f (x)|< ε . If |h|< δ we have, for h > 0,∣∣∣∣1h

∫ x+h

x
f (t) dt − f (x)

∣∣∣∣= ∣∣∣∣1h
∫ x+h

x
( f (t)− f (x)) dt

∣∣∣∣≤ 1
h

∫ x+h

x
| f (t)− f (x)| dt ≤ ε.
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A similar estimate holds for h < 0. Hence,

lim
h→0

F (x+h)−F (x)
h

= f (x) ,

and F is differentiable at x with F ′ (x) = f (x).

Thus the operation ‘integrate from a to x’ is an antiderivative operation: it produces
a function whose derivative is the original integrand. Speaking of antiderivatives, we
shall define what they are here. Let f : I → R be a function on an interval I. A function
F : I → R is called an antiderivative of f if

F ′ (x) = f (x) for all x ∈ I

where F ′ is defined.

Theorem 5.6 (uniqueness up to a constant). If F1 and F2 are antiderivatives of the
same function f on an interval I, then there exists a constant C ∈ R such that

F2 (x) = F1 (x)+C for all x ∈ I.

Proof. Consider G(x) = F2 (x)−F1 (x). Then

G′ (x) = F ′
2 (x)−F ′

1 (x) = f (x)− f (x) = 0 on I.

By (i) of Theorem 4.12, G is constant on I, so F2 = F1 +C for some C.

Theorem 5.7 (Fundamental Theorem of Calculus Part II). Let f : [a,b] → R be
continuous and let F be any antiderivative of f on [a,b]. Then,∫ b

a
f (x) dx = F (b)−F (a) .

Proof. Define

G(x) =
∫ x

a
f (t) dt.

By the first part of the Fundamental Theorem of Calculus (Theorem 5.5), G is an an-
tiderivative of f on [a,b]. Thus, G and F are antiderivatives of the same function on the
interval, so by Theorem 5.6, there exists C with

G(x) = F (x)+C.

Taking x = a gives G(a) =
∫ a

a
f (t) dt = 0, so 0 = F (a)+C and C =−F (a). Therefore,

G(x) = F (x)−F (a). Setting x = b yields∫ b

a
f (t) dt = G(b) = F (b)−F (a)

as claimed.
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The Fundamental Theorems of Calculus (Theorems 5.5 and 5.7) suggest the following
notation. Let f be a function on an interval I. An indefinite integral of f is the family of
all antiderivatives of f . That is, ∫

f (x) dx = F (x)+C,

where F is any fixed antiderivative of f on I and C ∈ R is an arbitrary constant. By
Theorem 5.7, we can compute definite integrals by first finding an indefinite integral,
which is

∫ b

a
f (x) dx = F (b)−F (a)

whenever F ′ (x) = f (x). As expected, linearity carries over to indefinite integrals. That
is, ∫

( f (x)+g(x)) dx =
∫

f (x) dx+
∫

g(x) dx and
∫

c f (x) dx = c
∫

f (x) dx

up to additive constants.

5.2 The Natural Logarithm

Definition 5.2. The natural logarithm function lnx is defined for x > 0 by the inte-
gral

ln(x) =
∫ x

1

1
t

dt.

Note that lnx is continuous and differentiable on (0,∞) with the following properties:

ln1 = 0 and
d
dx

lnx =
1
x

and
d2

dx2 lnx =− 1
x2 . (5.1)

Consequently, lnx is strictly increasing and concave down on (0,∞). Next, from the
integral definition and properties of improper integrals, one can show

lim
x→0+

ln(x) =−∞, lim
x→∞

ln(x) = ∞,

so the range of ln(x) is all of R.

Theorem 5.8 (logarithm of a product). For a > 0 and x > 0,

ln(ax) = lna+ lnx.

Proof. Fix a > 0 and define f (x) = ln(ax)− lnx for x > 0. Then,

f ′ (x) =
d
dx

ln(ax)− d
dx

lnx =
a
ax

− 1
x
= 0.

Hence, f is constant on (0,∞). Evaluating at x = 1 gives

f (1) = ln(a)− ln(1) = ln(a) ,

so f (x) = ln(a) for all x > 0, i.e. ln(ax) = ln(a)+ ln(x).
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Theorem 5.9 (logarithm of a rational power). Let x > 0 and r ∈Q. Then,

ln(xr) = r lnx.

Proof. Fix r ∈Q and define g(x) = ln(xr)− r lnx for x > 0. Then,

g′ (x) =
d
dx

ln(xr)− r
d
dx

lnx =
rxr−1

xr − r
x
= 0.

Thus g is constant. Evaluating at x = 1 yields g(1) = 0, so g(x) = 0 and hence, we
conclude that ln(xr) = r ln(x).

For x < 0, we have −x > 0 and

d
dx

ln(−x) =−1 · 1
−x

=
1
x
.

Also, for x ̸= 0, we have

d
dx

ln |x|= 1
x

and
∫ 1

x
dx = ln |x|+C.

Moreover, if a,b have the same sign, then∫ b

a

1
x

dx = ln |b|− ln |a| .

Definition 5.3 (logarithmic differentiation). Let

y = [ f1 (x)]
r1 · · · [ fn (x)]

rn where r1, . . . ,rn ∈Q

and each fk is a non-zero differentiable function. The method of logarithmic differ-
entiation consists of the following steps:

(i) taking absolute values, so

|y|=
n

∏
k=1

| fk (x)|rk

(ii) taking natural logarithms, i.e.

ln |y|=
n

∑
k=1

rk ln | fk (x)|

(iii) differentiating both sides with respect to x to obtain

1
y

dy
dx

=
n

∑
k=1

rk
f ′k (x)
fk (x)

.

Example 5.3. We give an example of the method of logarithmic differentiation. Let

y =

(
x2 +1

)√
x+3

x−1
where x > 1.
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Then,

lny = ln
(
x2 +1

)
+

1
2

ln(x+3)− ln(x−1) .

Differentiating both sides yields

1
y

dy
dx

=
2x

x2 +1
+

1
2
· 1

x+3
− 1

x−1

so
dy
dx

=

[
2x

x2 +1
+

1
2(x+3)

− 1
x−1

] (
x2 +1

)√
x+3

x−1
.

5.3 The Exponential Function
We know from (5.1) that lnx is strictly increasing and continuous on (0,∞) with range R.
Hence, it is bijective, and has an inverse exp : R→ (0,∞).

Definition 5.4. There is a unique real number e > 0 such that lne = 1. This number
is called Euler’s number. Numerically,

e ≈ 2.718281828459045 · · · .

Definition 5.5. The exponential function (base e) is

exp(x) = ex,

defined as the inverse of ln(x) and it satisfies the following properties:

ln(ex) = x where x ∈ R and elny = y where y > 0.

Theorem 5.10. The exponential function ex is differentiable on R and

d
dx

ex = ex.

Proof. Let y = ex, so x = lny. Then, we have

dy
dx

=
1
dx
dy

=
1

d
dy

ln(y)
=

1
1/y

= y = ex.

For a rational exponent r = m
n , we can define er = ( n

√
e)m, and for real x extend via

continuity, i.e. ex = exp(x).

Definition 5.6. Let a > 0. For x ∈ R, define the exponential function of base a by

ax = exp(x ln(a)) = ex ln(a).
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By Definition 5.6, we have

ln(ax) = x ln(a) for all a > 0 and x ∈ R,

consistent with the rational-exponent case.

Theorem 5.11. Let a > 0 and x,y ∈ R. Then, the following hold:

(i) axay = ax+y

(ii) a−x = 1
ax

(iii) (ax)y = axy

(iv) ax is differentiable on R and

d
dx

ax = ax lna

Proof. (i)-(iii) follow from the corresponding identities for ex and properties of ln. For
(iv), write ax = ex ln(a) and apply the chain rule (Theorem 4.6) to obtain

d
dx

ax =
d
dx

ex ln(a) = ln(a)ex ln(a) = ax ln(a) .

Definition 5.7. Let a ∈ R. For x > 0, define

xa = ea lnx.

Theorem 5.12. For any a ∈ R, the function f (x) = xa is differentiable on (0,∞)

with
d
dx

xa = axa−1 for all x > 0.

Moreover, ∫
xa dx =

ln |x|+C if a =−1;
xa+1

a+1 +C if a ̸=−1.

Proof. Write xa = ea ln(x) for x > 0. Let u = a ln(x). Then

d
dx

xa =
d
dx

eu =
du
dx

eu =
a
x

ea ln(x) =
a
x

xa = axa−1.

The antiderivatives follow by reversing the differentiation.

Example 5.4. Find d
dx (x

x) for x > 0.

Solution. Let y = xx. Taking logarithms, lny = ln(xx) = x lnx. Differentiating both sides
yields

1
y

dy
dx

= ln(x)+1 so
dy
dx

= (lnx+1)xx.

□
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Theorem 5.13.
e = lim

x→0
(1+ x)1/x .

Proof. Write

(1+ x)1/x = exp
(

1
x

ln(1+ x)
)
.

Using L’Hôpital’s rule (Theorem 4.20) on ln(1+x)
x as x → 0, we have

lim
x→0

ln(1+ x)
x

= lim
x→0

1
1+ x

1
= 1.

Hence,

lim
x→0

(1+ x)1/x = 1 = e.

From Theorem 5.13, we see that a useful strategy for limits involving positive func-
tions is as follows. We first express f (x)g(x) as exp(g(x) ln( f (x))). We then evaluate the
limit inside the exponential (often via l’Hôpital’s rule) and then apply continuity of the
exponential function.

Example 5.5. Evaluate

lim
x→0+

xx.

Solution. We have xx = exp(x ln(x)). As x → 0+, x ln(x)→ 0, which can be computed
by writing

x ln(x) =
ln(x)
1/x

and applying l’Hôpital’s rule (Theorem 4.21). Thus, we see that the desired limit is equal
to exp0 = 1. □

Example 5.6 (MA2002 AY21/22 Sem 1). Let n be a fixed positive integer. Find the
following limit and simplify the answer.

lim
x→0

(
ex + e2x + . . .+ enx

n

)1/x

Solution. The trick1 is to first consider the natural logarithm of the function and note that
1 = n

n . Then, we have

ln
(

ex + e2x + . . .+ enx

n

)1/x

=
1
x

ln
(

1+
ex + e2x + . . .+ enx −n

n

)
1It might be difficult to think of the trick (other than the natural logarithm). Some may attempt this

question using the squeeze theorem or using the geometric series at the start but would realise that their
attempts are futile.
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As x → 0 on the right side, we observe that the expression is in indeterminate form. Using
L’Hôpital’s rule (Theorem 4.20), the limit as x → 0 becomes

lim
x→0

ex +2e2x + . . .+nenx

ex + e2x + . . .+ enx = lim
x→0

1+2+ . . .+n
n

.

The numerator on the right side is an arithmetic series, for which the sum is given by
1
2n(n+1). Reverse engineering, our original limit is e

1
2 (n+1). □

As mentioned, integration can be viewed geometrically as computing the area under a
curve. Here, we compare the area under y = lnx with simple shapes whose areas are easy
to compute, and this translates into sharp estimates for ln(n!) (since ln(n!) is closely tied
to sums of lnk). The outcome is a Stirling-type bound for the factorial, showing that n!
is well-approximated by (n/e)n√n up to an explicit constant factor (as in the inequalities
proved in parts (iii) and (iv) of Example 5.7). Let us discuss Example 5.7 in detail.

Example 5.7 (MA2002 AY21/22 Sem 1).

(i) For x ≥ 1, let n = ⌊x⌋ and define

f (x) = (n+1− x) lnn+(x−n) ln(n+1).

Show that for all x ≥ 1, f (x)≤ lnx and that for all n ∈ Z+,∫ n

1
f (x) dx = ln(n!)− 1

2
lnn. (5.2)

(ii) For x ≥ 1, let n be the unique integer such that n−1/2 < x < n+1/2 and define

g(x) =
x
n
−1+ lnn.

Show that for all x ≥ 1, g(x)≥ lnx and that for all n ∈ Z+,∫ n

1
g(x) dx =

∫ n

1
f (x) dx+

1
8

(
1− 1

n

)
. (5.3)

(iii) Use the results in (i) and (ii) to conclude that for all n ∈ Z+,

7
8
≤ ln(n!)−

(
n+

1
2

)
lnn+n ≤ 1.

(iv) Use the results in (iii) to conclude that

e7/8 ≤ n!
(n/e)n√n

≤ e.

Solution.

(i) We first prove that for all x ≥ 1, we have f (x)≤ lnx. Equivalently, we can define

g(x) = (n+1− x) lnn+(x−n) ln(n+1)− lnx
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so it suffices to prove that for all x ≥ 1, we have g(x)≤ 0. The trick is to first note
that x−n ∈ [0,1] so we can let t = x−n. As such,

g(x) = (1− t) lnn+ t ln(n+1)− lnx.

Since ln is concave down on (0,∞), for all a,b > 0 and t ∈ [0,1], we have

ln [(1− t)a+ tb]≥ (1− t) lna+ t lnb. (5.4)

Here is a geometric interpretation.

y = lnx

(a, lna)

(b, lnb)

xt = (1− t)a+ tb

(xt , lnxt)

(xt ,(1− t) lna+ t lnb)

a b
x

y

Applying (5.4) with a = n and b = n+1 yields

(1− t) lnn+ t ln(n+1)≤ lnx

so it follows that for all x ≥ 1, we have g(x)≤ 0.

We then prove that (5.2) holds. Note that n+1− x and x−n are periodic functions
with discontinuities at integer points. Next, lnn and ln(n+1) also have discontinu-
ities at integer points. One can sketch the graph of f (x) and see that for x ∈ [1,2],
we obtain a right-angled triangle, whereas for x ∈ [2,3] ,x ∈ [3,4] , . . ., we obtain
trapeziums. As such,∫ n

1
f (x) dx =

∫ 2

1
f (x) dx+

∫ 3

2
f (x) dx+ . . .+

∫ n

n−1
f (x) dx

which is equal to

1
2
·1 · ln2+

1
2
·1 · (ln2+ ln3)+

1
2
·1 · (ln3+ ln4)+ . . .+

1
2
·1 · (ln(n−1)+ lnn).

Upon simplification, we obtain

ln2+ ln3+ . . .+ lnn− 1
2

lnn = ln(n!)− 1
2

lnn.
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(ii) Let
h(x) =

x
n
−1+ lnn− lnx

so it suffices to prove that h(x)≥ 0 for all x ≥ 1. We have

h(x) =
x
n
−1− ln

(x
n

)
.

Let u = x
n which is > 0. Then, h(x) = φ (u) where φ (u) = u−1− lnu. It suffices

to show that φ (u)≥ 0 for all u > 0. One sees that

φ
′ (u) = 1− 1

u
and φ

′′ (u) =
1
u2 > 0

so φ is convex on (0,∞), and its only critical point is u = 1. Since φ ′′ > 0, this
critical point is a global minimum. We see that φ (1) = 0 so φ (u) ≥ φ (1) = 0 for
all u > 0. As such, the first claim holds.

We then prove that (5.3) holds. Since n is the unique integer such that n− 1
2 <

x < n+ 1
2 , the trick is to consider n < x+ 1

2 < n+1 so we can define n =
⌊
x+ 1

2

⌋
.

So,

g(x) =
x

⌊x+1/2⌋
−1+ ln

⌊
x+

1
2

⌋
.

Again, we see that the region between y = g(x) and the x-axis from x = 1 to x = n
comprises a triangle between x = 1 and x = 3

2 and a trapezium between x = 3
2 and

x = 5
2 , as well as between x = 5

2 and x = 7
2 , and so on.

The area of the triangle is
1
2
· 1

2
· 1

2
=

1
8
.

The area of the trapezium bounded by y = g(x), the x-axis, and the ordinates x = 3
2

and x = 5
2 is

1
2
·1 ·
(

3
4
−1+ ln(2)+

1
4
+ ln2

)
= ln2.

Subsequently, the area of the trapezium bounded by y = g(x), the x-axis, and the
ordinates x = 5

2 and x = 7
2 is ln3. However, the upper limit of the integral of g is n

as mentioned in (5.3), which is ∈ Z. Based on the pattern established earlier,∫ n+1/2

n−1/2
g(x) dx = lnn,

but the integral from n to n+ 1/2 should be omitted. This is the area of another
trapezium, which is

1
2

(
n+

1
2
−n
)

︸ ︷︷ ︸
width

[
g(n)+g

(
n+

1
2

)]
︸ ︷︷ ︸

sum of parallel sides

=
1
4

[
g(n)+g

(
n+

1
2

)]

which simplifies to

1
4

(
n
n
−1+ lnn+

n+1/2
n

−1+ lnn
)
=

1
4

(
2lnn+

1
2n

)
.



5.4. IMPROPER INTEGRALS 79

In a similar fashion as compared to (i),∫ n

1
g(x) dx =

1
8
+ ln2+ ln3+ . . .+ lnn− 1

4

(
2lnn+

1
2n

)
=

1
8
+ ln1+ ln2+ ln3+ . . .+ lnn− 1

4

(
2lnn+

1
2n

)
=

1
8
+ ln(n!)− 1

2
lnn− 1

8n

= ln(n!)− 1
2

lnn+
1
8

(
1− 1

n

)
so the result follows.

(iii) First, set

q = ln(n!)−
(

n+
1
2

)
lnn+n.

Note that

q = ln(n!)− 1
2

lnn+n(1− lnn) =
∫ n

1
f (x) dx+n(1− lnn) .

Since f (x)≤ lnx from (i), then∫ n

1
f (x) dx ≤

∫ n

1
lnx dx = n lnn−n+1.

It is thus clear that an upper bound for q is obtained, and that is 1.

Using (ii), since g(x)≥ lnx, then∫ n

1
g(x) dx ≥

∫ n

1
lnx dx = n lnn−n+1.

Next, using (5.3), we have∫ n

1
f (x) dx ≥ 1

8

(
1
n
−1
)
+n lnn−n+1.

Hence,

q ≥ n−n lnn+
1

8n
− 1

8
+n lnn−n+1 =

7
8
+

1
8n

≥ 7
8
,

so a lower bound for q is obtained, which is 7/8.

(iv) Since q is bounded between 7/8 and 1, we have

e7/8 ≤ enn!
n(2n+1)/2

≤ e.

The term that is sandwiched here is indeed the one given at the start of the question,
so we are done.

5.4 Improper Integrals
The definite integral as defined so far only applies to bounded functions on finite closed
intervals. Improper integrals extend the concept to allow unbounded intervals or inte-
grands.
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Definition 5.8 (infinite intervals). Let f be continuous on [a,∞). If the limit

lim
b→∞

∫ b

a
f (x) dx

exists (as a finite real number), we define the improper integral∫
∞

a
f (x) dx = lim

b→∞

∫ b

a
f (x) dx

and say that it converges. Otherwise the improper integral is said to diverge.

Similarly, if f is continuous on (−∞,b], we define∫ b

−∞

f (x) dx = lim
a→−∞

∫ b

a
f (x) dx,

whenever the limit exists.

For an integral over (−∞,∞) we set∫
∞

−∞

f (x) dx =
∫ c

−∞

f (x) dx+
∫

∞

c
f (x) dx

for some (and hence any) c, provided both integrals on the right converge.

Example 5.8 (The p–series test on [1,∞)). In MA2108 Mathematical Analysis I, we will
encounter the p-series test. It says that

∞

∑
n=1

1
np converges if and only if p > 1.

As such, the mentioned series diverges for 0 < p ≤ 1. Now, for p > 0, consider∫
∞

1

1
xp dx = lim

b→∞

∫ b

1
x−p dx. (5.5)

For p ̸= 1, we obtain ∫ b

1
x−p dx =

b1−p −1
1− p

,

so ∫
∞

1

1
xp dx =

 1
p−1 if p > 1;

diverges if 0 < p ≤ 1.

For p = 1, we have ∫ b

1

1
x

dx = lnb → ∞,

so the improper integral diverges. Comparing with the p-series test, this is precisely the
same threshold p = 1 that we saw in the improper integral in (5.5). For readers inter-
ested in a deeper discussion (related to the integral test for convergence and to some, the
Cauchy condensation test) which involves concepts from MA2108 Mathematical Analy-
sis I, please check out Chapter 59 of [3].



5.5. INTEGRATION BY SUBSTITUTION 81

Definition 5.9 (unbounded integrands). Let f be continuous on (a,b] but un-
bounded near a. If the limit

lim
ε→0+

∫ b

a+ε

f (x) dx

exists (as a finite real number), we define∫ b

a
f (x) dx = lim

ε→0+

∫ b

a+ε

f (x) dx.

Similar definitions apply when f is unbounded near b, or when there is a singularity
at a point c inside (a,b); in the latter case one splits the integral at c.

Example 5.9. Consider ∫ 1

0

1√
x

dx.

The integrand is unbounded at x = 0, but∫ 1

ε

x−1/2 dx = 2−2
√

ε

which tends to 2. Thus ∫ 1

0

1√
x

dx = 2.

In contrast, ∫ 1

0

1
x

dx = lim
ε→0+

∫ 1

ε

1
x

dx = lim
ε→0+

(ln1− lnε) = ∞,

so the latter improper integral diverges.

Theorem 5.14 (comparison test). Let f and g be continuous on [a,∞) with 0 ≤
f (x)≤ g(x) for all x ≥ a.

(i) If
∫

∞

a
g(x) dx converges, then

∫
∞

a
f (x) dx converges

(ii) If
∫

∞

a
f (x) dx diverges, then

∫
∞

a
g(x) dx diverges

The proof of Theorem 5.14 uses the monotonicity of the integral and properties of
limits of increasing sequences of partial integrals. We omit it here, but anyway some
readers will encounter it again in MA2108 Mathematical Analysis I.

5.5 Integration by Substitution
Integration by substitution is the analogue of the chain rule in differentiation.

Theorem 5.15 (integration by substitution). Let g be differentiable on an interval
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I and let f be continuous on an interval containing g(I). Then∫
f (g(x))g′ (x) dx =

∫
f (u) du where u = g(x) .

In practice, one sets u = g(x), computes du = g′ (x)dx and rewrites the integral en-
tirely in terms of u.

Proof. Consider the composite function

F (x) =
∫

f (g(x))g′ (x) dx.

Let H be an antiderivative of f , so H ′ (u) = f (u). By the chain rule (Theorem 4.6),

d
dx

H (g(x)) = H ′ (g(x))g′ (x) = f (g(x))g′ (x) .

Thus H (g(x)) is an antiderivative of the integrand, and∫
f (g(x))g′ (x) dx = H (g(x))+C.

On the other hand, ∫
f (u) du = H (u)+C,

so substituting u = g(x) gives the same expression.

Theorem 5.16 (integration by substitution). Let g : [α,β ] → R be differentiable
with continuous derivative, and let f be continuous on an interval containing
g([α,β ]). Then, ∫

β

α

f (g(x))g′ (x) dx =
∫ g(β )

g(α)
f (u) du.

Proof. Let

F (u) =
∫

f (u) du

be an antiderivative of f . Then, F ′ (u) = f (u). By the chain rule (Theorem 4.6),

d
dx

F (g(x)) = F ′ (g(x))g′ (x) = f (g(x))g′ (x) .

Thus, by the Fundamental Theorem of Calculus (Theorem 5.7), we have∫
β

α

f (g(x))g′ (x) dx = F (g(β ))−F (g(α)) .

The right side equals ∫ g(β )

g(α)
f (u) du

again by the Fundamental Theorem of Calculus (Theorem 5.7), since F is an antideriva-
tive of f .
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When performing integration by substitution, we replace an integral in the variable
x by one in a new variable t, chosen so that the integrand simplifies. Sometimes, it is
convenient to run this procedure backwards, starting from a substitution that converts a
given integrand into another type of integrand (for example a rational function in t). We
begin with a motivating example. Say we wish to evaluate∫ dx

1+
√

x
.

If we naively try the substitution t =
√

x, or equivalently x = t2, where t ≥ 0, then dx =

2t dt. The integral becomes∫ dx
1+

√
x
=
∫ 2t

1+ t
dt =

∫ (
2− 2

1+ t

)
dt = 2t −2ln(1+ t)+C.

Replacing t with
√

x yields∫ dx
1+

√
x
= 2

√
x−2ln

(
1+

√
x
)
+C.

A direct differentiation check shows that the derivative of the right side is indeed 1
1+

√
x .

We now introduce the inverse substitution rule (Theorem 5.17), which can be seen as a
result that is equivalent to integration by substitution (Theorem 5.15).

Theorem 5.17 (inverse substitution rule). Let f be continuous on an interval and
let x = g(t) be a one-to-one differentiable function with continuous derivative g′.
Then, ∫

f (x) dx =
∫

f (g(t))g′ (t) dt,

where the integral on the right is taken with respect to t. After integrating in t, one
then replaces t by the inverse function g−1 (x) to express the result in terms of x.

Note that the usual integration by substitution method (Theorem 5.15) is often used to
simplify the integrand. On the other hand, the inverse substitution rule (Theorem 5.17) is
often used to change the type of integrand (for instance, to turn an integral involving

√
x

into a rational function of t). The requirement that g be one-to-one ensures that an inverse
function g−1 is well-defined on the relevant interval.

Example 5.10. Evaluate ∫ dx
x(1+ x4)

.

Solution. Set t = 1
x so x = 1

t . As such,

dx
dt

=− 1
t2 so dx =− 1

t2 dt.

The integral becomes ∫ dx
x(1+ x4)

=−
∫ t3

1+ t4 dt.
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Now, let u = 1+ t4, so du
dt = 4t3, which implies du = 4t3 dt. Then

−
∫ t3

1+ t4 dt =−1
4

∫ 1
u

du =−1
4

ln |u|+C =−1
4

ln
(
1+ t4)+C.

Finally, t = 1
x gives ∫ dx

x(1+ x4)
=−1

4
ln
(

1+
1
x4

)
+C.

□

Example 5.11. Evaluate ∫ dx
(1+ x2)

n where n ∈ N.

Solution. Note that

d
dx

tan−1 (x) =
1

1+ x2 ⇒
∫ dx

1+ x2 = tan−1 x+C.

For general n, let x = tan t, where t ∈
(
−π

2 ,
π

2

)
so dx

dt = sec2 t. Then, Then,

1+ x2 = 1+ tan2 t = sec2 t,

so ∫ dx
(1+ x2)

n =
∫ sec2 t

(sec2 t)n dt =
∫ 1

(sec t)2n−2 dt =
∫

cos2n−2 t dt.

Thus, these integrals reduce to integrals of even powers of cosine, which can be handled
using trigonometric identities (such as half-angle formulas) and recursion. See Example
5.20. □

Example 5.12. We see that ∫
tanx dx =

∫ sinx
cosx

dx.

Let u = cosx so du
dx =−sinx. As such,∫

tanx dx =
∫

−1
u

du =− ln |u|+C =− ln |cosx|+C.

Example 5.13. Note that∫
secx dx =

∫ sec(x)(sec(x)+ tan(x))
sec(x)+ tan(x)

dx.

Let u = secx+ tanx. Then, du
dx = secx tanx+ sec2 x. After some algebraic manipulation,

one obtains ∫
secx dx = ln |secx+ tanx|+C.

Example 5.14 (MA2002 AY23/24 Sem 2). Let f be any positive continuous function on
[0,π/2]. Find ∫

π/2

0

f (cosx)
f (cosx)+ f (sinx)

dx.

Hint: Use the identity cos(π/2− x) = sinx.
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Solution. Let the original integral be I. Using the substitution u = π/2− x, we have
du =−dx, so

I =−
∫ 0

π/2

f (cos(π/2−u))
f (cos(π/2−u))+ f (sin(π/2−u))

du

=
∫

π/2

0

f (sinu)
f (sinu)+ f (cosu)

du

=
∫

π/2

0

f (sinx)
f (sinx)+ f (cosx)

dx

So,

I + I =
∫

π/2

0

f (cosx)
f (cosx)+ f (sinx)

dx+
∫

π/2

0

f (sinx)
f (sinx)+ f (cosx)

dx =
∫

π/2

0
1 dx =

π

2
.

Hence, I = π/4. □

5.6 Integration by Parts
Let u = u(x) and v = v(x) be differentiable functions with continuous derivatives on an
interval. Recall that the product rule (Theorem 4.2) states that

d
dx

(u(x)v(x)) = u′ (x)v(x)+u(x)v′ (x) .

Integrating both sides with respect to x,∫ (
u′ (x)v(x)+u(x)v′ (x)

)
dx = u(x)v(x)+C.

Rearranging gives the integration by parts formula (Theorem 5.18). The art in using

integration by parts is to choose u and dv so that the resulting integral
∫

v du is simpler

than the original
∫

u dv.

Theorem 5.18 (integration by parts). If u = u(x) and v = v(x) are differentiable
with continuous derivatives, then∫

u(x)v′ (x) dx = u(x)v(x)−
∫

u′ (x)v(x) dx.

In differential notation (with du = u′ (x)dx, dv = v′ (x)dx), we have∫
u dv = uv−

∫
v du.

Example 5.15. Compute ∫
lnx dx where x > 0.

Solution. Take u = lnx and dv = dx so du = 1
x dx and v = x. As such,∫

lnx dx = x lnx−
∫

x · 1
x

dx = x lnx−
∫

1 dx = x lnx− x+C.

□
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Example 5.16. Compute ∫
xsinx dx.

Solution. Take u = x2 and dv = ex dx so du = 2x dx and v = ex. Then,∫
xsinx dx =−xcosx+

∫
cosx dx =−xcosx+ sinx+C.

□

Example 5.17. Compute ∫
x2ex dx.

Solution. First, choose u = x2 and dv = ex dx, so du = 2x dx and v = ex. As such,∫
x2ex dx = x2ex −2

∫
xex dx.

For
∫

xex dx, integrate by parts again with u = x and dv = ex dx, so du = dx and v = ex.
This yields ∫

xex dx = xex −
∫

ex dx = xex − ex +C.

As such, ∫
x2ex dx = x2ex −2(xex − ex)+C =

(
x2 −2x+2

)
ex +C.

□

Example 5.18. Compute ∫
sin−1 x dx where −1 < x < 1.

Solution. Take u = sin−1 x and dv = dx, so du = 1√
1−x2 dx and v = x. As such,

∫
sin−1 x dx = xsin−1 x−

∫ x√
1− x2

dx.

For the remaining integral, let w = 1− x2, so dw
dx =−2x. Then,∫ x√

1− x2
dx =−1

2

∫ 1√
w

dw =−
√

w+C =−
√

1− x2 +C.

Hence, ∫
sin−1 x dx = xsin−1 x+

√
1− x2 +C.

□

Sometimes, integration by parts leads to an equation involving the original integral,
which can then be solved algebraically.

Example 5.19. Compute ∫
ex sinx dx.
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Solution. First, set u = ex and dv = sinx dx, so du = ex dx and v =−cosx. As such,∫
ex sinx dx =−ex cosx+

∫
ex cosx dx.

Now, we integrate the second integral by parts. So, choose u = ex and dv = cosx dx, so
du = ex dx and v = sinx. As such,∫

ex cosx dx = ex sinx−
∫

ex sinx dx.

Hence, ∫
ex sinx dx =−ex cosx+ ex sinx−

∫
ex sinx dx.

Let
I =

∫
ex sinx dx.

Then,
I =−ex cosx+ ex sinx− I so 2I = ex (sinx− cosx) .

Hence, ∫
ex sinx dx =

1
2

ex (sinx− cosx)+C.

□

Example 5.20 (reduction formula). For any non-zero integer n, prove that∫
cosn x dx =

1
n

cosn−1 xsinx+
n−1

n

∫
cosn−2 x dx.

Solution. The trick is to write∫
cosn x dx =

∫
cosn−1 xcosx dx.

Let u = cosn−1 x and dv = cosx dx, so du = −(n− 1)cosn−2 xsinx dx and v = sinx. As
such, ∫

cosn x dx = cosn−1 xsinx+(n−1)
∫

cosn−2 xsin2 x dx.

Using sin2 x = 1− cos2 x,∫
cosn x dx = cosn−1 xsinx+(n−1)

∫
cosn−2 x dx− (n−1)

∫
cosn x dx.

Collect the integrals of cosn x on the left so

n
∫

cosn x dx = cosn−1 xsinx+(n−1)
∫

cosn−2 x dx.

Dividing by n gives the claimed formula. □

Example 5.21 (MA2002 AY22/23 Sem 1). Suppose f is a continuously differentiable
function. That is, the derivative of f is continuous. Prove that

lim
n→∞

1
n2

n

∑
k=1

[
k f ′
(

k
n

)
+n f

(
k
n

)]
= f (1) .
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Solution. One should be well-versed with the contents from Chapter 5.1. We see that

lim
n→∞

1
n2

n

∑
k=1

k f ′
(

k
n

)
= lim

n→∞

1
n

n

∑
k=1

k
n

f ′
(

k
n

)
=
∫ 1

0
x f ′ (x) dx

and

lim
n→∞

1
n2

n

∑
k=1

n f
(

k
n

)
= lim

n→∞

1
n

n

∑
k=1

f
(

k
n

)
=
∫ 1

0
f (x) dx.

As such,

lim
n→∞

1
n2

n

∑
k=1

[
k f ′
(

k
n

)
+n f

(
k
n

)]
=
∫ 1

0
x f ′ (x)+ f (x) dx.

Performing integration by parts on the first integrand yields∫ 1

0
x f ′ (x) dx = [x f (x)]10 −

∫ 1

0
f (x) dx = f (1)−

∫ 1

0
f (x) dx

and the result follows from here. □

5.7 Trigonometric Substitution
When the integrand contains square roots of quadratic expressions in x, completing the
square often leads to one of the standard forms√

a2 − x2 or
√

a2 + x2 or
√

x2 −a2,

where a > 0, which can be handled by appropriate trigonometric substitutions based on
Pythagorean identities.

(i) If
√

a2 − x2 appears, use x = asin t where t ∈
[
−π

2 ,
π

2

]
. Then,√

a2 − x2 = acos t.

(ii) If
√

a2 + x2 appears, use x = a tan t where t ∈
(
−π

2 ,
π

2

)
. Then,√

a2 + x2 = asec t.

(iii) If
√

x2 −a2 appears, use x = asec t where t ∈
[
0, π

2

)
∪
[
π, 3π

2

)
. Then,√

x2 −a2 = a tan t.

Example 5.22. Compute ∫ √
1− x2 dx.

Solution. Let x = sin t where t ∈
[
−π

2 ,
π

2

]
. As such,

√
1− x2 = cos t and dx = cos t dt.

Then, ∫ √
1− x2 dx =

∫
cos2 t dt =

∫ 1+ cos2t
2

dt =
t
2
+

1
4

sin2t +C.

Since sin2t = 2sin t cos t = 2x
√

1− x2 and t = sin−1 x, we obtain∫ √
1− x2 dx =

1
2

sin−1 x+
1
2

x
√

1− x2 +C.

□
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Example 5.23. Compute ∫ √
1+ x2 dx.

Solution. Let x = tan t where t ∈
(
−π

2 ,
π

2

)
. So,

√
1+ x2 = sec t and dx = sec2 t dt. Then,

Then, ∫ √
1+ x2 dx =

∫
sec t sec2 t dt =

∫
sec3 t dt.

Using the known formula∫
sec3 t dt =

1
2

sec t tan t +
1
2

ln |sec t + tan t|+C,

we get ∫ √
1+ x2 dx =

1
2

x
√

1+ x2 +
1
2

ln
(√

1+ x2 + x
)
+C.

□

Example 5.24. Compute ∫ x√
5+4x− x2

dx.

Solution. First complete the square in the denominator to obtain

5+4x− x2 = 32 − (x−2)2.

Let x−2 = 3sin t, where t ∈
[
−π

2 ,
π

2

]
. So,

√
5+4x− x2 = 3cos t and x = 2+3sin t. As

such, dx = 3cos t dt. Thus,∫ x√
5+4x− x2

dx =
∫ 2+3sin t

3cos t
·3cos t dt =

∫
(2+3sin t) dt

which is equal to 2t − 3cos t +C. We then rewrite this expression in terms of x. Since
x−2 = 3sin t, we have

sin t =
x−2

3
and cos t =

√
5+4x− x2

3
and t = sin−1

(
x−2

3

)
.

Hence, ∫ x√
5+4x− x2

dx = 2sin−1
(

x−2
3

)
−
√

5+4x− x2 +C,

□

Example 5.25 (MA2002 AY21/22 Sem 1). Evaluate the following definite integral:∫ 2

1

1
x2(x2 +4)3/2 dx

Solution. It hints to us to consider the Pythagorean identity tan2 θ + 1 = sec2 θ , so the
substitution required is x2 = 4tan2 θ , or rather, x = 2tanθ . This yields dx = 2sec2 θ dθ .
Then, the integral becomes∫

π/4

arctan(1/2)

2sec2 θ

4tan2 θ ·8sec3 θ
dθ =

1
16

∫
π/4

arctan(1/2)

1
tan2 θ secθ

dθ

=
1
16

∫
π/4

arctan(1/2)
cosθ cot2 θ dθ
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We then use the Pythagorean identity cot2 θ = csc2 θ − 1 and the fact that −cscθ is an
antiderivative of cotθ cscθ . As such, the integral becomes

1
16

∫
π/4

arctan(1/2)
cotθ cscθ − 1

16

∫
π/4

arctan(1/2)
cosθ dθ =− 1

16
[sinθ + cscθ ]

π/4
arctan(1/2) .

Given that θ = arctan(1/2), we wish to find expressions for sinθ and cscθ . As tanθ =

1/2, we can construct a right triangle with legs 1 and 2 and hypotenuse
√

5, where the
angle θ is opposite the leg with length 1. As such, sinθ = 1/

√
5 and cscθ =

√
5. To

conclude, the answer is

− 1
16

(
1√
2
+
√

2− 1√
5
−
√

5
)
.

□

5.8 Integration of Rational Functions
Some simple rational integrals include the following:

∫ dx
xn =

ln |x|+C if n = 1;
x1−n

1−n +C if n ≥ 2,

and, via the substitution x = tan t,∫ dx
(1+ x2)

n =
∫

cos2n−2 t dt,

for integers n ≥ 1, which we have already discussed in Example 5.11.

We now discuss the factorisation of polynomials over the real numbers R.

Theorem 5.19. Every non-constant polynomial with real coefficients can be
uniquely written as a product of real linear factors and real irreducible quadratic
factors.

We give a more precise formulation of Theorem 5.19. If P(x) is a real polynomial of
degree ≥ 1, then we can write

P(x) = ∏
j

(
x+a j

)r j
∏

k

(
x2 +bkx+ ck

)sk ,

where r j,sk ∈ N, bk,ck ∈ R and b2
k < 4ck, and the factorisation is unique up to ordering.

Recall that a rational function

f (x) =
A(x)
B(x)

is proper if degA < degB. Otherwise it is called improper.
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Proposition 5.2 (division algorithm). Given any rational function f (x) = A(x)
B(x) , with

polynomials A, B and degB ≥ 1, there exist unique polynomials Q(x), R(x) such
that

A(x) = B(x)Q(x)+R(x) where degR < degB.

Thus,

f (x) = Q(x)+
R(x)
B(x)

,

so integration reduces to integrating a polynomial and a proper rational function.

We now discuss the method of partial fraction decomposition. Let

f (x) =
A(x)
B(x)

be a proper rational function, and we wish to factor B(x) as a product of linear and
irreducible quadratic factors. Suppose

B(x) = ∏
j

(
x+a j

)r j
∏

k

(
x2 +bkx+ ck

)sk

is the factorisation of B(x) over R into linear and irreducible quadratic factors. Then, the

proper rational function
A(x)
B(x)

can be expressed uniquely as a sum of partial fractions of

the form

∑
j

(
A j,1

x+a j
+

A j,2(
x+a j

)2 + · · ·+
A j,r j(

x+a j
)r j

)
+∑

k

(
Bk,1x+Ck,1

x2 +bkx+ ck
+ · · ·+

Bk,skx+Ck,sk

(x2 +bkx+ ck)
sk

)
,

where the coefficients A j,ℓ, Bk,m, Ck,m ∈ R are uniquely determined. Note that the total
number of unknown coefficients in the partial fraction decomposition equals degB(x).

For example, for linear factors, we have

∫ dx

(x+a)k =

ln |x+a|+C, if k = 1;
(x+a)1−k

1−k +C if k ≥ 2.

For quadratic factors, we can use the identity

x2 +bx+ c =
(

x+
b
2

)2

+α
2 where α

2 = c− b2

4
> 0.

Example 5.26. Decompose
4x

x3 − x2 − x+1
into partial fractions and integrate.

Solution. By partial fraction decomposition, one can see that

4x
x3 − x2 − x+1

=− 1
x+1

+
1

x−1
+

2
(x−1)2 .
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Hence, ∫ 4x
x3 − x2 − x+1

dx =− ln |x+1|+ ln |x−1|− 2
x−1

+C.

□

Example 5.27 (MA2002 AY23/24 Sem 2). Find

∫ 7x2 −13x+13
(x−2)(x2 −2x+3)

dx.

Solution. Note that x2 − 2x+ 3 = (x−1)2 + 2, which cannot be split into linear factors
with real coefficients. In fact, recall from our earlier discussion that such polynomials are
said to be irreducible over R. So, there exist A,B,C ∈ R such that

7x2 −13x+13
(x−2)(x2 −2x+3)

=
A

x−2
+

Bx+C

(x−1)2 +2
.

Hence,

7x2 −13x+13 = A
[
(x−1)2 +2

]
+(Bx+C)(x−2)

= (A+B)x2 +(−2A−2B+C)x+3A−2C

This implies A+B = 7, −2A−2B+C =−13 and 3A−2C = 13. Substituting B = 7−A
and C = 1

2 (3A−13) into the second equation, we have

−2A−2(7−A)+
1
2
(3A−13) =−13 so A = 5.

Consequently, B= 2 and C = 1. Hence, the partial fraction decomposition of the integrand
is

5
x−2

+
2x+1

(x−1)2 +2
.

Integrating, we obtain∫ 5
x−2

dx+
∫ 2x+1

(x−1)2 +2
dx = 5ln |x−2|+

∫ 2x−2

(x−1)2 +2
dx+

∫ 3

(x−1)2 +2
dx

which is equal to

5 ln |x−2|+ ln
[
(x−1)2 +2

]
+

3√
2

tan−1
(

x−1√
2

)
+ c.

□

Example 5.28 (MA2002 AY23/24 Sem 2). For what value(s) of a does∫
∞

1

ax
x2 +1

− 1
2x

dx

converge? Evaluate the corresponding integral(s).
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Solution. We have∫
∞

1

ax
x2 +1

− 1
2x

dx =
1
2
[
a ln
(
x2 +1

)
− lnx

]∞
1

=
1
2

lim
R→∞

ln

[(
R2 +1

)a

R

]
− a

2
ln2

Note that the second expression a ln2/2 is not affected by R, so it suffices to consider the
first expression. Hence, we must have

lim
R→∞

ln

[(
R2 +1

)a

R

]
= 0 so lim

R→∞

(
R2 +1

)a

R
= 1.

By L’Hôpital’s rule (Theorem 4.21), one can deduce that a = 1/2. □

Example 5.29 (bounding π). On the interval [0,1] we have

1
2
≤ 1

1+ x2 ≤ 1.

Multiplying by x4 (1− x)4 ≥ 0, integrating on [0,1], and using explicit computations
yields

1
1260

≤ 22
7
−π ≤ 1

630
.

This provides a classical rational approximation 22
7 to π .

5.9 Universal Trigonometric Substitution
For integrals of the form ∫

f (sin(x) ,cos(x)) dx,

where f is a rational expression in two variables, there is a powerful substitution that
converts everything into a rational function of a single variable. Let

t = tan
(x

2

)
where −π < x < π so that x = 2tan−1 t.

We recall the identities

sinx =
2tan

( x
2

)
1+ tan2

( x
2

) and cosx =
1− tan2 ( x

2

)
1+ tan2

( x
2

) .
Hence,

sinx =
2t

1+ t2 and cosx =
1− t2

1+ t2 .

Furthermore, differentiating x = 2tan−1 t gives

dx
dt

=
2

1+ t2 ⇒ dx =
2

1+ t2 dt.
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Theorem 5.20 (universal trigonometric substitution). For −π < x < π , we have∫
f (sin(x) ,cos(x)) dx =

∫
f
(

2t
1+ t2 ,

1− t2

1+ t2

)
2

1+ t2 dt,

where t = tan
( x

2

)
. The integrand on the right is a rational function of t.

Example 5.30. Compute∫
sec(x) dx for −π < x < π and x ̸=±π

2
.

Solution. Let t = tan
( x

2

)
. Then,

cosx =
1− t2

1+ t2 so secx =
1+ t2

1− t2

and
dx =

2
1+ t2 dt.

As such, ∫
secx dx =

∫ 1+ t2

1− t2 ·
2

1+ t2 dt =
∫ 2

1− t2 dt.

By partial fraction decomposition, one can write

2
1− t2 =

1
1+ t

+
1

1− t
,

so that ∫
secx dx = ln |1+ t|− ln |1− t|+C = ln

∣∣∣∣1+ t
1− t

∣∣∣∣+C.

Using t = tan
( x

2

)
and the identity

secx+ tanx =
1+ t
1− t

,

we obtain the well-known formula∫
secx dx = ln |secx+ tanx|+C,

which is valid on any interval where sec(x) is continuous. □

Example 5.31. Find ∫ dx
sinx+2cosx+3

where −π < x < π.

Solution. With t = tan
( x

2

)
, we have

sinx =
2t

1+ t2 and cosx =
1− t2

1+ t2 and dx =
2

1+ t2 dt.

As such,

sinx+2cosx+3 =
2t

1+ t2 +2 · 1− t2

1+ t2 +3 =
t2 +2t +5

1+ t2 .
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Hence, ∫ dx
sinx+2cosx+3

=
∫ 2

1+t2 dt
t2+2t+5

1+t2

=
∫ 2

t2 +2t +5
dt.

Completing the square yields t2+2t+5= (t +1)2+22. One can then use the substitution
u = 1

2 (t +1) to obtain∫ 2
t2 +2t +5

dt =
∫ 2

4(u2 +1)
·2 du=

∫ 1
u2 +1

du= tan−1 (u)+C = tan−1
(

t +1
2

)
+C.

Thus, ∫ dx
sinx+2cosx+3

= tan−1
(

1
2

tan
(x

2

)
+

1
2

)
+C where −π < x < π.

□

As an extension of Example 5.31, on [−π,π], one can extend this antiderivative to a
continuous function F1 (x), and use it to evaluate definite integrals such as∫

π

0

dx
sinx+2cosx+3

= F1 (π)−F1 (0) =
π

2
− tan−1

(
1
2

)
.

5.10 Area of Plane Regions
Let f : [a,b]→ R be a continuous and non-negative function. Consider the region in the
plane bounded above by the graph y = f (x), below by the x-axis, and between the vertical
lines x = a and x = b. As shown in Figure 5.2, the area of this region is defined to be

A =
∫ b

a
f (x) dx.

This agrees with the intuitive picture in Figure 5.1 obtained by approximating the region
by rectangles. Here is a heuristic justification. We partition [a,b] into subintervals of
equal length ∆x = b−a

n . On each subinterval, choose a sample point x∗k . The area of the
thin rectangle above x∗k is approximately f

(
x∗k
)

∆x. Summing and taking limits,

A ≈
n

∑
k=1

f (x∗k)∆x which tends to
∫ b

a
f (x) dx

as ∆x → 0. This is precisely the Riemann integral.

x

y

O

y = f (x)

a b

A =
∫ b

a
f (x) dx

Figure 5.2: Area below a curve y = f (x)
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We then discuss the area between two curves. Let f ,g : [a,b] → R be continuous
functions with f (x) ≥ g(x) for all x ∈ [a,b]. Consider the region bounded above by
y = f (x), below by y = g(x), and between x = a and x = b. As shown in Figure 5.3, the
area of this region is

A =
∫ b

a
( f (x)−g(x)) dx.

Again, we give a heuristic justification. At a point x ∈ [a,b], consider the vertical line
segment joining the lower curve y = g(x) to the upper curve y = f (x). Its length is

ℓ(x) = f (x)−g(x)≥ 0.

Approximating the region by thin vertical strips of width ∆x, we have

A ≈ ∑ℓ(x∗)∆x = ∑( f (x∗)−g(x∗))∆x.

Taking the limit as ∆x → 0 gives the stated integral.

x

y

O

y = f (x)

y = g(x)

a b

A =
∫ b

a

(
f (x)−g(x)

)
dx

Figure 5.3: Area between two curves y = f (x) and y = g(x)

Example 5.32 (MA2002 AY21/22 Sem 1). Let R be the region enclosed by the curve
defined by x4 = 4

(
x2 − y2). Find the area of R.

2−2

1

−1

x

y

Solution. Setting y = 0, we see that the curve intersects the axes at (−2,0),(0,0) and
(2,0). With some simple algebraic manipulation, the top half of the curve can be repre-
sented by

y =

√
x2 − 1

4
x4.
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As such, due to symmetry, the area of R is four times the integral over the top half of the
curve from 0 to 2. That is,

Area = 4
∫ 2

0

√
x2 − 1

4
x4 dx = 2

∫ 2

0

√
4x2 − x4 dx = 2

∫ 2

0
x
√

4− x2 dx.

To finish off, one can use the substitution u = x2. We omit the remaining details. The
reader can check that the area is equal to 16

3 units2. □

Example 5.33 (MA2002 AY23/24 Sem 2). Let f (x) = −x2 + 4x+ 2 and g(x) = x2 −
6x+10. Find the area of the shaded region R bounded by f and g.

1 2 3 4 5

−2

2

4

6

8

y =−x2 +4x+2

y = x2 −6x+10

R

x

y

Figure 5.4: The graphs of y = f (x) and y = g(x) with shaded region R

Solution. We first find the intersection points. Setting f (x) = g(x), we have 2x2 −10x+
8 = 0, so x2 −5x+4 = 0. The roots are x = 1 and x = 4. Since f ≥ g on [1,4], then the
area of the shaded region R is∫ 4

1
f (x)−g(x) dx =

∫ 4

1
−2x2 +10x−8 dx = 9.

□

Sometimes it is more convenient to slice the region horizontally. Suppose a plane
region R lies between the horizontal lines y = c and y = d, and for each y ∈ [c,d] the
intersection of R with the horizontal line is a segment from x = xleft (y) to x = xright (y),
where both functions are continuous and xright (y)≥ xleft (y). Then, the area of R is

A =
∫ d

c

(
xright (y)− xleft (y)

)
dy.

To see why, at a fixed height y, the horizontal slice has length

L(y) = xright (y)− xleft (y) .

Approximating by thin horizontal strips of height ∆y,

A ≈ ∑L(y∗)∆y = ∑
(
xright (y∗)− xleft (y∗)

)
∆y.
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Passing to the limit yields the formula.

x

y

O

x = xleft(y) x = xright(y)
c

d

A =
∫ d

c

(
xright(y)− xleft(y)

)
dy

Figure 5.5: Area between two curves x = xright (y) and x = xleft (y)

Example 5.34. Consider the region enclosed between the curves y = x2 and y = 2x− x2.

Using vertical slices, the intersection points satisfy x2 = 2x− x2 so 2x2 − 2x = 0. For
x ∈ [0,1], we have 2x−x2 ≥ x2 so the length of the vertical slice is ℓ(x) = 2x−2x2. Thus,

A =
∫ 1

0

(
2x−2x2) dx =

1
3
.

Using horizontal slices, for y ∈ [0,1], we have y = x2 and y = 2x− x2 which imply x =
√

y and x = 1−
√

1− y respectively. The left boundary is x = 1−
√

1− y and the right
boundary is x =

√
y, so the slice length is L(y) =

√
y+

√
1− y− 1. Again, one checks

that

A =
∫ 1

0
L(y) dy =

1
3
,

which agrees with the previous computation.

5.11 Volume of Revolution (Disc Method)
A solid is a three-dimensional region in space. Suppose the solid lies between the planes
x = a and x = b along the x-axis, and let A(x) denote the area of the cross-section of
the solid cut by the plane perpendicular to the x-axis at position x, assuming A(x) is
continuous on [a,b]. Under these assumptions, the volume of the solid is

V =
∫ b

a
A(x) dx.

To see why, we partition [a,b] into subintervals of length ∆x. For a sample point x∗k in the
kth subinterval, approximate the slice of the solid between xk and xk+1 by a cylinder of
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base area A
(
x∗k
)

and thickness ∆x, so its volume is A
(
x∗k
)

∆x. Summing and taking limits,

V ≈ ∑A(x∗k)∆x −→
∫ b

a
A(x) dx.

An entirely analogous formula holds if the solid is described along the y-axis. That is, if
A(y) is the cross-sectional area of the plane perpendicular to the y-axis, then

V =
∫ d

c
A(y) dy.

Example 5.35 (cone). For example, one can recover the classic formula for the volume
of a cone of base area A and height h. Place the cone with its vertex at the origin and
its base in the plane z = H. Let A(h) be the area of the cross-section at height h, where
0 ≤ h ≤ H. By the similarity of triangles, the cone of height h is a scaled copy of the
whole cone, with linear scaling factor h

H . Hence, the areas scale by the square of this
factor. That is to say,

A(h)
A

=

(
h
H

)2

⇒ A(h) = A
(

h
H

)2

=
A

H2 h2.

Thus,

V =
∫ H

0
A(h) dh =

A
H2

∫ H

0
h2 dh =

A
H2 ·

H3

3
=

1
3

AH.

In particular, for a circular base of radius r, we have A = πr2, so V = 1
3πr2H.

Example 5.36 (sphere). We can also recover the formula for the volume of a unit sphere.
For a more satisfying discussion involving spherical coordinates, check out MA2104 Mul-
tivariable Calculus. Anyway, we consider the unit sphere

x2 + y2 + z2 = 1.

Place the sphere so that it lies between the planes x =−1 and x = 1. For each x ∈ [−1,1],
the cross-section perpendicular to the x-axis is a disk of radius

√
1− x2, hence the area is

A(x) = π
(
1− x2) .

Therefore,

V =
∫ 1

−1
π
(
1− x2) dx =

4
3

π.

We now discuss the disc method for finding the volume of the solid of revolution.

Theorem 5.21 (disc method for solids of revolution about x-axis). Let f : [a,b]→R
be a continuous function. Consider the region bounded by the graph y = f (x), the
x-axis, and the vertical lines x = a, x = b. Suppose f (x) ≥ 0 on [a,b]. Rotate this
region about the x-axis to form a solid of revolution. At each x, the cross-section
perpendicular to the x-axis is a disk of radius f (x) and area

A(x) = π ( f (x))2 .
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The volume of the solid is

V =
∫ b

a
π ( f (x))2 dx.

Example 5.37. Let f (x) =
√

x on [0,1]. Rotating the region under f about the x-axis
(Figure 5.6) produces a solid whose volume is

V =
∫ 1

0
πx dx =

π

2
.

O 1

y =
√

x

x

√
x

x

y

Figure 5.6: Volume of solid of revolution of y =
√

x

Theorem 5.22 (disc method for solids of revolution about x-axis). Now suppose
f ,g : [a,b]→R are continuous with f (x)≥ g(x)≥ 0. Consider the region between
the two curves and rotate it about the x-axis. For a fixed x, the cross-section is
an annulus: the outer radius is f (x), the inner radius is g(x), and the area of the
cross-section is

A(x) = π ( f (x))2 −π (g(x))2 .

The volume of the solid obtained by rotating the region between y = f (x) and
y = g(x) about the x-axis is

V =
∫ b

a
π

[
( f (x))2 − (g(x))2

]
dx.

Theorem 5.23 (disc method for solids of revolution about y-axis). If a region
bounded by x = g(y), x = h(y), y = c, y = d is rotated about the y-axis, then similar
formulas hold with integration in y.

Example 5.38. If the region between x = 0 and x = 3
√

y for 0 ≤ y ≤ 8 is rotated about the
y-axis, each cross-section perpendicular to the y-axis is a disk of radius 3

√
y, so

V =
∫ 8

0
π ( 3

√
y)2 dy =

96
5

π.

Example 5.39. Let the region be the disk enclosed by the circle

x2 +(y−2)2 = 1.



5.12. VOLUME OF REVOLUTION (SHELL METHOD) 101

Rotating this disk about the x-axis produces a solid. To compute its volume, we use the
disc method. For a fixed x ∈ [−1,1], the circle gives y = 2±

√
1− x2. Thus, the outer

radius is 2+
√

1− x2, the inner radius is 2−
√

1− x2, and

A(x) = π

[(
2+
√

1− x2
)2

−
(

2−
√

1− x2
)2
]
= 8π

√
1− x2.

Hence,

V =
∫ 1

−1
8π

√
1− x2 dx = 8π · π

2
= 4π

2.

5.12 Volume of Revolution (Shell Method)
The disc method in Chapter 5.11 uses cross-sections perpendicular to the axis of rotation.
Sometimes it is more convenient to use cross-sections parallel to the axis, resulting in
cylindrical shells.

Theorem 5.24 (cylindrical shell method). The volume of the solid formed by rotat-
ing the region under y = f (x) on [a,b], a ≥ 0, about the y-axis is

V =
∫ b

a
2πx f (x) dx. (5.6)

Example 5.40. Let f (x) = 2x2 −x3 on [0,2]. Consider the region between the graph of f
and the x-axis on this interval and rotate it about the y-axis. The radius of the shell at x is
r = x, the height is h = f (x), so the shell area is

A(x) = 2πx
(
2x2 − x3)= 2π

(
2x3 − x4) .

Thus,

V =
∫ 2

0
2πx

(
2x2 − x3) dx =

16
5

π.

More generally, if a region between two curves y = u(x) and y = v(x) with u(x) ≥
v(x) is rotated about the y-axis, then each vertical segment of height u(x)− v(x) gives a
shell of area

A(x) = 2πx(u(x)− v(x)) ,

and thus,

V =
∫ b

a
2πx(u(x)− v(x)) dx.

We shall see why (5.6) holds. Let f : [a,b]→R be continuous and non-negative with a ≥
0. Consider the region under y = f (x) above the x-axis on [a,b]. Rotate this region about
the y-axis to form a solid. The region can be viewed as the union of vertical segments
from y = 0 to y = f (x). Fix x and rotate the vertical line segment at x about the y-axis.
The result is the lateral surface of a thin right circular cylinder (a cylindrical shell) of
radius r = x and height h = f (x). If the thickness is ∆x, then the lateral surface area is
approximately

A(x)∆x ≈ 2πrh∆x = 2πx f (x)∆x,
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and the shell volume is this area times the thickness ∆x. Thus the total volume is approx-
imated by

∑2πx∗ f (x∗)∆x.

Example 5.41. Consider the region bounded between y = x2 and y = x on [0,1].

When rotated about the y-axis, using the shell method, for each x ∈ [0,1], the vertical
segment has height x− x2, so

A(x) = 2πx
(
x− x2)= 2π

(
x2 − x3) .

As such,

V =
∫ 1

0
2π
(
x2 − x3) dx =

π

6
.

On the other hand, using the disc method with respect to y, solving y = x gives x = y, and
y = x2 gives x =

√
y. The outer radius is

√
y, the inner radius is y, so

A(y) = π

(
(
√

y)2 − y2
)
= π

(
y− y2) ,

hence,

V =
∫ 1

0
π
(
y− y2) dy =

π

6
,

confirming the shell-method result.

Example 5.42 (MA2002 AY21/22 Sem 1). Let R be the region enclosed by the curve
defined by x4 = 4

(
x2 − y2). Find the volume of the solid formed by rotating R completely

about the y-axis. Refer to Example 5.32 for a sketch of the graph.

Solution. By the shell method, the volume is

2
∫ 2

0
2πxy dx = 4π

∫ 2

0
x

√
x2 − 1

4
x4 dx = 2π

∫ 2

0
x2
√

4− x2 dx.

Using the substitution x = 2sinθ , we have dx = 2cosθ dθ , so the integral becomes

2π

∫
π/2

0
4sin2

θ ·2cosθ ·2cosθ dθ = 32π

∫
π/2

0
sin2

θ cos2
θ dθ = 8π

∫
π/2

0
sin2 2θ dθ .

Using the identity cos4θ = 1−2sin2 2θ , it is easy to show that the volume is 2π2 units3.
We leave this to the reader. □

Example 5.43 (MA2002 AY23/24 Sem 2). Continuing from Example 5.33, let f (x) =
−x2 +4x+2 and g(x) = x2 −6x+10. Find the volume of the solid generated when R is
revolved about the y-axis. See Figure 5.4 for a sketch.

Solution. Using the shell method, the volume is equal to∫ 4

1
2πx( f (x)−g(x)) dx = 2π

∫ 4

1
x
(
−2x2 +10x−8

)
dx

which is equal to 45π . □
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5.13 Arc Length of a Curve
Let f be a continuous function on [a,b] that is differentiable with continuous derivative f ′

on (a,b). Consider the graph of y = f (x) from x = a to x = b. We shall approximate the
curve by a polygonal path. If ∆x is small and the tangent is not vertical, then the change
in y is approximately

∆y ≈ f ′ (x)∆x.

The length of a small segment is

∆L ≈
√

(∆x)2 +(∆y)2 ≈
√

1+( f ′ (x))2
∆x.

Adding and taking limits gives the formula for arc length (Theorem 5.25).

Theorem 5.25 (arc length). Let f : [a,b] → R be differentiable with continuous
derivative on [a,b]. The length of the curve y = f (x), where a ≤ x ≤ b, is

L =
∫ b

a

√
1+( f ′ (x))2 dx.

If a curve is given as x = g(y), with g differentiable and g′ continuous on [c,d], then
the length of the curve is

L =
∫ d

c

√
1+(g′ (y))2 dy.

Example 5.44. Find the arc length of

y =
4
√

2
3

x3/2 −1 where 0 ≤ x ≤ 1.

Solution. We have

dy
dx

= 2
√

2x1/2 so 1+
(

dy
dx

)2

= 1+8x,

so

L =
∫ 1

0

√
1+8x dx.

Let u = 1+8x, so du = 8 dx. As such, dx = 1
8 du. Then,

L =
1
8

∫ 9

1

√
u du =

13
6
.

□

Example 5.45 (circumference of the unit circle). The unit circle x2 + y2 = 1 has circum-
ference 2π . We may compute this by considering the upper semicircle

y =
√

1− x2 where 0 ≤ x ≤ 1,
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and then multiplying its length by 4 (since the full circle consists of four quarter arcs).
We have

dy
dx

=
−x√
1− x2

so

√
1+
(

dy
dx

)2

=
1√

1− x2
.

The arc length of the quarter circle is∫ 1

0

1√
1− x2

dx =
π

2
.

Hence, the entire circumference is 2π .

Example 5.46. Find the length of the curve y =
√

x from (0,0) to (1,1).

Solution. Directly using y = f (x) gives

dy
dx

=
1

2
√

x

which is not continuous at x = 0. Instead, we shall parametrise the same curve as x =

g(y) = y2 for 0 ≤ y ≤ 1. Now,

dx
dy

= 2y so 1+
(

dx
dy

)2

= 1+4y2.

Thus,

L =
∫ 1

0

√
1+4y2 dy.

Using the substitution u = 2y, we have

L =
1
2

∫ 2

0

√
1+u2 du.

Using the standard antiderivative∫ √
1+u2 du =

1
2

u
√

1+u2 +
1
2

ln
(

u+
√

1+u2
)
+C,

we obtain
L =

1
2

√
5+

1
4

ln
(√

5+2
)
.

□

5.14 Surface Area of Revolution
Before deriving the general formula, we recall two geometric facts. First, consider a right
circular cone of base radius r and slant height ℓ. Then, it has a lateral surface area of

A = πrℓ.

To see why, if we cut along a line from the vertex to the base and flatten the surface, we
obtain a sector of a circle of radius ℓ. The circumference of the base (2πr) corresponds
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to the arc length of the sector, while the full circle of radius ℓ has circumference 2πℓ. The
area of the sector is to πℓ2 as its arc length is to 2πℓ, hence,

A
πℓ2 =

2πr
2πℓ

=
r
ℓ

so A = πrℓ. Next, a frustum of a right circular cone with slant height ℓ and base radii
r1 < r2 has lateral surface area

A = π (r1 + r2)ℓ.

Again to see why, the frustum can be obtained by removing a smaller cone from a larger
similar cone. If the larger cone has slant height ℓ2 and base radius r2, and the smaller
cone has slant height ℓ1 and base radius r1, then similarity gives

r1

ℓ1
=

r2

ℓ2
,

and ℓ = ℓ2 − ℓ1. Subtract the two lateral surface areas, we have πr2ℓ2 −πr1ℓ1, and then
we rearrange to obtain A = π (r1 + r2)ℓ.

We now derive the surface area of revolution formula (Theorem 5.26). Let f : [a,b]→ R
be continuous and non-negative, differentiable with continuous derivative on [a,b]. Con-
sider the curve y = f (x), a ≤ x ≤ b, and rotate it about the x-axis to form a surface of
revolution. Approximate the curve by a polygonal path. For a small increment ∆x, the
curve segment from (x, f (x)) to (x+∆x, f (x+∆x)) is approximated by a straight line of
length ∆L. Rotating this segment about the x-axis produces a conical frustum whose slant
height is ∆L and whose radii are approximately f (x) and f (x+∆x). Its lateral surface
area is approximately

∆A ≈ π ( f (x)+ f (x+∆x))∆L.

Thus,
∆A
∆x

≈ π ( f (x)+ f (x+∆x))
∆L
∆x

.

Taking the limit as ∆x → 0, and using the arc-length formula (Theorem 5.25)

dL
dx

=

√
1+( f ′ (x))2,

we obtain
dA
dx

= 2π f (x)
√

1+( f ′ (x))2.

Theorem 5.26 (surface area of revolution). Let f be nonnegative and differentiable
with continuous derivative on [a,b]. The area of the surface formed by rotating the
curve y = f (x), a ≤ x ≤ b, about the x-axis is

S =
∫ b

a
2π f (x)

√
1+( f ′ (x))2 dx. (5.7)

In terms of the variable y, if a curve is given by x = g(y) and is rotated about the
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y-axis, then the corresponding formula is

S =
∫ d

c
2πg(y)

√
1+(g′ (y))2 dy.

Example 5.47 (surface area of the unit sphere). The upper semicircle of the unit circle
is given by

y =
√

1− x2 where −1 ≤ x ≤ 1.

Rotating this curve about the x-axis produces the unit sphere. In Example 5.45, we already
computed

dy
dx

=
−x√
1− x2

so

√
1+
(

dy
dx

)2

=
1√

1− x2
.

Thus,

2πy

√
1+
(

dy
dx

)2

= 2π

√
1− x2 · 1√

1− x2
= 2π.

The surface area is

S =
∫ 1

−1
2π dx = 2π ·2 = 4π.

Example 5.48. Consider the curve y = x2 from (0,0) to (1,1) rotated about the y-axis. It
is more convenient to write the curve as x =

√
y, where 0 ≤ y ≤ 1. Then,

dx
dy

=
1

2
√

y
so

√
1+
(

dx
dy

)2

=

√
1+

1
4y

=

√
4y+1

4y
.

The radius of rotation is x =
√

y, so

2πx

√
1+
(

dx
dy

)2

= 2π
√

y ·

√
4y+1

4y
= π

√
4y+1.

Therefore,

S =
∫ 1

0
π
√

4y+1 dy.

Using the substitution u = 4y+1, we obtain

S =
π

4

∫ 5

1

√
u du =

π

6

(
5
√

5−1
)
.

Example 5.49 (MA2002 AY21/22 Sem 1). Let f be a function that is non-negative,
increasing and continuous on [0,2], and differentiable on (0,2). A surface S is formed
by rotating the curve y = f (x) completely about the x-axis. Suppose that the area of the
portion of S on any interval [a,b] ⊆ [0,2] is always 10π(b− a). If f (0) = 3, find the
expression for f (x).

Though this is ideally a problem on ordinary differential equations (Chapter 6), it can
be solved as we just need to work with (5.7).
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Solution. Using (5.7), we have∫ x

0
2π f (t)

√
1+( f ′ (t))2 dt = 10πx, (5.8)

where a = 0 and b = x and [a,b] ⊆ [0,2]. By the Fundamental Theorem of Calculus
(Theorem 5.5), differentiating both sides of (5.8), we have

2π f (x)
√

1+( f ′(x))2 = 10π.

The differential equation becomes2

f (x)
√

1+( f ′(x))2 = 5 so ( f (x))2 +
(

f (x) f ′(x)
)2

= 25.

Using the substitution u(x) = ( f (x))2, we have u′(x) = 2 f (x) f ′(x), so the differential
equation now becomes

u(x)+
1
4
(u′(x))2 = 25.

Differentiating both sides, we have

u′(x)
(

1+
1
2

u′′(x)
)
= 0.

As such, either u′(x) = 0 or u′′(x) = −2. The former yields u(x) = c1, so f (x) = ±√
c1.

Since f (0) = 3, this solution yields f (x) = 3 for all 0 ≤ x ≤ 2. However, substituting this
into (5.7), for a ≤ x ≤ b, we have∫ b

a
2π ·3 dx = 6π(b−a) ̸= 10π(b−a).

As such, we consider the latter of the two solutions, for which it yields u(x) =−x2+c2x+
c3, so f (x)=±

√
−x2 + c2x+ c3, but since f is non-negative, then f (x)=

√
−x2 + c2x+ c3.

Substituting f (0) = 3 gives c3 = 9. Substituting f (x) =
√

−x2 + c2x+9 into (5.7), for
a ≤ x ≤ b, we have

∫ b

a
2π

√
−x2 + c2x+9 ·

√√√√1+

(
c2 −2x

2
√

−x2 + c2x+9

)2

= 10π(b−a).

Thus, ∫ b

a

√
−4x2 +4c2x+36+ c2

2 +4x2 −4c2x dx = 10(b−a)∫ b

a

√
36+ c2

2 dx = 10(b−a)

so c2 = 8. We reject c2 =−8. To see why, if f (x) =
√
−x2 −8x+9, then the domain of

f does not include values of x for x > 1. Hence, f (x) =
√
−x2 +8x+9. □

2There is some semblance to solving this differential equation as compared to Clairaut’s equation, for
which the latter is given by

y(x) = x
dy
dx

+ f
(

dy
dx

)
.





Chapter 6
Ordinary Differential Equations

6.1 Introduction
Let I ⊆R be an interval and let y : I →R be an unknown function. An ordinary differential
equation (ODE) of order n for y is an equation of the form

F
(

x,y(x) ,y′ (x) ,y′′ (x) , . . . ,y(n) (x)
)
= 0,

where F is a given function of n+ 2 variables, and y(k) denotes the k–th derivative of y
with respect to x. The largest order of derivative of y that appears in the ODE is called
the order of the ODE. In particular, a first-order ODE involves y and y′ but no higher
derivatives, and can usually be written in the form

dy
dx

= F (x,y) ,

for some function F of two variables.

Next, let J ⊆ I be an interval. A function y : J → R is a solution of the ODE on J if
y is sufficiently differentiable on J and the ODE is satisfied for every x ∈ J.

A family of solutions depending on one or more arbitrary constants is called a general
solution. A solution that cannot be obtained from the general solution by specialising the
constants is sometimes called a singular solution.

Example 6.1. Consider the first-order ODE

dy
dx

= 1−
√

x where x ≥ 0.

Integrating both sides with respect to x gives

y(x) =
∫

1−
√

x dx = x− 2
3

x3/2 + c, (6.1)

where c ∈ R is an arbitrary constant. This family is the general solution of the ODE on
any interval where the right side of (6.1) is defined.

109
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The simplest first-order ODEs are those of the form

dy
dx

= f (x) ,

where f is a function of x alone. In this case, any antiderivative of f gives a solution.
Suppose f : I → R is a continuous function. Then, the general solution of

dy
dx

= f (x)

on I is
y(x) =

∫
f (x)dx = F (x)+C,

where F is any fixed antiderivative of f and C ∈ R. Similarly, when

dy
dx

= g(y)

depends only on y, we can treat x as a function of y. Say g is continuous and non-zero on
an interval J and consider

dy
dx

= g(y) .

Then, on any subinterval where g(y) ̸= 0, the solutions are implicitly given by

x =
∫ 1

g(y)
dy = G(y)+C.

Note that if y=C0 is a constant solution of the algebraic equation g(y)= 0, then y(x)=C0

is a solution of dy
dx = g(y) since the derivative vanishes identically. Such constant solutions

are usually singular with respect to the family obtained by integrating 1
g(y) .

Definition 6.1 (initial value problem). A first-order initial value problem (IVP) con-
sists of a first-order ODE

dy
dx

= F (x,y) together with a condition y(a) = b,

where (a,b) is a specified point in the plane. A function y is a solution of the IVP if
it solves the ODE on some interval containing a and satisfies the initial condition.

In many situations, once the general solution y(x) depending on a constant C is
known, the initial condition determines the value of C and hence a unique particular
solution.

Example 6.2. Consider
dy
dx

= y where y(0) = 1.

The general solution of dy
dx = y is y(x) =Cex.1 Imposing y(0) = 1 gives 1 =Ce0 =C, so

C = 1. Hence the unique solution to the IVP is y(x) = ex.

6.2 Separable First-Order Equations

1We will discuss methods to solving first-order differential equations in due course.
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Definition 6.2 (separable ODE). A first-order ODE

dy
dx

= F (x,y)

is called separable if F can be factorised as F (x,y) = f (x)g(y) for suitable sin-
gle–variable functions f and g.

Assume g(y) ̸= 0 in a region of interest. Then, the equation

dy
dx

= f (x)g(y)

can be rewritten formally as

1
g(y)

dy
dx

= f (x) so
1

g(y)
dy = f (x)dx.

Integrating both sides, we obtain∫ 1
g(y)

dy =
∫

f (x)dx

which provides an implicit relation between x and y.

Theorem 6.1 (general solution of separable equations). Let f and g be continuous
on intervals, and consider the separable ODE

dy
dx

= f (x)g(y) .

(i) Any constant y =C satisfying g(C) = 0 gives a constant (singular) solution.

(ii) On any region where g(y) ̸= 0, the general solution is obtained by integrating∫ 1
g(y)

dy =
∫

f (x) dx.

Example 6.3. Solve

2
√

xy
dy
dx

= 1 where x,y > 0.

Solution. We have
√

y dy = 1
2
√

x dx. Integrating both sides yields∫ √
y dy =

∫ 1
2
√

x dx

so 2
3y3/2 = 1

3x3/2+C. We can make y the subject of the equation. Anyway, this implicitly
defines the general solution on the region x,y > 0. □

6.3 Homogeneous First-Order Equations
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Definition 6.3 (homogeneous function). Let F : Rm → R be defined on a cone (for
example Rm \{0}). We say that F is homogeneous of degree n if

F (tx1, . . . , txm) = tnF (x1, . . . ,xm)

for every t ∈ R\{0} for which both sides are defined.

Example 6.4. We give some examples of homogeneous functions.

(i) For any non-negative integer n, each monomial xn−iyi is homogeneous of degree n,
and so is any homogeneous polynomial

n

∑
i=0

aixn−iyi.

(ii) Any linear function F (x1, . . . ,xm) = a1x1 + · · ·+ amxm is homogeneous of degree
1.

(iii) A function F is homogeneous of degree 0 if F (tx1, . . . , txm) = F (x1, . . . ,xm); in two
variables this means that F (x,y) depends only on the ratio y/x.

Definition 6.4 (homogeneous first-order ODE). A first-order ODE

dy
dx

= F (x,y) (6.2)

is called homogeneous if F is homogeneous of degree 0, that is,

F (tx, ty) = F (x,y) for all t ̸= 0.

Equivalently, F (x,y) can be expressed in the form F (x,y) = Φ
( y

x

)
for some sin-

gle–variable function Φ wherever x ̸= 0.

For equations of the form (6.2), the substitution z(x) = y(x)
x reduces the ODE to a

separable equation in x and z. Indeed, writing y(x) = xz(x), we obtain

dy
dx

= z(x)+ x
dz
dx

,

and since F (x,y) = Φ
( y

x

)
, we have

dy
dx

= F (x,y) = Φ

(y
x

)
= Φ(z) .

Hence
z(x)+ x

dz
dx

= Φ(z(x)) or equivalently x
dz
dx

= Φ(z)− z.

Provided that Φ(z)− z ̸= 0, this differential equation is separable because we can write it
as

dz
Φ(z)− z

=
dx
x
.
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Example 6.5. Solve the homogeneous equation

x2 dy
dx

= y2 +2xy where x ̸= 0.

Solution. We write the differential equation as

dy
dx

=
(y

x

)2
+2
(y

x

)
.

Set z = y/x, so y = xz and

dy
dx

= z+ x
dz
dx

so z+ x
dz
dx

= z2 +2z.

Hence,

x
dz
dx

= z2 + z = z(z+1) .

Assuming z ̸= 0 and z ̸=−1 (these will correspond to singular solutions), we have

dz
z(z+1)

=
dx
x
.

By partial fraction decomposition, as

1
z(z+1)

=
1
z
− 1

z+1
,

we have ∫ (1
z
− 1

z+1

)
dz =

∫ dx
x

so ln
∣∣∣∣ z
z+1

∣∣∣∣= ln |x|+C.

Exponentiating, we have ∣∣∣∣ z
z+1

∣∣∣∣=C |x| .

We replace z with y/x and absorb ± into C. After some algebraic manipulation, we see
that the solution to the differential equation can be rewritten in the form

y =
x2

C− x
with C ̸= 0

which is the general solution on suitable intervals. The excluded cases z ≡ 0 and z ≡−1
correspond to the singular solutions y ≡ 0 and y ≡−x. □

6.4 First-Order Linear Equations
A first-order ODE of the form

dy
dx

= F (x,y)

is called linear if F (x,y) is an affine (hence linear) function of y. That is,

dy
dx

+ p(x)y = q(x) ,
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where p and q are given functions of x. When q ≡ 0, the differential equation is homoge-
neous. That is,

dy
dx

+ p(x)y = 0.

This equation is separable since

1
y

dy
dx

=−p(x) ,

so ∫ 1
y

dy =−
∫

p(x) dx ⇒ ln |y|=−P(x)+C,

where P is an antiderivative of p. Hence, y(x) =Ce−P(x).

For the general linear equation

dy
dx

+ p(x)y = q(x) , (6.3)

we seek a non-zero function v(x) such that the left side becomes the derivative of v(x)y(x).
That is to say,

d
dx

(v(x)y(x)) = v(x)
dy
dx

+ v′ (x)y(x) .

Comparing with

v(x)
(

dy
dx

+ p(x)y
)
= v(x)

dy
dx

+ v(x) p(x)y,

we want v′ (x) = v(x) p(x), i.e. v must solve the homogeneous linear equation. As before,
this gives v(x) = eP(x) where P′ (x) = p(x). The function v is called an integrating factor.
Multiplying the original equation (6.3) by v, we obtain

d
dx

(v(x)y(x)) = v(x)q(x) .

Integrating,

v(x)y(x) =
∫

v(x)(x)dx+C,

and thus

y(x) =
1

v(x)

(∫
v(x)q(x)dx+C

)
.

If we chose a different antiderivative P1 (x) = P(x)+ k, then v1 (x) = eP1(x) = ekv(x) is a
constant multiple of v. Multiplying the entire equation by a non-zero constant does not
change the set of solutions, so any integrating factor of this form gives the same general
solution.

Example 6.6. Solve

x
dy
dx

= x2 +3y where x > 0. (6.4)

Solution. Rewriting in standard form,

dy
dx

− 3
x

y = x.
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Here p(x) =−3
x , so

P(x) =
∫

p(x)dx =
∫

−3
x

dx =−3lnx,

and an integrating factor is

v(x) = eP(x) = e−3lnx = x−3.

Multiplying (6.4) throughout by x−3 gives

x−3 dy
dx

−3x−4y = x−2 so
d
dx

(
x−3y

)
= x−2.

Integrating both sides, we have

x−3y =
∫

x−2dx =−x−1 +C,

so

y(x) = x3
(
−1

x
+C
)
=−x2 +Cx3.

□

Example 6.7 (MA2002 AY21/22 Sem 1). Consider the following initial value problem:

dy
dx

= 2e−xy2 +2y−3ex where y = 0 at x = 0

(i) Use the substitution y = ex + 1
z to convert the differential equation of the given

initial value problem into a first order linear equation in x and z.

(ii) Solve the differential equation obtained in (i). Hence, solve the initial value prob-
lem. Express the answer as y = f (x).

Solution.

(i) The substitution yields
dy
dx

= ex − z−2 dz
dx

so the differential equation becomes

2e−x
(

ex +
1
z

)2

+2
(

ex +
1
z

)
−3ex = ex − z−2 dz

dx

2e−x
(

e2x +
2ex

z
+ z−2

)
+2ex +2z−1 = 4ex − z−2 dz

dx

As such,

dz
dx

+6z =−2e−x. (6.5)
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(ii) The integrating factor is e
∫

6 dx = e6x. Hence, multiplying both sides of (6.5) by the
integrating factor, we have

d
dx

(
ze6x

)
=−2e5x so ze6x =−2

5
e5x + c.

When x = y = 0, then z =−1, so c = 0.6. Hence,

y =−3ex(e5x −1)
2e5x +3

is the solution to the initial value problem.

Sometimes, an equation is not linear in y, but is linear in x when we view x as a function
of y. For example, suppose we can write the equation in the form

dx
dy

+ p̃(y)x = q̃(y) .

Then, the usual integrating factor method (now with independent variable y) applies. This
is especially useful when the original equation is of the form

H (x,y)
dy
dx

= G(x,y) ,

and H and G are such that solving for dx
dy yields a linear equation in x.

6.5 Bernoulli’s Equation

Definition 6.5 (Bernoulli equation). A Bernoulli equation is a first-order ODE of
the form

dy
dx

+ p(x)y = q(x)yn, (6.6)

where p and q are given functions of x, and n ∈ R is a given constant.

If n = 0 or n = 1, the equation is already linear or at least separable (see our discus-
sions in Chapters 6.3 and 6.4). The interesting case is when n ̸= 0,1. Assume n ̸= 0,1
and y(x) ̸= 0 on an interval. Introduce the change of variables

z(x) = y(x)1−n .

Then, by the chain rule (Theorem 4.6), we have

dz
dx

= (1−n)y−n dy
dx

.

Multiplying the Bernoulli equation (6.6) by (1−n)y−n, we obtain

(1−n)y−n dy
dx

+(1−n) p(x)y1−n = (1−n)q(x) ,

i.e.
dz
dx

+(1−n) p(x)z = (1−n)q(x) .

This is a first-order linear ODE in z. After solving for z, we recover y from y1−n = z.
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Example 6.8. Solve

x
dy
dx

+ y = x4y3 where x > 0.

Rewriting,
dy
dx

+
1
x

y = x3y3.

This is a Bernoulli equation with n = 3. Let

z = y1−3 = y−2 so
dz
dx

=−2y−3 dy
dx

.

Multiplying the original equation by −2y−3 yields

−2y−3 dy
dx

− 2
x

y−2 =−2x3 so
dz
dx

− 2
x

z =−2x3.

This becomes a linear equation in z. Here p(x) =−2
x , so

P(x) =
∫

−2
x

dx =−2lnx and v(x) = eP(x) = x−2.

Then
d
dx

(
x−2z

)
= x−2 (−2x3)=−2x.

Integrating both sides yields x−2z = −x2 +C so z(x) = −x4 +Cx2. Recall that z = y−2,
hence

y−2 =Cx2 − x4.

On intervals where the right–hand side is non-zero, this determines y(x).

6.6 Modelling with First-Order ODEs
We now give several important applications of first-order ODEs in modelling time–dependent
phenomena. We begin with discussing exponential growth and decay. Suppose y(t) de-
notes the size of a quantity at time t (for instance, a population, the amount of substance,
or the value of an investment). A basic assumption is that the rate of change is propor-
tional to the current size. That is,

dy
dt

= ky,

where k is a constant. When k > 0 we have natural growth, when k < 0 we have natural
decay. The ODE is separable, so

1
y

dy
dt

= k ⇒
∫ 1

y
dy =

∫
k dt,

so ln |y|= kt +C and hence, y(t) =Cekt . If y(0) = y0 is prescribed, then

y(t) = y0ekt .

We then discuss compound interest. Say an amount A0 > 0 is invested at an interest rate
r > 0 per year. If interest is compounded once per year, after t years, the value is

A(t) = A0 (1+ r)t .
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If interest is compounded n times per year, then the interest rate per compounding period
is r/n, and there are nt periods in t years; thus

An (t) = A0

(
1+

r
n

)nt
.

The interest is said to be compounded continuously if we define

A(t) = lim
n→∞

A0

(
1+

r
n

)nt
,

provided the limit exists. Using the standard limit

lim
n→∞

(
1+

r
n

)n
= er

as in Theorem 5.13, we obtain A(t) = A0ert . Thus, continuous compounding leads to the
same exponential law as the ODE

dA
dt

= rA.

We then discuss radioactive decay and half-life. In radioactive decay, the rate at which a
substance decays is proportional to the amount remaining. Let m(t) denote the mass of
the radioactive substance at time t. Then,

dm
dt

= km,

with k < 0. The solution is

m(t) = m(0)ekt .

The half-life t1/2 of the substance is the time required for half of the initial mass to decay.
That is, m

(
t1/2
)
= 1

2m(0). Substituting this into m(t) = m(0)ekt gives

1
2

m(0) = m(0)ekt1/2 so ekt1/2 =
1
2

so k =− ln2
t1/2

.

Thus,

m(t) = m(0)exp

(
− ln2

t1/2
t

)
.

Example 6.9 (radiocarbon dating). Carbon-14 has half–life approximately 5730 years.
A sample in which 10% of the original carbon-14 has decayed still contains 90% of the
original mass, so m(t) = 0.9m(0). Writing

m(t) = m(0)exp
(
− ln2

5730
t
)
,

we solve

0.9 = exp
(
− ln2

5730
t
)

and obtain t ≈ 871 years.
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We now discuss logistic population growth. First, note that the pure exponential
model, also known as the Malthusian model, denoted by

dP
dt

= kP,

assumes unlimited resources, which is unrealistic for large populations. A more realistic
model, known as Verhulst’s model, assumes a carrying capacity M > 0 and that the growth
rate decreases linearly as P approaches M. Let P(t) be the population at time t. Suppose

dP
dt

= r (M−P)P where r > 0,

so that when P is small (relative to M), the equation behaves like dP
dt ≈ rMP (exponential

growth), while as P → M the growth rate tends to 0. This is the logistic equation. It is an
example of a Bernoulli equation because it can be written as

dP
dt

− rMP =−rP2.

Let z = P−1. Then,
dz
dt

=−P−2 dP
dt

.

Multiplying the logistic equation by −P−2 gives

−P−2 dP
dt

+ rMP−1 = r so
dz
dt

+ rMz = r.

This equation is linear in z. The integrating factor is erMt , so

d
dt

(
erMtz

)
= rerMt ,

and therefore,

erMtz =
∫

rerMtdt +C =
r

rM
erMt +C =

1
M

erMt +C.

Thus,

z(t) =
1
M

+Ce−rMt ,

and hence,

P(t) =
1

z(t)
=

M
1+CMe−rMt .

Renaming the constant CM as C, we usually write

P(t) =
M

1+Ce−rMt .

We observe the following properties. If P(0) = P0, then C = M
P0
− 1. Next, as t → ∞,

P(t)→ M; as t →−∞, P(t)→ 0. Lastly, if 0 < P0 < M, then C > 0, P is strictly increas-
ing, and the graph has an inflection point when P(t) = M/2.

We then introduce Newton’s law of cooling, which states that the rate of change of the
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temperature of an object is proportional to the difference between its temperature and that
of the surrounding medium. Let T (t) be the temperature of the object at time t, and let TS

be the constant surrounding temperature. Then,

dT
dt

=−r (T −TS) where r > 0.

Set A(t) = T (t)−TS. Then,

dA
dt

=−rA so A(t) = A(0)e−rt .

Thus,
T (t) = TS +(T (0)−TS)e−rt .

Example 6.10. A boiled egg at 98◦C is placed in water at 18◦C. After 5 minutes, its
temperature is 38◦C. Assuming the water temperature remains constant at 18◦C, how
long in total will it take for the egg to cool to 20◦C?

Solution. Here TS = 18 and T (0) = 98. Hence,

T (t) = 18+80e−rt .

The condition T (5) = 38 gives 38 = 18+80e−5r so r = 1
5 ln4. To find the time t such that

T (t) = 20, we solve the equation 20 = 18+ 80e−rt so t ≈ 13 minutes. Since 5 minutes
have already elapsed, it takes a further 13−5 ≈ 8 minutes for the egg to reach 20◦C. □

Lastly, we discuss the draining tank problem and a variant of it known as the mixing
problem. First, consider a cylindrical tank with cross–sectional area AT (constant) and
water depth h(t) at time t. Suppose there is a sharp-edged hole of area AH at the bottom.
According to Torricelli’s law, the speed v of the water exiting the hole is

v =
√

2gh,

where g is the acceleration due to gravity. The outflow volume rate is

dV
dt

=−AHv =−AH
√

2gh.

On the other hand, V (t) = AT h(t), so

dV
dt

= AT
dh
dt

.

Equating the two expressions for dV
dt gives

AT
dh
dt

=−AH
√

2gh,

or
dh
dt

=−k
√

h so k =
AH

√
2g

AT
> 0.

This is a separable differential equation, for which we obtain 2
√

h =−kt +C. If h(0) =
h0, then 2

√
h0 =C, so

h(t) =
(√

h0 −
k
2

t
)2

.

The tank empties when h(t) = 0, that is, when t = 2
√

h0
k .
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Example 6.11. A right circular cylindrical tank of radius 1m and height 4m is full. The
water drains through a small hole at the bottom at a rate

dV
dt

=−0.1
√

h m3/min,

where h is measured in metres. The volume is V = πh since the radius is 1, so

π
dh
dt

=−0.1
√

h,

that is,
dh
dt

=−0.1
π

√
h =− 1

10π

√
h.

Separating variables,
dh√

h
=− 1

10π
dt.

Integrating,
2
√

h =− t
10π

+C.

If h(0) = 4, then 2
√

4 = 4 =C. Hence

h(t) =
(

2− t
20π

)2
.

The tank is empty when h(t) = 0, i.e. t = 40π minutes.

Mixing (tank) problems model how the amount of a dissolved substance (e.g. salt)
changes in a well-stirred tank while fluid flows in and out. First, we make some standard
assumptions as follows. First, the contents of the tank are perfectly mixed at every time
t. Hence, the concentration in the outflow equals the concentration in the tank. Next, the
inflow and outflow volumetric rates are known functions of time. Lastly, the inflow solute
concentration is known.

Let m(t) denote the mass of solute in the tank at time t and V (t) denote the volume
of solution in the tank at time t. Next, let rin (t) (volume/time) and rout (t) (volume/time)
denote the inflow and outflow rates respectively, and cin (t) (mass/volume) denote the
solute concentration in the inflow. Then, the fundamental modelling principle is

m′ (t) = rate in(t)− rate out(t) .

If the inflow concentration is cin (t), then the solute enters at

rate in(t) = rin (t)cin (t) .

At time t, the concentration in the tank is

ctank (t) =
m(t)
V (t)

.

Because the tank is well-stirred, the outflow concentration equals ctank (t). Hence,

rate out(t) = rout (t) ·
m(t)
V (t)

.
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Substituting the expressions for the two rates gives the standard mixing ordinary differ-
ential equation, which states that

m′ (t) = rin (t)cin (t)− rout (t)
m(t)
V (t)

.

Note that the volume changes according to net flow. That is,

V ′ (t) = rin (t)− rout (t) with initial condition V (0) =V0.

In particular, if rin and rout are constants, then

V (t) =V0 +(rin − rout) t.

Example 6.12 (MA2002 AY23/24 Sem 2). Pure water flows into a tank at rate of 16 L/min,
and the stirred mixture flows out of the tank at a rate of 20 L/min. The tank initially holds
800 litres of solution containing 25 kg of salt. When will the tank have exactly 5 kg of
salt? Give your answer to the nearest integer in the unit of minute.

V0 = 800L

16 L/min
pure water

20 L/minm(0) = 25kg

Solution. Let the mass of salt at time t be m(t). Then,

m′ (t) =−20 · m(t)
800−4t

so
m′ (t)
m(t)

=− 20
800−4t

.

Integrating both sides yields

lnm = 5ln |t −200|+ c.

When t = 0, we have m = 25, so c = ln25−5ln200. As such, when m = 5, we have

ln5 = 5ln |t −200|+ ln25−5ln200.

Solving and taking the minimum of the t values, we have t ≈ 55 minutes. □
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